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ABSTRACT: The contribution deals with statistical tests of model fit. We recall the notion of
martingale residuals defined for lifetime models based on failure intensities. Analysis of these
residual processes has already been studied by many authors. Nevertheless, Bayes approach
to this problem is just developing. We shall present a Bayes procedure of estimation in Cox’s
and AFT models semi-parametric models. Our main concern is Bayes construction of residual
processes and goodness-of-fit tests based on them. The method will be illustrated on an example
with randomly generated data.

1 MARTINGALE RESIDUALS

In order to introduce the notion of martin-
gale residuals, we shall first consider a stan-
dard survival data case, without any depen-
dence on covariates. Let us imagine that a set
of i.i.d. random variables Ti, survival times
of n objects of the same type, is observed.
Alternatively, we may consider their count-
ing processes Ni(t), each having maximally
1 count (at the time of failure, Ti), or it can
be censored without failure. Further, let us
consider also indicator processes (of being in
risk) Yi(t), Yi(t) = 0 after failure or censor-
ing, Yi(t) = 1 otherwise. As lifetimes are
i.i.d., corresponding counting processes have
the same common hazard rate h(t) ≥ 0. Cu-
mulated hazard rate is then H(t) =

∫ t
0 h(s)ds.

It follows that the intensity of Ni(t) is ai(t) =
h(t) · Yi(t). Notice a difference between those
two notions: The hazard rate is a charac-
teristics of distribution, namely here h(t) =
−dlnF̄ (t)/dt where F̄ (t) = 1 − F (t) is a sur-
vival function, complement to distribution func-
tion, while intensity depends on realization of
process Yi(t). It is assumed that data are
observed on a finite time interval t ∈ [0, T ],
Ni(0) = 0.

Let us define also sums of individual char-
acteristics, namely counting process N(t) =∑n

i=1 Ni(t) counting number of failures, fur-
ther Y (t) =

∑n
i=1 Yi(t), cumulated intensities

Ai(t) =
∫ t
0 ai(s)ds and A(t) =

∑n
i=1 Ai(t), so

that here A(t) =
∫ t
0 h(s)Y (s)ds.

In theoretical studies on lifetime models,
many results are based on martingale – com-
pensator decomposition of counting process,
namely that Ni(t) = Ai(t)+Mi(t), so that also
N(t) = A(t) + M(t), where Mi(t), M(t) are
martingales with zero means, conditional vari-
ance processes (conditioned by corresponding
filtration, a nondecreasing set of σ-algebras
F(t−)) are 〈Mi〉(t) = Ai(t), 〈M〉(t) = A(t).
Naturally, martingales have non-correlated in-
crements, and Mi(t) are also non-correlated
mutually (for different i).

Then it is quite reasonable to consider a
residual process (martingale residuals)

R(t) = N(t)− Â(t) = M(t) + A(t)− Â(t)

as a tool for testing model fit. Here Â(t) is
estimated cumulated intensity. Hence, resid-
ual process is constructed from observed data,
and its properties depend mainly on proper-
ties of estimator of cumulated hazard rate, be-
cause Â(t) =

∫ t
0 Y (s)dĤ(s). Tests are then



performed either graphically or numerically,
critical borders for assessing the goodness-of-
fit are based on asymptotic properties of esti-
mates.

1.1 Properties of residuals

The most common estimator of cumulated haz-
ard rate H(t) is the Nelson-Aalen estimator,
which has the form:

Ĥ(t) =
∫ t

0

n∑

i=1

dNi(s)∑n
j=1 Yj(s)

=
∫ t

0

dN(s)

Y (s)
,

so that it is a piecewise constant function with
jumps dĤ(s) = dN(s)/Y (s) at times where
failures have occurred. Its asymptotic prop-
erties, namely uniform on [0, T ] consistency
in probability and asymptotic normality when
n → ∞, are well known (for review of sur-
vival analysis, see for instance Kalbfleisch and
Prentice, 2002). More precisely, the following
convergence in distribution on [0, T ] to Brown
process B holds:

√
n(Ĥ(t)−H(t)) → B(V (t)),

V (t) =
∫ t

0

h(s)ds

c0(s)
,

where we assume the existence of c0(s) = P −
limY (s)

n
, uniform in [0, T ], c0(s) ≥ ε > 0.

Hence, it is possible to construct Kolmogorov-
Smirnov type confidence bands for H(t) as
well as point-wise confidence intervals. Con-
sistent (again uniform in 0, T ) estimator of

V (t) is available, too: V̂ (t) =
∫ t
0

n dN(s)
Y (s)2

.
In the present contribution we are inter-

ested mainly in properties of residual process
R(t) = N(t)− Â(t). Notice that here Â(t) =
N(t) directly, so that it is preferred to con-
struct residuals in data subgroups (strata),
S ⊂ {1, .., n}. Thus, let us define

RS(t) = NS(t)−ÂS(t) = MS(t)+AS(t)−ÂS(t),

where we denoted again N(t) =
∑n

i=1 Ni(t),
NS(t) =

∑
i∈S Ni(t), similarly for Y (t), M(t),

A(t), Â(t). As ÂS(t) =

=
∫ t

0

∑

i∈S

dĤ(r)Yi(r) =
∫ t

0

dN(r)

Y (r)
· YS(r) =

=
∫ t

0

dH(r)Y (r) + dM(r)

Y (r)
· YS(r) =

= AS(t) +
∫ t

0

dM(r)

Y (r)
· YS(r),

we obtain that (with notation S̄ - complement
of S)

RS(t) = MS(t)−
∫ t

0

dM(r)

Y (r)
· YS(r) =

=
∫ t

0

dMS(r)YS̄(r)− dMS̄(r)YS(r)

Y (r)
.

From its structure it follows that process RS(t)
has non-correlated increments, conditioned vari-
ance (by σ-algebras F(t−)) of 1√

n
dRS(t) is

dH(t)

nY (t)2
(YS̄(t)YS(t)2 + YS̄(t)2YS(t))

∼ dH(t)
cS(t)cS̄(t)

c0(t)
,

where we again assume that there exist P-
limits YS(t)/n → cS(t), YS̄(t)/n → cS̄(t),
Y (t)/n → c0(t), uniform in t ∈ [0, T ], bounded
away from zero. Then 1√

n
RS(t) → B(VR(t))

converges to Brown process, too, and asymp-
totic variance function VR(t) is consistently
estimable by V̂R(t) =

∫ t

0

dĤ(r)YS(r)YS̄(r)

nY (r)
=

∫ t

0

dN(r)YS(r)YS̄(r)

nY (r)2
.

Hence, if assumptions of our model hold, the
process

1√
n

RS(t)

(1 + V̂R(t))

should behave asymptotically as Brown bridge
process. It can be tested by the Kolmogorov-
Smirnov criterion (or other similar, as Cramer-
von Mises test). As we assume a simple model
of survival times without any non-heterogeneity,
the method can be used for assessing the ho-
mogeneity for different subsamples S.

The case considered in the present part
was rather simple, in such a case the tests
of model fit can be performed directly with
the aid of estimated cumulative hazard rates
or distribution functions (recall well known
Product limit estimate of Kaplan and Maier).
However, in cases of regression models the test
are not so straightforward. That is why we
shall continue by description of Bayes variant
of residual analysis.



2 BAYES RESIDUALS

Bayes approach to statistical analysis assumes
that all models components (i.e. the parame-
ters as well as non-parametrized parts) as ran-
dom quantities, initially with a prior probabil-
ity distribution. The result of statistical anal-
ysis is then a posterior distribution of those
model components, i.e. their estimate is a dis-
tribution. Actually it is the likelihood func-
tion ’modulated’ by prior distribution.

From another point of view, it is possi-
ble to say that while the ”standard statistics”
studies the variation of data and its conse-
quence when inserted to given functions (esti-
mators), in Bayes statistics the main concern
is variation of ’parameters’, data are taken as
fixed.

Today, Bayes analysis is often supported
by the MCMC (Markov Chain Monte Carlo)
methods. They are based on algorithms of
random sampling (Gibbs sampler, Metropolis-
Hastings procedure) and are used for obtain-
ing approximate representation of posterior
distribution. More about MCMC can be found
elsewhere, for instance in Gamerman (1997).

In the case considered here we deal with
nonparametric hazard rate. For Bayes solu-
tion, its representation can be made from piece-
wise constant functions (or from splines or
from other functional basis), as in Arjas and
Gasbarra (1994). Parameters are then points
of changes of hazard rate, also their number
in [0, T ], and levels of hazard rate in intervals
between these points. Arjas and Gasbarra
(1994) show how MCMC generation can fol-
low Gibbs sampler combined with an ”accept-
reject” sampling method.

Once we have posterior sample of ’hazard
rates’, h(m)(t), (i.e. last M representatives of
aposteriori distribution obtained by MCMC
procedure), we can construct from them a
sample of cumulated intensities in subgroup
S and corresponding residuals:

A
(m)
S (t) =

∫ t

0
h(m)(r)YS(r)dr,

R
(m)
S (t) = NS(t)− A

(m)
S (t).

2.1 Bayes confidence regions

Point-wise (at each t) sample quantiles of

R
(m)
S (t) are obtained immediately, showing so

called credibility intervals (Bayesian version
of confidence intervals) for RS(t). Methods
for construction of confidence bands (of Bayes
type) on the whole interval [0, T ] are stud-
ied intensively nowadays. Theoretically, this
problem is connected with the concept of ’depth
of data’ (see for instance Zuo and Serfling,
2000). Practically, the approach corresponds
to construction of multivariate quantiles, for
instance in the following way: Let us consider
a sample of functions f (m)(x), m = 1, .., M ,
given empirically by values at the same set of
points xj, j = 1, .., J. For each k < M/2 point-
wise sample k/M and (M − k)/M quantiles
(i.e. at each xj) can be constructed. If we join
them to bands, we can try to find such k that,
approximately, a given proportion (95%, say)
of functions lies inside. As an additional finer
criterion we can compare numbers of points
at which the quantiles are crossed.

3 CASE OF REGRESSION MODELS

In the follow-up, we shall assume that distri-
bution of time-to failure depends on covari-
ates. It means that we have to select a re-
gression model for hazard rate and after its
evaluation it is necessary to test the model fit.
We shall discuss here several types of regres-
sion models, with the focus on Cox regression
model and the accelerated failure time model.
More details about regression models in sur-
vival analysis can be found in many mono-
graphs, let us again mention Kalbfleish and
Prentice (2002).

3.1 Additive regression model

In this (also Aalen’s) model, hazard func-
tion is specified as h(t, z) = z · β(t), where z
represents values of covariates, β(t) are func-
tions of time, both z and β are p-dimensional.
Their domains should ensure that h(t, z) ≥ 0.
As a rule, the first covariate component is
taken fixed to 1, so that β1(t) has the meaning
of a ’baseline’ hazard function. In the sequel,
by index i, i = 1, .., n we shall denote indi-
vidual objects, while by k, k = 1, .., p compo-
nents of vectors β, z.



The covariates themselves, Zi(t), can be
different for each object and can change in
time. Individual intensity of Ni(t) is then

ai(t) = Zi(t) · β(t) · Yi(t), i = 1, . . . , n.

Cumulated functions Bk(t) =
∫ t
0 βk(s) ds are

estimated by weighted least squares method.
As dNi(t) = Xi(t)dB(t) + dMi(t), where
Xi(t) = Zi(t) · Yi(t), then B̂(t) =

=
∫ t

0
(X(r)′W (r)X(r))−1X(r)′W (r)dN(r),

where W (r) is a matrix of weights; the sim-
plest choice W (r) = In, identity matrix, op-
timal weights are W (r) = diag{1/ai(r)}, in
practice âi(r) are used, computation is iter-
ated.

Consistency and asymptotic normality of
B̂(t) are straightforward, it holds that the
term

√
n(B̂(t)−B(t)) =

√
n

∫ t

0
X(r)dM(r),

where X(r) = (X(r)′W (r)X(r))−1X(r)′W (r),
is asymptotically distributed as a Gaussian
process with independent increments (Brown
process), its covariance function is estimable
consistently by empirical version of

n
∫ t

0
X(s) D(s,B(s)) X

′
ds

provided its limit exists, uniformly on [0, T ].
Here D(s,B(s)) is a diagonal matrix with com-
ponents ai(s).

It follows that the case is similar to the
case of non-parametrized hazard rate treated
in the 1-st part. Therefore it is possible to de-
rive asymptotic distribution of residuals, again
coinciding with Brown process distribution.
It is described in detail in Volf (1996). Even
Bayes residual analysis can follow the same
scheme as in the preceding part, each func-
tion βk(t) has to be modelled separately, for
instance by Arjas and Gasbarra (1994) ap-
proach.

4 COX REGRESSION MODEL

The case differs in certain aspects from pre-
ceding one, it is caused by more complicated

asymptotic properties. The hazard rate is
specified as h(t, z) = h0(t)exp(z · β), with
processes of covariates Zi(t) and parameter β
(both p-dimensional), h0(t) is a baseline haz-
ard rate, a nonnegative function.

The intensity of i-th process Ni(t) is

ai(t) = h(t, Zi(t)) · Yi(t).

Parameter β is estimated from partial log-
likelihood Lp =

n∑

i=1

∫ T

0
log{ exp(Zi(t)β)∑n

k=1 exp(Zk(t)β) · Yk(t)
}dNi(t),

by an iterative procedure (of Newton-Raphson,
as a rule), cumulated baseline hazard H0(t) =∫ t
0 h0(r)dr is then estimated as

Ĥ0(t) =
∫ t

0

dN(r)
∑n

k=1 exp(Zk(t)β̂) · Yk(t)
.

Theory on properties of estimates is collected
elsewhere, first time the results has been es-
tablished by Andersen and Gill (1982). Esti-
mates are consistent, asymptotically normal,
however, neither

√
n(Ĥ0(t)−H0(t)) nor resid-

ual process are martingales.

4.1 Residuals in Cox model

Residuals are sometimes formulated more
generally, as

dR(t) =
n∑

i=1

Ki(t) · (dNi(t)− dÂi(t)),

with some (convenient) ’weight’ processes Ki(t),
for instance if Ki(t) = Zi(t) (p-dimensional),
R(t) is then estimated score process (the first
derivative) of Lp, while Ki(t) = 1[i ∈ S] yields
stratified residuals. Stratified residuals (the
simplest case) are then expressed as dRS(t) =

dMS(t) + dH0(t)CS(β0, t)− dĤ0(t) · CS(β̂, t),

where dĤ0(t) = dN(t)

C(β̂,t)
and

CS(β, t) =
∑

i∈S exp(Zi(t)β) · Yi(t),
C(β, t) =

∑n
i=1 exp(Zi(t)β) · Yi(t).

If we take approximately β̂ ∼ β0, we ob-
tain expression similar to previous case with-
out regression. Exact approach uses Taylor
expansion of the last term at β0. RS(t)/

√
n



is then expressed with the aid of a martin-
gale and a nonrandom function, with asymp-
totic distribution as a Gaussian process, how-
ever with rather complicated covariance struc-
ture. Hence, random generation of would-be
residual processes with ’ideal’ distribution un-
der hypothesis of model fit is possible (but
not easy). It is actually a bootstrapping, by
which we obtain a sample of ’ideal’ residual
processes. Then, for instance their absolute
maxima are compared with maximal residual
computed from our data. Or certain their
characteristics can be compared. That is why
practical tests of Cox model fit is often per-
formed just graphically, comparing visually
how far are residuals in group S from zero line,
or, equivalently, ÂS(t) from NS(t). Thus, it
seems that in the case of Cox model the Bayes
analysis could offer an easiest tool for model
fit assessing.

4.2 Bayes procedure in Cox model

Let us summarize briefly starting points and
procedure of Bayes analysis in the Cox model
setting, namely the variant applied in the fol-
lowing numerical example. MCMC algorithm
of Metropolis-Hastings was used to obtain sam-
ples representing posterior distributions of β.
Values of β-s were proposed from a prior (a
sufficiently wide uniform, in our case), ac-
cepted or rejected with the use of partial like-
lihoods proportion. Then, to each β, a repre-
sentation of H0(t) was generated, similarly as
in the 1-st part. i.e. from a piecewise constant
prior. Finally, we obtained a sample of both,
β(m), h

(m)
0 (t), m = 1, .., M , from them the in-

tensities and residuals (in a group S, say) were
derived,

A
(m)
S (t) =

=
∫ t

0
h

(m)
0 (r)

∑

i∈S

exp
(
Zi(r)β

(m)) · Yi(r)
)
dr,

R
(m)
S (t) = A

(m)
S (t)−NS(t),

and used for model fit assessing.

5 AFT REGRESSION MODEL

In Accelerated Failure Time model it is as-
sumed that individual hazard is changed by
a factor depending on covariates. Quite com-
monly this factor has the form exp(αz), where

z is a covariate, here constant in time. It fol-
lows that the distribution of time to failure Ti

of an object with covariate value zi has distri-
bution function Fi(t) = F0(t · eαz), where F0

characterizes a baseline distribution (of a ran-
dom variable T0 with covariate z = 0). It also
means that T0i = Ti · exp(αzi) is an i.i.d. rep-
resentation of T0. Logarithmic transformation
yields that

log Ti = −α · zi + log T0i. (1)

Statistical inference based on (1) has to deal
with unknown distribution of log(T0), analy-
sis is not straightforward and could be com-
plicated further by the presence of censored
data. Another approach uses semi-parametric
likelihood based on hazard rates, similarly as
in the case of Cox model. Namely, let {Ti, zi, di,
i = 1, .., n} be observed times to failures or
censoring of i-th object, their covariates, in-
dicators of censoring, respectively, then the
likelihood reads

L =
n∏

i=1

hi(Ti)
di · exp(−

∫ Ti

0
hi(t)dt), (2)

where hi(t) = h0(t · exp(αzi)) · exp(αzi) is the
hazard rate of i-th object at time t, h0 is the
baseline hazard rate of T0. Theory of estima-
tion and asymptotic properties are derived in
Lin et al (1998) and further developed also
in Bagdonavicius and Nikulin (2002, Ch. 6).
Nevertheless, as the practical computation of
asymptotic characteristics is rather compli-
cated, Bayes approach can offer a reasonable
alternative.

5.1 Bayes analysis in AFT model

Let us consider a MCMC procedure alternat-
ing two steps. In the first step, parameter α is
fixed (from preceding iteration) and baseline
hazard rate h0(t) is updated. Observed times
Ti can be transformed to the scale of variable
T0: T 0

i = Ti · exp(αzi). Then, the likelihood
of h0 is

L =
n∏

i=1

[h0(T
0
i ) · eαzi ]di · exp(−

∫ T 0
i

0
h0(t)dt).

(3)
Likelihood (3) can be used either for direct
computation of the Nelson-Aalen estimate of



cumulated H0(t), or for innovation of Bayes
estimator of h0(t), again for instance in the
same manner as proposed by Arjas and Gas-
barra (1994).

The second step updates estimate of pa-
rameter α, while current estimate of h0 is taken
as fixed. Values of α are proposed from a prior
distribution, Metropolis-Hastings acceptance
rule uses the proportion of likelihoods (3) with
newly proposed and current values.

MCMC procedure yields a sequence of es-
timates α(m), h0(t)

(m), h0(t)
(m) are piecewise

constant nonnegative functions defined on se-
lected finite interval. Hence, corresponding
m-th estimate of the intensity of failure for i-
th object equals a

(m)
i (t) = h

(m)
0 (t·exp(α(m)zi))·

exp(α(m)zi) on [0, Ti] and equals zero for t >

Ti. Cumulated intensities are then A
(m)
i (t) =∫ t

0 a
(m)
i (s)ds, and , finally, the residual pro-

cesses in a subset S ⊂ {1, 2, ..., n} are again
differences

R
(m)
S (t) =

∑

i∈S

[A
(m)
i (t)−Ni(t)], (4)

where Ni(t) is again a counting process of fail-
ure of i-th object, i.e. with maximally one
step +1 at Ti provided di = 1. As it has
been said, in practice the residuals are plot-
ted against counts NS(t), not against time t.

Let us here also recall another approach
to Bayes analysis in AFT model. It utilizes
logarithmic model formulation (1). Instead
with baseline hazard rate we then deal with
baseline density for logT0. Often, its prior is
constructed as a mixture of Gauss densities
with weights given by Dirichlet distributions
(as for instance in Gelfand and Kottas, 2003).
However, complications caused by censoring
remain and have to be overcome by an ad-
ditional generation of would-be non-censored
values, i.e. by a data augmentation. It is
actually a randomized version of the EM al-
gorithm used in non-Bayes inference.

6 EXAMPLE

A sample of n = 100 data was generated ran-
domly from the following AFT model: Base-
line distribution of logT0 followed normal dis-
tribution with µ = 0, σ = 0.5, values of covari-
ate Z were distributed uniformly in (0, 2), cor-
responding accelerating parameter was set to
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Figure 1: Data: Covariate is on x axis, log of
survival on y axis, censored items are denoted
by ’o’.

α = 1. Further, values T ∗
i = T0iexp(αzi) were

randomly right-censored by i.i.d. variables
distributed uniformly in (minT ∗

i ,maxT ∗
i ). Fi-

nal censored data (in log scale) are displayed
in Figure 1.

Then, data were analyzed in the frame-
work of both AFT and Cox model, by Bayes
approach described in preceding parts. In the
AFT setting, together 5000 MCMC iterations
were performed, last 2000 were used for the
analysis. Posterior representation of α had
the mean 1.0105 and standard deviation 0.0309.
Figure 2. shows characteristics of posterior
sample of residual processes, namely their point-
wise medians and then also approximate 95%
credibility bands, i.e. such a region that ap-
proximately 95% of residual processes lied fully
inside. The bands are dashed, they are plot-
ted against counts NS(t), separately for 2 groups
Z < 1, Z > 1). It is seen that graphs are
concentrated around zero, thus assessing good
AFT model fit. Several trajectories of resid-
ual processes are displayed by dots.

In the Cox model framework, 5000 β-s were
generated, again last 2000 were taken as a rep-
resentation of posterior distribution of β. It
had the mean 2.3665 and standard deviation
0.2688. Further, to each β(m) 200 instances of
H0(t) were generated, we always took just the
last of them. In such a way, a representation
with M=2000 members was obtained. Figure
3. shows again the characteristics of posterior
sample of residual processes, i.e. their point-
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Figure 2: Characteristics of residuals in AFT
model, in 2 subgroups with Z < 1 and Z > 1.

wise medians and approximate 95% credibil-
ity region, for two groups with Z < 1, Z >
1). Similarly as above, several trajectories of
residual processes are displayed by dots. De-
partures of sample of residuals from the zero
level is now rather significant, especially for
low times in the first group. Graphs indicate
that Cox model overestimates the failure in-
tensity for small covariate values and also un-
derestimate it for larger covariate values.

In the Cox model setting, standard anal-
ysis was performed, too. It yielded the esti-
mate β = 2.3687 with asymptotic standard
deviation 0.2786.

7 CONCLUSION

Models of lifetime often have to reflect a de-
pendence on covariates. The present contri-
bution was devoted to models goodness-of-fit
tests based on martingale residuals. The main
objective was to present Bayes variants of sta-
tistical analysis in the framework of semipara-
metric regression models and to show that es-
pecially in the cases of Cox and AFT regres-
sion model, Bayes approach could be a rea-
sonable alternative to standard methods. On
the other hand, the use of semi-parametric
models together with an approach based on
random generation is not convenient for anal-
ysis of cases of rare events with small amount
of noncensored data.
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Figure 3: Characteristics of residuals in Cox
model, in 2 subgroups with Z < 1 and Z > 1.
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