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Abstract. This chapter deals with chaotic systems. Based on the characterization of
deterministic chaos, universal features of that kind of behavior are explained. It is
shown that despite the deterministic nature of chaos, long term behavior is unpre-
dictable. This is called sensitivity to initial conditions. We further give a concept of
quantifying chaotic dynamics: the Lyapunov exponent. Moreover, we explain how
chaos can originate from order by period doubling, intermittence, chaotic transients
and crises. In the second part of the chapter we discuss different examples of sys-
tems showing chaos, for instance mechanical, electronic, biological, meteorological,
algorithmical and astronomical systems.

3.1 Introduction

The discovery of the phenomenon of deterministic chaos brought about the need to
verify manifestations of this phenomenon also in experimental data. Deterministi-
cally chaotic systems are necessarily nonlinear, and conventional statistical proce-
dures, which are mostly linear, are insufficient for their analysis. If the output of
a deterministically chaotic system is subjected to linear methods, such signal will
appear as the result of a random process. Examples include Fourier spectral analy-
sis, which will disclose nonzero amplitudes at all frequencies in a chaotic system,
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and so chaos can be easily mistaken for random noise. Apart from the (now ma-
ture) signal analysis in both the time and frequency domains, methods operating in
the phase space are gaining in importance. Within such methods, the trajectory of
a dynamic system in the phase space is first reconstructed from the (usually scalar)
time series, and the chaos descriptors are subsequently estimated or modelling is
applied. This is a quite recent field of research, just going back to the discovery of
the immersion theorem [19], [26]] in the early 1980s. Despite lack of rigorous math-
ematical explanation of some issues, well interpretable results can be obtained with
some caution. This is so, in particular, for low-dimensional systems, for the analysis
of which such procedures have been primarily developed. Nevertheless, some rather
naive applications and interpretations of results were attempted in the past. Exam-
ples of such simplified interpretations which contradict physical intuition have been
cited by Drazin and King [I1]. According to those authors, the early successes of
nonlinear analysis of time series raised hopes that the day will come when we will be
able, from periodical air temperature measurements behind the window, to identify
the dynamics of the whole atmosphere, based on which the future climatic situation
should be predictable.

One of the goals of this chapter is to explain why such a mechanistic interpre-
tation of determinism is not correct. The main reason for that naive idea to fail is
exactly the existence of the deterministic chaos.

This chapter discusses the most common topics of chaos theory, especially from
the practical application aspects point of view. Common approaches to the recon-
struction of the system trajectory in the phase space are summarized and procedures
are outlined for estimating the correlation dimension, entropy and the largest Lya-
punov exponent. Thereby, it a priori assumed that the sources of the time series ex-
amined are nonlinear chaotic systems. This is why, for example, nonlinearity tests
are not described here. For the same reason, as well as due to the limited extent of
this book some important components of nonlinear modelling of time series, such
as nonlinear methods for noise prediction and reduction, are omitted. The interested
reader may find more detailed information on that topic in monographs [2]], [17],

(101, [12).

3.2 Characterization of Deterministic Chaos

When hearing the word “chaos”, people who are not experts in this field may imag-
ine a process which is of a purely random nature and lacks any internal rules. Just
a few people realize that “being chaotic” actually means complying well defined
and strictly deterministic rules”. As indicated in the historical outline, chaos is a
discipline which obtained its name only in the 20th century but whose roots date
back to the 18th and 19th centuries, associated with the finding that even simple
problems may generate very complex and unpredictable solutions. For historical
reasons, Hamiltonian systems were the first systems to be studied, represented then
by celestial mechanics problems. Many rules valid for a wide class of Hamiltonian
systems generating chaotic behavior were discovered. Later on, these rules were
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extended to apply to some dissipative chaotic systems as well. Although it deals
basically with dissipative systems, this publication will include a short excursion to
other chaos generating systems as well.

3.2.1 Roots of Deterministic Chaos

The term “chaos” covers a rather broad class of phenomena whose behavior may
seem erratic and unpredictable at the first glance. Often, this term is used to denote
phenomena which are of a purely stochastic nature, such as the motion of molecules
in a vessel with gas etc. This publication focusses on the deterministic chaos, a phe-
nomenon which - as its name suggests - is not based on the presence of a random,
stochastic effects. On the contrary, it is based on the absence of such effects what
may seem surprising at the first glance. Broadly used, the term “chaos” can denote
anything that cannot be predicted deterministically (e.g. motion of an individual
molecule, numbers in a lottery, ...). If, however, the word “chaotic” is combined
with an attribute such as “stochastic” or “deterministic”, then a specific type of
chaotic phenomena is involved, having their specific laws, mathematical apparatus
and a physical origin. Stochastic system (not stochastic chaos) is the appropriate
term for a system such as plasma, gas, liquid, which should be studied by using a
suitable apparatus of plasma physics, statistical mechanics or hydrodynamics. On
the contrary, if a double pendulum, billiard or the similar objects are the subject of
examination, a mathematical apparatus which is based on classical mathematics and
does not exhibit “stigmata” of statistics is employed. The mathematical apparatus
for the description and study of the systems was not chosen at random; in fact, it is
related with the physical nature of the system being studied. Considering the class
of systems of deterministic chaos as mentioned above, signs of chaotic behavior are
usually conditional on the presence of nonlinearities, either in the system itself (i.e.
the system is a nonlinear system) or in links between linear systems [14]]. Usually,
such nonlinearities are only visible after making up a mathematical model of the
system or after analysis of observed data. Simple systems exhibiting deterministic
chaos include, for instance, double pendulum, magnetic pendulum, electronic cir-
cuit or a set of bars (Fig.[3.I) over which balls are poured from “the same” starting
position. Since the individual examples are discussed in this monograph below, the
focus will now be on the last-mentioned example. The example involves a very sim-
ple mechanical system which is an analogy of the well-known billiard problem. As
Fig.[3.1l demonstrates, the entire mechanical system consists of a set of bars which
are held by a vertical board and over which balls are poured from “the same” posi-
tion. Although released from the same position, each ball follows a different path-
way. This is so because the starting conditions are not absolutely identical; instead,
they differ very slightly, even negligibly at first glance. It is those differences that
are responsible for the fact that the trajectories differ appreciably. In other words,
the system is sensitive to the initial conditions.
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12870 possiblepaths from A to B

Fig. 3.1 One of the possible realizations of the billiard problem

This sensitivity to the initial conditions is a phenomenon which is related to the
billiard problem. Basically, the cause is in the fact that the mechanical objects hit-
ting each other do not possess ideally smooth surfaces. Due to this, even the slightest
differences in the initial conditions are “amplified”, ultimately giving rise to differ-
ent trajectories. The nonlinear model shown in Fig. 3.1l can serve as a next model
of the billiard problem. Two types of trajectory are involved: periodic (Fig.
and chaotic (Fig.[33). The axes of incidence and recoil of the hypothetical ball are
shown. Fig. 3.4] demonstrates the creation of chaos. The ball was started from a
nearly identical position with a difference of 1 x 10~!2 in this simulation. Different
trajectories (red and green) can be discriminated after 25 iterations.
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Fig. 3.2 Deterministic behavior at billiard
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Fig. 3.4 Chaotic behavior at billiard, difference in the initial conditions was 1 x 10712, After
25 iterations trajectories has diverged.
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Fig. 3.5 Chaotic behavior at simple billiard, no periodical behavior is visible. 500 iterations
from 10 000 is depicted at this picture.
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Chaos can be visualized not only in the manner shown in the figures but also by
means of interdependences of quantities of state. A trajectory having a total length
of 10 000 iterations (Fig. only 500 iterations are shown) was generated for this
purpose A rather wealthy set of types of behavior can be encountered in the real
world. One of the possible categorizations is included in Table B3l The table en-
compasses both purely stochastic types of behavior (coin toss, thermal noise, ...)
and deterministic types of behavior (celestial mechanics), including chaos (inter-
mittence, chaotic attractors, ...).

Table 3.1 Possible types of behavior of dynamic systems

Behavior Example
Predictable Planets
Unpredictable Coin toss
Chaotic transitions Billiard problem
Intermittence Logistic equation (for A = 3.8284)
Narrow-band chaos Rossler attractor
Low-dimensional broadband chaos Lorenz attractor
High-dimensional broadband chaos Neuron networks
Correlated (colored) noise Random walk
Pseudorandomness Computer-generated randomness
Randomness Thermal noise, radioactivity
Combination of the above types of behavior Real data

3.2.1.1 Hamiltonian Systems

The study of Hamiltonian systems has its roots in the 19th century when it was
introduced by Irish mathematician William Hamilton. For mechanical systems, a
typical feature of Hamiltonian systems that no dissipation of energy occurs in them,
so that mechanical Hamiltonian system is also the so-called conservative one. In
general dynamical system theory the term “conservative” means that certain scalar
function, having typical properties of energy, is preserved along system trajectories.
The creation of chaos theory for Hamiltonian systems was contributed to by scien-
tists such as Boltzman (who laid the foundations of ergodic theory and discovered
the contradiction between the reversibility of a system and irreversibility of its be-
havior) and Poincare. Assets of Hamiltonian systems included their amenability to
solution without the deployment of computer techniques, something we can hardly
imagine today. The mathematical apparatus and thus also the philosophy of Hamil-
tonian systems find application in many areas of physics, such as plasma physics,
quantum mechanics and others.

3.2.1.2 Dissipative Systems

Dissipative dynamic systems are systems where energy escapes into the surround-
ings and state space volume is reduced. Typical examples include weight on spring
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(dissipation being caused by friction between the body and air and energy losses in-
side the material), motion on a wheel, electronic resonance circuits. Since the topics
of dissipative dynamic systems is the subject of a whole monograph, demonstra-
tion of a concrete real system, see the classical oscillating cell, will be given here.
This well-known classical example of a dynamic system is defined by the Lorenz

system (3.2).

3.3 Universal Features of Chaos

Deterministic chaos possesses many features that are common to chaotic behavior
irrespective of the physical system which is the cause of this behavior. This com-
mon nature is expressed by the term universality so as to stress the universal nature
of the phenomena. The quantity and properties of the features as well as the com-
plexity of links between them are so extensive that they could make up a topic for
a separate publication, such as [9]. It is not the aim of this part of the publication to
make a detailed analysis - this would be like carrying coals to Newcastle; instead,
only the best-known features, to be used in the subsequent sections of this book,
will be highlighted. These include, in particular, Feigenbaum’s constants ¢ and 6,
the U-sequence, Lyapunov exponents, self-similarity and processes by which a sys-
tem usually passes from deterministic behavior to chaotic behavior: intermittence,
period doubling, metastable chaos and crises. Another property which is, curiously,
not included in the pantheon of universalities will be mentioned at the beginning:
the deterministic nature and non-predictability of deterministic chaos.

3.3.1 Determinism and Unpredictability of the Behavior of
Deterministic Chaos — Sensitivity to Initial Conditions

The deterministic structure of systems which generate chaos and their unpredictabil-
ity constitute another typical feature of the universal properties of deterministic
chaos. It is actually irrelevant what type the chaotic system is (chemical, biolog-
ical, electronic, economic, ...): it holds invariably that their mathematical models
are fully deterministic (there is no room for randomness as such in them) and they
are long-term unpredictable in their behaviour. The Rossler (3.1) and Lorenz (3.2)
attractors are the typical examples:

X1 (1) = —xp(t) —x3(1)
o(t) = —x () — 2 (3.1)
X3(t) = (x1(t) =5.7)x3(¢) +0.2

X1(t) = —a(xi (1) —xo(1))
Xz(t) = —xl(t)x3(t)+bx1(t)+x3(t) 3.2)
X3(t) le(t))CQ(t)—X3(t).
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It is clear from the structure of the equations that no mathematical term express-
ing randomness is present. That apparent randomness that can be seen in deter-
ministic chaos at first glance is not purely fortuitous; in fact, it is related to the
sensitivity to initial conditions. This sensitivity can be demonstrated well on the ex-
ample of a smooth hill from whose top a ball is let run down. The ball will take a
different trajectory in each experiment, which is due to two factors: the first is the
non-ideality of the hill surface, the other, impossibility of setting the starting posi-
tion absolutely identically when repeating the experiment. The inaccuracies are due
to the ubiquitous error of measurement (in manufacturing the hill, in setting the po-
sition, in manufacturing the ball, ...), and even if all the errors could be eliminated,
the uncertainty of the quantum world (i.e. Heisenberg uncertainty principle) would
ultimately take effect and act in the macro-world as well (which it actually does).
Hence, fluctuations cannot be avoided, and so “declaring total war” on fluctuations
is a waste of time and akin to Don Quixote’s tilting at windmills. A normal PC with
appropriate software will do for experiments with sensitivity to initial conditions.
Fig. demonstrates sensitivity to initial conditions for the Lorenz attractor. Two
time developments of the variable of state x (Fig. are shown for a difference
between the initial conditions Ay(0) = 0.001, which appears as a negligible error
at first glance. However, in a time as short as 24 seconds the two state trajectories
diverge, as emphasized by the grey area between them. (Fig.[3.7) shows the same
for Ay(0) = 1077, Sensitivity to initial conditions is thus one of the characteristic
features of deterministic chaos and can be used as an indicator when classifying a
dynamic system.

L

16 18 20 22 24 26 28 30
t

Fig. 3.6 Sensitivity of the variable x of the Lorenz attractor for dy(0) = 0.001



3 Chaos Theory for Evolutionary Algorithms Researchers 97

10

wo SOAA
: '3.0\/ \/3,5\/ 4.

-10 . .
0 45 50
t

Fig. 3.7 Sensitivity of the variable x of the Lorenz attractor for 6y(0) = 107°

3.3.2 Lyapunov Exponents

Lyapunov exponents are another member of the family of universal features of de-
terministic chaos. They are numbers which basically express the divergence (or also
convergence) of the state trajectories of a dynamic system. The exponents can be
calculated relatively simply, both for discrete-time systems and for continuous-time
systems. As will be explained later, Lyapunov exponents are closely related to the
structure of the state space, which (in dynamic systems theory) is represented by
an array of arrows determining the time development of the system at each point
of the space. The development of the system in this space is then represented by a
(usually) continuous curve [24].

The effect of Lyapunov exponents on the behavior of the dynamic system is ap-
parent from Fig. 3.8]land 3.9 Figure[3.8] shows the state space of a simple dynamic
system along with two different time developments starting from two different ini-
tial conditions, which only differ by Ax = 0.01 in the x-axis. The behavior in the
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Fig. 3.8 State space trajectory for a dy- Fig. 3.9 Different behavior can be ob-

namic system with 2 singular points s; and served when both trajectories will start in
7. On the position s; = {0,0} is repeller different part of state space. Despite its
and at the position s = {—1,0} saddle. bigger difference in starting position (x| =
Start points of both trajectories diverge de- {0.4, 0.4} and x, = {0.8, 0.4}) trajectories
spite fact that this coordinates (x; = {-1.56, merge together after certain time.

0.92} and x; = {-1.57, 0.92}) are very
close.
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two cases is entirely different. Figure [3.9] shows different behavior. Hence, the be-
havior of a dynamical system is determined by its physical structure, which in the
mathematical description is represented by the state space whose quantifiers can be
Lyapunov exponents. If one is to follow colored arrows in Fig. B.8] it can be no-
ticed that they are separating with increasing time. On the other hand in Fig.
they after certain time occupy the same set of points in the state space, in this case
called limit cycle. This observation can be described in a mathematical way by the
Lyapunov exponent A, see eq. The structure of the exponents can help assess
whether chaotic behavior is present in the system or not.

Consider a situation where at time ¢y = 0, a hypersphere whose radius is /(0) exists
in the m-dimensional phase space. Let different points of the hypersphere surface
represent different initial conditions of the dynamical system. Hence, starting from
each point of the hypothetical hypersphere, construct a trajectory through the phase
space. After time ¢ the hypersphere transforms into a new object. In the general
case, this object can have a very complicated shape, especially if the dynamics are
chaotic. However, if we restrict ourselves to very short time segments [0,7] and if
the initial radius /(0) is also very small, one can assume for simplicity that the initial
hypersphere is transformed, in the ideal case, into a hyper ellipsoid. Denote /;(t) the
length of the semi-major axes of the ellipsoid formed at time . The i;;, Lyapunov

exponent (
o1 Lt )
Ai= lim I 70
is a measure of the extension or contraction of the i;;, semi-major axis of the el-
lipsoid. For graphic reasons, Lyapunov exponents are arranged by magnitude, i.e.
AL > Ay > ... > Ay, where m is the dimension of the phase space; this is referred to
as the Lyapunov exponents spectrum. For a chaotic trajectory, at least one Lyapunov
exponent must be positive, although, in addition, the existence of any asymptotic
periodicity must be ruled out to confirm the chaotic nature - see, e.g., [3]]. In other
words, the possibility that the trajectory converges to some periodic orbit with t — oo
must be eliminated. But it is just this requirement that can pose a problem in
practice if the dynamical system is investigated during a finite time interval only.
Chaotic systems with more than one Lyapunov exponent are referred to as hyper-
chaotic .

Owing to the limit t — oo, Lyapunov exponents introduced by eq. (3.3) are global
quantities describing the system dynamics on average. Nevertheless, relating Lya-
punov exponents to a certain part of the trajectory for a relatively short time segment
t also proved to be useful. This leads to the concept of a local Lyapunov exponent
(2], [3Q]. It will be clear from the above text that Lyapunov exponents represent
the rate of divergence (or convergence) of near trajectories in the phase space, thus
providing a measure of predictability. Hence, this warrants the question as to how
Lyapunov exponents relate to Kolmogorov entropy. The relation can be expressed
as follows [22]]:

(3.3)

K< Y A (3.4)

i,)l,,'>0
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where equality occurs for the Sinai-Ruelle-Bowen measure, i.e. the measure which
is smooth along an unstable manifold. Equality between Kolmogorov entropy and
the sum of positive Lyapunov exponents is referred to as Pesin identity [23]. Now,
examine the relationship between Lyapunovs exponents and fractal dimension. If
Lyapunov exponents are negative for all i’s (A; < 0), each attractor of such a system
must be a fixed point and thus have a zero dimension. And on the contrary, if A; > 0
for all i’s, the trajectories in the phase space go apart constantly in all directions
and the dimension converges to that of the phase space [30]. Hence, one will ask
what the relation between Lyapunov exponents and the fractal dimension is. Using
the spectrum of Lyapunov exponents A; > A, > ... > A, J. L. Kaplan and J. A.
Yorke introduced the concept of Lyapunov dimension, sometimes referred to as the
Kaplan-York dimension. If k is the largest non-negative integer for which

Ai>0 (3.5)

N

1

1

then Lyapunov dimension is defined as follows [13]:

0 if no such k exists

k
_ > Ai
W=V kr 2 ir kem (3.6)
il

m if k=m

In this definition, m has the meaning of the phase space dimension. General
equality between Lyapunov dimension and some of the other fractal dimensions
has not been proved so far. Many numerical experiments lead to the approximate
equality d; ~ d\, dy, is given by eq. (3.6), d; is so called informational dimension,
see eq. B2

s yPlemp
dy=lm-—==1lm——, 3.7
r—0logyr  r—0 logyr

equality between these two dimensions being found for two dimensional mappings
[18]). It is generally believed that Lyapunov dimension and information dimension
are equal for “typical” attractors [20], [15]. A general rule holds [8] that Lyapunov
dimension is the upper limit of Hausdorff dimension. The fact that knowledge of
Lyapunov exponents gives us an idea of fractal dimension can be used when testing
procedures for estimating attractor dimension from time series. With the knowledge
of the system control equations in the form of difference equations or ordinary dif-
ferential equations the calculation of Lyapunov exponents is “merely” a technical -
although not necessarily easy - task. Having calculated Lyapunov dimension from
the Lyapunov exponents spectrum and adopting the hypothesis of its closeness to
other fractal dimensions, the value of the dimension so obtained can be compared
with the estimate based on the time series generated by the system control equations
and, tentatively at least, assess the adequacy of some algorithms for nonlinear anal-
ysis of time series. The same approach can be used to examine procedures for the
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calculation of Kolmogorov entropy from experimental data, assuming validity of
Pesinov identity. Now, pay some attention to the time of predictability of the system
behavior, as mentioned earlier. Imagine a dynamic system with one positive Lya-
punov exponent A. The initial state of the system is known with accuracy €. After
time 7', the position of the system in the phase space is known with accuracy L.
Taking into the account eq. (3.3) we have [3]]

A~iml (3.8)
T ¢
which implies that
1. L 1 L
T~—In—~—=In— 3.9
2 ek e 39)

where K is Kolmogorov entropy. Time 7" expresses the time in which inaccuracy €
in the determination of the initial conditions increases exponentially. This time is
usually referred to as the system behavior predictability time. However, the relation
above indicates that this time is not only dependent on the dynamics of the system
(Lyapunov exponents); in fact, the magnitude of the initial error also plays a role:
time T increases logarithmically with increasing initial accuracy. Time 7 can be
only crudely identified with the predictability time and only within the context of
the accuracy considered, which should be chosen reasonably. If you forecast, for
instance, that the next winter will be colder than the past summer, you will probably
be right but such prediction is actually useless for the vast majority of purposes.

3.3.3 The U-Sequence

The universal sequence, or the U-sequence, is another universal feature of deter-
ministic chaos. The U-sequence is frequently demonstrated on iterated maps, whose
typical representative is the well-known logistic equation. The U-sequence can be
observed in the behavior of a number of dynamic systems whose mathematical
model contains unimodal mapping (with one extremum). The logistic equation, for-
mulated as eq. (3.I1), is a typical example. The term unimodal mapping denotes the
dependence of a next value on the preceding values when the control parameter is
varied. For instance, if eq. (3.11)) is considered and the control parameter A is varied
within the interval of [0, 4], the functional dependence shown in Fig. emerges.
The value at which this dependence attains its maximum is usually referred to as the
critical point [[16]. This value is 0.5 in Fig. as indicated by a vertical ordinate.
When the initial conditions are set, the development of the system is shown graphi-
cally as a sequence of points (Fig. 311 and[3.11lon the unimodal curve. The points
of this sequence are assigned the letter L or R according to whether they lie to the
left or to the right of the critical point.

U-sequences listed in Table B3] can be observed for the logistic equation. This
and other sequences are also observable with other mathematical models of dynamic
systems.
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Fig. 3.10 Unimodal sequence of the logistic equation

Table 3.2 U-sequence according to [0]

Perioda U-sequence Parameter A value
R 3.2361
RLR 3.4986
RLRRR  3.6275
RLRR 3.7389
RL 3.8319
RLLRL 3.8446
RLLR 3.9057
RLLRR  3.9375
RLL 3.9603
RLLLR 3.9778
RLLL 3.9903

LN NN ONW WU BN

A graphic presentation of such sequences is also possible in 2D graphs by assign-
ing white color to the R-positions and black color to the L-positions. Therefore, one
can easily see when U-sequences agree with one another. Figs[3.11]and [3.12] depict
the U-sequences for the logistic equation and for the following equation

Xop1 = 1 —Cx2 (3.10)

called as the quadratic one. The sequences are the same for A = 3.3 in the former
equation and C = 1.1 in the latter equation.
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Fig. 3.11 Graphical representation of the U- Fig. 3.12 Graphical representation of the U-
sequence for the logistic equation with pa- sequence for the quadratic equation with pa-
rameter A rameter C

3.3.4 Intermittence, Period Doubling, Metastable Chaos and
Crises

The emergence of chaos is not a phenomenon that can be described as a purely
discrete event; instead, it has a “transient phase” during which the system behav-
ior changes from predictable to chaotic, both by a deterministic pathway and by
a random pathway. The two processes are often intertwined, representing thus a
kind of “universal” pathway to chaos. Period doubling is a typical example of a
deterministic transition [16]. This is a phenomenon where the period of the system
behavior doubles and at some control parameter levels transforms into chaotic be-
havior. This is demonstrated for the logistic equation in Fig. and 3.14] where
the left part displays the period doubling mode and the right part displays intermit-
tence. It is of interest to note that the geometric objects which are seen on the right
in Fig. having a triangular shape (iterations 30 - 40, 50 - 60), are known from
stock exchange developments and are employed for near-future time series behavior
estimates.

The emergence of intermittence [[16] is associated with very fine changes in the
control parameter, which can be due to noise or, for instance, to numerical insta-
bility. Due to such fine changes the system behavior changes dramatically, being
transferred from one type of behavior to the other. The emergence of intermittence
from the logistic equation is shown in Figs[3.13]and 3. 16 by means of the WEB dia-
gram [[16], [6]]. A web diagram, also sometimes called a cobweb plot, is a graph that
can be used to visualize successive iterations of a function x,+; = f(x,). The dia-
gram is called WEB because its straight line segments “anchored” to the functions
and can resemble a spider web - thus WEB diagram.
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Fig. 3.15 WEB diagram of the logistic equa- Fig. 3.16 WEB diagram (detail) of the logis-
tion for A = 3.7375 and 70 iterations tic equation for A = 3.7375 and 70 iterations

In Fig. a small change causes the behavior to “switch” to the chaotic mode
whose overall appearance is shown in Fig.[3.13 If this change is due to a continuous
change in the control parameter, a crisis (see later) can take place if promoted by the
configuration of the system. This means that the entire chaotic attractor can vanish
or be replaced by another attractor [16]. A little bit more detailed analysis of the
various pathways leading to chaos will be presented later in this Chapter.

3.3.5 Feigenbaum Constants

As mentioned in the section highlighting the history of theories dealing with deter-
ministic chaos, the theoretical physicist Mitchell Feigenbaum devised two constants
which certainly belong to the set of universalities of deterministic chaos. Their na-
ture and application can be best explained using examples which include graphical
visualization of the development of a chaotic system, specifically bifurcation dia-

grams (Fig. 3.17).
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Fig. 3.17 Source of Feigenbaum’s constants - self-similarity of bifurcation diagrams. Left:
diagram for the logistic equation (3.11); right: section for the equation containing the trigono-
metric function, eq. (3.12)).

The diagrams were generated by using (3.11)) and (3.12):

Xnr1 =Ax, (1 —xp) (3.11)

Xp+1 = Bsin(mx,) (3.12)

They differ in a comprehensive representation (Fig.3.17) but a detailed view shows
that different systems can produce virtually identical behavior: Two Feigenbaum’s
constants o and & follow from Fig. B.17 Basically, they are numbers (constants)
representing geometric convergence of bifurcation diagrams. Both diagrams exhibit
branch splitting which proceeds in a very similar manner, as regards both the x-axis
and the y-axis. This can be seen in detail in Fig. 317

Fig. B17] demonstrates that when the control parameter is changed, the system
behavior changes so that the branches in the bifurcation diagram are divided into two
additional branches each while a distance from the most recent division is progres-
sively diminishing. If the branching is projected into the x-axis and the ordinates in
which the branching has taken place are denoted sequentially, a sequence of num-
bers is obtained expressing the geometric convergence of the bifurcation diagram
with respect to the x-axis. This set of numbers also expresses the second Feigen-
baum’s constant, &, given by relations (3.13) and (3.14).

Ap—An1
5, = "= (3.13)
" An+1_An
8 = lim §, = 4.66920161... (3.14)
Nn—o0

Constant  is the limit of numbers which can be understood, with some exag-
geration, as “local Feigenbaum’s constants”. The first Feigenbaum’s constant is o
(which also precedes 0 in the Greek alphabet). This constant is derived by a sim-
ilar procedure. The branching process is accompanied by changes in the distance



3 Chaos Theory for Evolutionary Algorithms Researchers 105

between the points of branching, denoted d,,. Once again, constant ¢ is given by the
limit of the ratio of the current distance to the previous distance. The mathematical
formula is given by eq. (3.13). The limiting sequences leading to the above con-
stants can be calculated even from simple mathematical models, such as the logistic
equation.

o = lim b _ 2.5029... (3.15)

n—ee dp4

Feigenbaum’s constants are physical parameters which are common to a wide
class of systems. From how the constants are derived (as also indicated in [16]) also
follows how they can be used, specifically, how & can be used to predict additional
bifurcations in the system. Realizing that § describes the measure of subsequent bi-
furcations, the prediction principle is quite clear. Starting from eq. (3.13) and (3.14)
and rearranging, one arrives at eq. (3:16)), which can be used to calculate the control
parameter value at which the next bifurcation will take place.

Ap—A,
Apsl = "T“Hxn (3.16)

In this manner the values can be obtained, or as shown by relations (3.17) and (3.18).

Ay Ay
S8

A3 — Ay
6
Hence, the result is fully determined by the two preceding bifurcations. Substitu-
tion of eq. (3.17) in (B.18) gives eq. (3-19), which enables us to calculate from two
values of the control parameter A, at which bifurcation takes place. In this manner
one can proceed up to the value (3.20) at which chaos appears. In fact, this predic-
tion is approximate only; nevertheless, as proved by various experiments [16], the
predictions fit the reality quite well.

A3

+As (3.17)

Ay +A3 (3.18)

Ay = ———-+A .1

4 52+5+ 2 (3.19)
Ay — A

A = A 2
A (3.20)

3.3.6 Self-similarity

Another common feature of chaos is self-similarity [6], a phenomenon which can
be seen quite well on bifurcation diagrams. Self-similarity is best demonstrable in
fractal geometry. Basically, self-similarity is the property of a geometric object that
contains a component part which is identical with or very similar to the geometric
structure of the whole object. In other words, a sub-set of the parent object is similar
to the parent object. This property is actually only a geometric-linguistic expression
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of rather complex mathematical structures and the associated mathematical appara-
tus which is used in fractal geometry. Self-similarity can be demonstrated graphi-
cally on two classic fractal objects - snowflake and fern (Fig. -B.19). Take any
part of the object: its structure will resemble that of the basic object.

Fig. 3.18 Self-similarity in snowflake ... Fig. 3.19 ... and in fern.

The same applies, for instance, to bifurcation diagrams. Since their structure
is determined by Feigenbaum’s constants, which are universal for chaos as such,
some graphical visualizations of chaos can be expected to exhibit self-similarity,
viz. within a single visualization (a single bifurcation diagram) or among several bi-
furcations diagrams of different systems. This is well illustrated by the demonstra-
tion of self-similarity using bifurcation diagrams (Fig.[3.17). The diagrams clearly
display self-similarity. The result will be the same with other bifurcation diagrams
also. Self-similarity and other fractal properties can also be found in other visual-
izations of course (chaotic attractors), but bifurcation diagrams are apparently most
graphic for this purpose.

3.4 From Order to Chaos

Deterministic chaos as such does not exist on its own. In fact, it is a type of behav-
ior that can be observed in some nonlinear systems and which can be tackled from
various sides. Usually, two methods to get to chaotic behavior are described in the
literature: through local bifurcations and through global bifurcations. The two cate-
gories are then classed further into special subgroups of transition to chaos. For local
bifurcations these include period doubling, quasi-periodicity, and intermittence, the
last-mentioned being further granulated into Type I (tangent bifurcation), Type II
(Hopf’s bifurcation), and Type III (period doubling). For global bifurcations, these
include chaotic transients and crises. An overview of the transitions is shown in

Table[3.3]
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Table 3.3 Ways to chaos

Way to chaos Note

Local bifurcation Period doubling, quasi-periodicity, intermittence (type I, II a III)
Global bifurcation Transients, crisis

Transient to chaotic behavior is very often combination of transients mentioned in
the Table B3l Complexity of final transient depend on dynamical system structure,
but also on the set of signals which influent behavior of given dynamical system.

3.4.1 Period Doubling

Period doubling is another way to reach chaos domain and is joined with so called
limit cycles. Term “period doubling” means that under certain conditions is behav-
ior of dynamical system doubling its periodical behavior (from period 2 to period
4, etc...) which is remoted by certain control parameter of observed system. Pe-
riod doubling is easily observable on so called Poincare section, which is in fact,
N — 1 dimensional plane through which trajectory is going. All intersections with
plane are recorded and are observable like points on Poincare plane, as is depicted at
Fig. 3211 Fig.3.23or Fig. Under changes of control parameter, system’s tra-
jectory is doubling (number of intersection increase) till chaotic behavior is reached.
Period doubling is observable in systems which containing “internal” frequency and
are controlled by external signal. In the case that there is no external control input
and period doubling is observable, system must contain both signals (frequencies)
generated under suitable conditions.

Both frequencies, or better their mutual combination, determine resulting behav-
ior of dynamical system, which is determined by mutual ratios of both frequencies
(lets call them for now wg and w,) which can be rational or irrational. In the case of
rational ratio, is resulting trajectory periodical, in the case of irrational ratio one can
observe quasi-periodical trajectories. The influence of both frequencies can be eas-
ily generated by (3.21). Equations parametrically describe dynamics of trajectory in
3D on a torus, with radius R and r. Frequencies @wg and @, are of rotation around
main torus radius R and radius of its body r. On figure and B.21]is depicted
trajectory for wg = 3 and @, = 2 including Poincare’s surface with three points.
Trajectory is periodical. For w, = 2.1 is trajectory more complicated, see Fig.
and [3:23] If the raion of both frequencies become to be more irrational, then torus
surface is more densely covered and at Poincare section is cutting trajectory creating
a circle, see Fig.[3.24land[3.23]

x1(t) = cos (tag) (rsin (tw,) + R)
x2(t) = reos (twy) (3.21)
x3(t) = sin(rwg) (rsin (t@,) + R)
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Fig. 3.20 Trajectory and its Poincare sec- Fig. 3.21 and @, =2
tion for wg =3
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Fig. 3.22 Trajectory and its Poincare section Fig. 3.23 and o, = 2.1

for wgp =3

If any of the two frequencies is changed, the resulting trajectory need not neces-
sarily be more chaotic; on the contrary, if the two frequencies are in suitable (“more
rational”) ratios, “deterministic windows” can appear in the trajectory behavior, i.e.
the trajectory does not exhibit chaotic motion. This is demonstrated in Fig. 3.26] -
where more or less chaotic behavior of the resulting trajectory can be observed
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Fig. 3.24 Trajectory and its Poincare section

for wg =3

109

Fig. 3.26 Trajectory for wg = 2 and dif-

ferent @,

Fig. 3.27 Trajectory for wg= 2 and different

for different. If the behavior becomes chaotic, the trajectory forms a ring, called a

drift ring, on the Poincare plane.

The pathway leading to chaos and containing period doubling has the following
structure: singular point — limiting cycle — period doubling — quasi-periodicity
— chaos. Period doubling and quasi-periodicity play the parts of chain links only.
Apart from special cases, transition from quasi-periodicity to chaos is only possible
if a new, third frequency appears in the system with a constant change in the control
parameter. Three dimensions as a minimum are needed for chaos to emerge. If (ex-
cept for special cases as mentioned) chaos could emerge for less that 3 dimensions,
this would be in violation of the Poincare-Bendixon theorem, according to which
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Fig. 3.28 Trajectory for wg=2 and differ- Fig. 3.29 Trajectory for wg= 2 and different
ent @, oy

chaos cannot emerge in 2D. Period doubling with subsequent quasi-periodicity is a
universal phenomenon which can be observed in a wide range of dynamic systems.
The only condition that must be met is that a suitable number of frequencies exist in
the system, while the physical structure of the system does not matter. When study-
ing the phenomenon of period doubling, the system can be looked upon as pair of
systems where one system is superior to (affects - controls) the other system. This
is also referred to as oscillator locking (coupling), specifically frequency locking,
phase locking or mode locking [[16], which are different names for the same phe-
nomenon. The extent of locking is given by the wg and ®,, or more generally by @,
and @, in[3.22] frequency ratio, and is denoted w, from the term winding number

(also called rotation number).
()

w=— (3.22)
w1

If w is determined by a rational ratio, then the wandering trajectory only forms
a finite set of points on Poincare section, and vice versa. It is noteworthy that if the
winding number w is plotted in dependence on a suitably chosen system parameter,
a fractal called “devil’s staircase” [16], [6] appears. Devil’s staircase for the “circu-
lar sine” (eq.[3:23) discrete dynamic system is shown in Fig. Meaning of ¢
in eq. (323) is such that it is based on general description ¢, = f(¢,) in which
f(¢) is periodic in angle ¢, see [16], page 263-265. This staircase is a monotonically
increasing curve whose horizontal segments correspond to the winding number (cal-
culated as the wgr and o, frequency ratio) at which frequency locking takes place.

[ Ksin(2r¢,)
Opt1 = [—72n +¢n+£2w (3.23)

Period doubling can also be observed in systems whose mathematical model does
not directly include any frequency (which does not imply that such a model cannot
be set up for the system). Typical examples include the above logistic equation, as
demonstrated in Fig. 3311
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Fig. 3.30 Devil’s staircase for the “circular sine” discrete dynamic system with K = 1.2 and
O =0.3and Q2 €[0.25,0.75]

3.4.2 Intermittence

Intermittence is a next pathway to chaos. During this transition to chaos, irregularly
appearing regions of chaotic behavior whose length and frequency of occurrence
depend on the appropriate system control parameters can be observed in the time
development of the system. As the parameters are gradually changed, the chaotic
segments can be more and more frequent and ultimately become the only observ-
able behavior of the system (or vice versa). Once again, the behavior of the logistic
equation (3.I1)) can be used to demonstrate intermittence (Fig.[3.14). Intermittence,
of both types in which it is usually classed, is seen in both graphs. First type inter-
mittence is a phenomenon where deterministic (periodic) behaviour alternates with
chaotic behavior (Fig.[3.14). Second type intermittence is characterized by changes
in behavior between chaos and quasi-periodicity (Fig[3.13). It is noteworthy that in
both cases, an object whose apexes fill an imaginary triangle appears in the devel-
opment roughly at the 30¢/ iteration. This object has its name and is amply used
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Fig. 3.31 Period doubling in the logistic equation

in stock exchange speculations to predict the near-future behavior of stocks. One of
the technical indicators, its name is Triangle.

Generally speaking, intermittence is based on the existence of singular points in
the dynamic system’s state space. The abrupt dramatic change in the system behav-
ior is due to the fact that some singular points vanish when the control parameter
is changed slightly and are not replaced by other singular points. As some singu-
lar points vanish, the remaining singular points and their attractivity basins undergo
overall position reconfiguration, and as a consequence, a trajectory which was pe-
riodic becomes chaotic and vice versa. The reverse phenomenon is also feasible of
course, singular points can “be formed”, whereupon the state space is reconfigured
and the system behavior changes.

The dependence of the existence of singular points on an external control param-
eter can be well demonstrated on iterative mappings, e.g. on the logistic equation.
Fig. 3.32] shows the logistic equation in five-fold iteration for different values of
the control parameter A. If A = 3.74, this “system” includes some singular points
of the sink type, by which trajectories are attracted, and some source type points,
by which trajectories are repulsed. In the steady state the behavior can then be de-
terministic. If the A-values start to change towards 3.72, singular points vanish (no
point of intersection with the logistic equation curve with a slope of 45° exists). If
the system development reaches this area, it starts to exhibit deterministic behavior,
because it cannot do otherwise in the limited space between the slope and logistic
equation curve (see Fig.[3.34). Since the intersection of the curve and 45° straight
line emerges or vanishes here, this phenomenon is called tangent bifurcation or also
saddle-node bifurcation.
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Fig. 3.34 Occurrence of intermittence for the logistic equation with A = 3.7375, detail from

Fig.3.33]

In this case the logistic equation tends to chaos (Fig.[3.36). If the parameter varied
from 3.72 to 3.74, deterministic sequences would be more and more frequent in the
chaotic behavior and ultimately the behavior would be purely deterministic. So far
it was tacitly assumed that the intermittence was induced by purely deterministic
A-parameter setting. In the real world, however, virtually everything is affected by
noise, which can superpose control signals as well as other signals. This implies
that noise can also affect the A-parameter, which otherwise can also be constant,
approaching tangent bifurcation. It will be clear that with a suitable noise intensity
and nature, the A-parameter can take values at which singular points vanish, and
furthermore, that due to the properties of noise, this value will be transient rather
than permanent and that the A-parameter will eventually return to its initial value.
The frequency of occurrence of intermittence so induced can be quite different from
that obtained by deterministic “excitation”. The effect of noise on the existence or
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Fig. 3.35 Behaviour of the logistic equation Fig. 3.36 and 3.72, 60 iterations
with A =3.74

12¢
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x

Fig. 3.37 Behaviour of the relation x, + 1 = Asin(x,) +x, at A =4.61 and xo = 0.91

non-existence of intermittence is a problem which is too complex to be discussed in
this publication.

3.4.3 Chaotic Transients

Chaotic transients are a typical phenomenon accompanying models that are based
on differential equations. The state space of such a system-model generally includes
n singular points lying on the intersections of separatrices dividing the state space
into regions with different types of behavior. A state space can generally have N
dimensions and so a separatrix may not be a mere curve; instead, it constitutes a
smooth, differently wavy plane referred to as manifold. Such manifolds can get,
without any collision, as far as the state space boundary or else they can intersect.
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The source of deterministic chaos in dynamic systems modeled by differential equa-
tions is the manner in which the manifolds intersect and thus separate the state space
regions from one another. Two types of manifold intersections exist: homoclinic and
heteroclinic. The principle can be best explained on manifolds in 3D with a Poincare
plane. An artificial example of manifolds is shown in Fig.[3.38 and[3.39] exhibiting
also their Poincare plane. Manifolds are classed into stable manifolds (in-set) and
unstable manifolds (out-set). If a state trajectory starts its path on a stable manifold,
it is attracted directly into a singular point, whereas repulsion occurs if the manifold
is unstable. This also holds for reasonably near manifold neighborhoods. Generally,
the nearer a state trajectory is to a manifold, the more its behavior will be affected
by that manifold.

Flg 3.38 Manifolds in 3D (left) and their  Fig, 3.39 The dashed area represents an un-
Poincare plane stable manifold

Homoclinic intersection is an intersection of manifolds originating from the same
singular point. This is demonstrated in Fig. and[3.41]showing a special case of
intersection of manifolds which is more interlinking than intersection. Homoclinic
intersections, demonstrated in Fig.[3.40land[3.41] are less common. A classic exam-
ple is the intersection of manifolds shown in Fig. exhibiting what will happen
in such case. If two manifolds intersect in this manner, the intersecting manifold will
create a set of intersections of which there are infinitely many and whose “density”
increases towards the singular point. It will be clear that 3D representation of such
intersection creates a much more complex structure - the old state space is broken
down and trapped in any regions from which the trajectory cannot escape and an
attractor emerges.

The appearance of an attractor is thus determined by the formation of a kind of
“pocket” whose boundaries are formed by two manifolds of opposite nature. As
explained above, manifolds affect the behavior in their neighborhood. If a trajec-
tory starts its path anywhere within such a region, then it is necessarily attracted by
one of the manifolds and repulsed by the other manifold. The moment the trajec-
tory is attracted near to a set of points that appear as a singular point on the Poincare
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Fig. 3.40 Homoclinic intersection in 3D Fig. 3.41 and its representation on Poincare
representation... plane

Fig. 3.42 Homoclinic intersection of manifolds - a more common case

plane and forms a homoclinic trajectory in 3D, it is hurled off due to the presence
of an unstable manifold. Such a trajectory moves constantly on trajectories which
do not repeat. An artificial case of such development is shown in Fig.[3.43]and [3.44
Singular points (and manifolds rising from them) are saddle type, and the chance
that the trajectory will starts its path precisely in the position of a homoclinic point
set is nearly certainly nil. This is contributed to by the ubiquitous noise, inaccuracy
of measurement, etc., including quantum uncertainty which is actually transformed
as far as to the macroworld.

The Lorenz attractor is a clear example of the emergence of chaos based on in-
tersecting manifolds, we recommend to read for more [13].
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Fig. 3.43 Trajectory in a region bounded  Fijg, 3.44 Cut through region from Fig. 3.43]
by manifolds and by their intersections

3.4.4 Crises

Crises are a phenomenon where chaotic behavior usually changes dramatically.
Such changes can be of various nature. Deterministic behavior can vanish altogether,
to be replaced by pure chaos, or conversely, the magnitude of the attractor changes,
as does the size of its basin of attraction. Such changes have a common denominator,
namely, the quality and configuration of singular points in the state space, includ-
ing their change in dependence on the control parameters. Crises are categorized
into 2 classes: boundary crises and interior crises. Boundary crises occur on imagi-
nary boundaries of attractors, which are determined by a suitable control parameter
value. For the logistic equation, the boundary is A = 4. Beyond this boundary the
chaotic attractor, represented by “snowing” in the bifurcation diagram, vanishes.
This is due to the divergence of the trajectory away from the region in which the
chaotic attractor was initially present. For the logistic equation with A =4 and xy €
[0, 1] the trajectory is confined in the chaotic attractor, because any calculated value
of it again lies within the interval of [0, 1], and since it serves as the logistic equation
argument in the next iteration, it is clear that such a number would also belong to
that interval. However, if A is changed, say, to A = 4.1, then levels in excess 1 can
be attained in the area of the apex of the parabola generated by the logistic equation.
The time needed to attain that area is relatively short. If a trajectory “strays” into that
area, it starts running away from the area where the chaotic attractor was initially
present at A = 4. In other words, if the value is changed to A > 4, a “creep-hole” in
the chaotic attractor opens up, enabling the trajectory to escape. Such change can be
caused by deterministic influences (control, ...) or by random effects (noise). Bound-
ary crisis is demonstrated for the logistic equation in the form of the WEB diagram
in Fig. When the number of iterations exceeds 11, the trajectory reaches the
apex of the parabola and escapes to infinity in this case. Something similar can also
be observed on the “circular sine” bifurcation diagram (Fig.[3.46)), where chaos van-
ishes abruptly at K = 3.8 and purely deterministic behavior establishes in a different
region of the state space (up to a value of approximately 4.27). The same effect can
be observed in Henon bifurcation diagram at C = 1.8.
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Fig. 3.45 WEB diagram of the logistic equa-  Fig. 3.46 “Circular sine” bifurcation diagram
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Fig. 3.47 Bifurcation diagram of “Gausian Fig, 3.48 Bifurcation diagram of x, =
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Interior crises are changes in behavior during which the chaotic attractor under-
goes dramatic changes but does not vanish. The bifurcation diagram of the Gaussian
map (Fig. B.47) is a graphic example showing how the chaotic attractor structure
changes in dependence on the control parameter c. The expansion of the chaotic
attractor is usually due to collision of a trajectory with a source type or unstable
limiting cycle type singular point. In such case the trajectory is “hurled off” to re-
gions where it normally would not get or would get in an extremely long time. Like
in intermittences, noise plays an important role in crises.

Due to crises, attractors can be linked up into a single one, or conversely, can
decompose into several attractors [25]]. Fig. shows the behavior of equation
Xpt+1 = Asinx, + x, in dependence on A-parameter and different initial conditions.
Observing what happens when this parameter is increased, one finds that all attrac-
tors are combined into a single one starting from A ~ 4.603. Before this level, the
trajectory develops in one of the attractors shown only, in dependence on A and on
the starting value. The trajectories only merge at A > 4.603. Decrease in A is accom-
panied by the reverse effect - decomposition of the bound attractor into a number of
disjoint attractors at A < 4.603.
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3.5 Selected Examples

Deterministic chaos can be observed in many dynamic systems of different na-
ture. Included are electronic systems (Chua’s circuit, circuits with diodes, circuits
with digital filters,...), mechanical systems (double pendulum, magnetic pendulum,
billiard problem, ...), biological systems (logistic equation, evolutionary dynamics
systems, ...), physical systems (physical plasma, the three-body problem, hydrody-
namics, ...) and others. Some can be simply materialized on the bench, whereas
others can only be observed within a natural process. The objective of this chapter
is to demonstrate deterministic chaos on selected examples, specifically from the
domains of mechanics, electronics, biology, meteorology and numbers theory.

3.5.1 Mechanical System — Billiard

There are countless examples of deterministic chaos in classical mechanics. A very
didactic example is the experiment with small balls falling through a system of bars
fixed in a wall. This problem concerns the reflection of two bodies with curved sur-
faces - balls in this case - or of a radius (beam) from a spherical surface. Taking into
account the curvature of the surfaces it will be clear that even the slightest change in
the initial conditions will bring about differences in the repeated trajectory. Sensitiv-
ity to initial conditions in the billiard problem can be clearly seen on the simulation
of falling of a ball through a system of bars with 20 rows (Fig.[3.49). Here the simu-
lation was repeated four times with differences in the initial conditions (x-axis) of 0,
0.00001, 0.00002, and 0.00003, respectively. The difference in the initial conditions

a B
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Fig. 3.49 Variant of trajectories in the billiard problem
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was thus in the order 107>, Despite the small number of bar rows (exactly 20) the
trajectories are apparently different starting from the seventh row.

The billiard problem can be demonstrated not only on classic balls but also
on many other types of “billiard”, which are basically curved surfaces forming
together closed objects in which the divergence of colinear radii can be well
observed. Another example is at Fig. It is clearly visible that trajectories
diverge after a few iterations. Starting positions were x| = 0.936578,y; = 1.31709
and x; = 0.936578,y, = 1.3063.

Start here

Fig. 3.50 Another variant of the billiard - trajectories diverge after a few iterations. Starting
positions were x; = 0.936578,y; = 1.31709 and x, = 0.936578,y, = 1.3063

3.5.2 Mechanical System — Duffing’s Equation

Duffing’s equation describes Duffing’s oscillator, designed in 1918. Duffing’s oscil-
lator consists of a metallic strip with an ac electromagnet located near the centre
of the strip. The electromagnetic field which is formed by the magnet displaces the
strip sideways. Duffing’s oscillator is modeled by (3.24) which, however, describes
the ideal case where no energy is lost. In a real Duffing’s oscillator, energy losses
must be taken into account, as in eq. (3.23). This equation transforms into eq. (3.26))
for the external excitation setup.

(1) —aq(1) +bq(1)’ =0 (3.24)
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G(t) — aq(t) + bq(t)’ +cq'(t) =0 (3.25)

G(t) — aq(t) + bq(t)’ = focos (tay) (3.26)

Equation (3.24) is a starting point for understanding the origin of chaos in this sys-
tem. The model contains 3 components: acceleration (t), linear force effect ag(t),
and nonlinear force effect bg(¢)>. Various types of the steady state can be achieved
in the oscillator by varying parameters a and b. The states can be determined by
means of the first integral (3.27) of the system, describing total energy of the oscil-
lator. The total energy consists of 2 components: kinetic energy and potential energy,
described by the last term and by the remaining terms in (3.28), respectively.

/q(t) (—aq(t) +bq(t)*+§(t)) dt (3.27)
1 , 1 PR B
—EWI(I) +ZbCI(f) +§CI(f) (3.28)

The first two terms in (3.28) can be used to set up the potential (Fig. 3.31] and
describing its dependence on parameter a. If a > 0, the oscillator has three
equilibrium states - two stable states (minima) and one unstable state (maximum
between the two minima). If @ < 0, the oscillator possesses one stable state only. The
minima and maxima in the potential shown represent states to which the oscillator
behavior is attracted or from which it is repulsed. If the entire equation (3.28) is
considered, the basin of attraction of Duffing’s oscillator can be depicted as shown
in Fig.[3.53] In the picture, the variables are interchanged according to scheme . Figs
and display both the basins of attraction and the energy equipotentials -
points in which the oscillator possesses the same energy.

The plots in Fig. B.31] - differ in that only the components of the potential
energy of the first integral were used in Fig.[3.511 The components contained ¢(t)
only and the graph was generated as the ¢(¢) vs a plot. In Fig. 3.33]and 3.34] kinetic

Potential

-15 -10 -5 0 5 10 15

Fig. 3.51 Duffing’s equation potential at Fig. 3.52 ... and 2D view.
b=0.05...
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Fig. 3.53 Duffing’s equation basins of attraction, a = -1 (left) and a = 4 (right); b = 0.05
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Fig. 3.54 Duffing’s equation basins of attraction and equipotentials in 3D fora=4and b =
0.05

energy was also included, enabling non-parametric representation to be applied to
the system total energy. The potential in Fig.[3.51]can be imagined as a wire with a
ball on it. If the ball is positioned at the local maximum, any impulse can displace
the ball from this position. The ball then travels further to some of the sinks, and
since friction is not considered in this model, the ball will oscillate about the local
minimum infinitely long. If the ball were released from a higher-energy position
(level), it would travel cyclically from one local minimum to another through a local
energy maximum. If energy dissipation is considered, (3.24) takes the form of (3.23))
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where the term ¢¢(t) represents dissipation. In this modification the ball motion on
the wire will slow down (energy is irreversibly lost) and ultimately stop. Behavior
of this type is better represented in terms of the state space and state trajectories. For
this purpose, eq. (3.24) is modified to the form (3.29).

)z =e

In this manner the n,;, order differential equation is transformed into » first-order
equations. The corresponding variables then represent state variables. This system of
differential equations can serve to simply draw a “state portrait” (Fig.[3.33) in which
the arrows show the direction of the state trajectory (corresponding, in fact, to the
equipotential lines in Fig. and[3.34). Different types of behaviour of Duffing’s
equation with dissipation can be obtained by solving (3.23), in dependence on the
extent of dissipation and on initial energy.
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Fig. 3.55 State portrait of Duffing’s equation, a = -1 (left) and a = 4 (right); b = 0.05

It is clear from Fig. and 3:37] that the oscillator’s ultimate steady state de-
pends both on initial energy and on initial position, in other words, on initial con-
ditions. The trajectories of the system behaviour are attracted to one of the basins
of the system’s state space (Fig.[3.38). Fig. -[B.61lshows both the state portrait
and the system behavior of eq. (3.23). The gradual energy loss causes the trajectory
to “sink” slowly to one of the attractors. In this manner the state space is divided
into basins in which the state trajectory gets into one or another attractor lobe. Ge-
ometric appearance of such basins can be very complex. See for example system
Fig. and where are depicted basins of attraction with clear fractal border.
Black area is the domain of attraction, i.e. if arbitrary trajectory start in it, then will
end in white attractor depicted inside black area, otherwise it goes out of the basin.
Other color layers represent trajectory “speed” of escaping.

Chaotic behavior of Duffing’s oscillator by can be obtained by choosing suitable
excitation conditions. This is described by (3.26). The right-hand side excitation
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Fig. 3.56 Behavior of Duffing’s equations Fig. 3.57 ... another level of dissipation.
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Fig. 3.58 State trajectories of Duffing’s equation with dissipation

term consists of the term f cos (@, ). Both deterministic and chaotic behavior can
be observed for Duffing’s equation for certain values of the two terms. A typical
example of chaos is shown in Fig. - If the above setup of a ball on a
wire is “transformed” into the setup of a ball rolling on a plane, then the appearance
of chaos can be understood so that external excitation by the element f;cos (f@;)
provides sufficient energy not only to cover dissipation losses but also for chaotic
motion of the ball.

3.5.3 Electronic System — Chua’s Circuit, Circuit with a Diode

Electronic circuits are among the most popular systems used to demonstrate deter-
ministic chaos. Their popularity stems from the fact that electronic circuits are easy
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Fig. 3.59 State trajectories of Duffing’s Fig. 3.60 ... another level of dissipation.
equation with dissipation.

Fig. 3.61 State trajectories of Duffing’s equation with dissipation

to set up and provide fast response to impulse. Typical representatives of electronic
circuits with deterministic chaos include Chua’s circuit, whose hardware design and
behaviour are shown in Fig. and Fig. respectively. The core of
Chua’s circuit is a nonlinear resistor, eq. sometimes called Chua’s diode [33]].

On Fig. Chua’s attractor visualized by the program Mathematica (left) and
on the oscilloscope connected to its hardware implementation shown in Fig. 3.67]
(left) Chua’s circuit can be described mathematically by eq. (3:30), which can be
used to simulate the behavior of the circuit:

Cvéy (1) = G(vea(t) —vey (1) — g(vey (1))
Cz.vé‘z(t) = G(VC1 (t) - VCz(t)) + iL(l) (3.30)
LiL(l‘) = 7\162(1‘)

ve1(0) = 0.15264, ve (0) = —0.02281, i;(0) = 0.38127 (3.31)
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Fig. 3.62 Example of basin of attraction ~ Fig. 3.63 Another example of basin of at-
traction

Fig. 3.64 Duffing’s equation chaos for fy = Fig. 3.65 ... and for fy = 0.32; w; = 1.
0.29

=,

Fig. 3.66 Scheme of the Chua’s circuit...  Fig. 3.67 ... and hardware design of Chua’s
circuit.
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Fig. 3.68 Simulation of the Chua’s circuit ... Fig. 3.69 ... and the real behavior.

where the nonlinear resistor g(x) is represented by (3.32),

my—m
g(x) =mox+ )

my
2 (

(b br] = e = b ) 4+ 25

3 |x+ by — [x—b3]) (3.32)

If suitable initial conditions are set as described by (3.31)), a chaotic attractor can be
found in the system (Fig. 3.68).

A simple electronic circuit (Fig. where an excitation source, resistor, coil
and diode are connected in series can serve as a next example. The diode provides
nonlinearity which is the cause of chaotic behavior in this circuit.

D, Ly Ry

Fig. 3.70 Layout of the circuit with a diode

The mathematical model of this physical system consists of a system of equations
and initial conditions (3.33)) where the diode is modeled by means of a piecewise
linear capacitance, namely:

q(t) = i(t)

Lii(t) = vsin(2r fr) — (55700 4 MG 4 o) Hil)(-R1) 3 35

q(0)=0
i(0)=0
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Chaotic behavior can be observed when analyzing the dependence of charge ¢
on control voltage V. Numerical simulations of this circuit are shown in Fig. 371
and[3.72 displaying the time development of the behavior of the circuit, and in Fig.
and[374] displaying the behavior of the dependence of current i on g(r).

ﬂ H 1 6.x107" 1

V=02

—

1.x107"F n n

5.x107MF 1 4.x107F
g o S 2x10f
—5. %107 1 ol
=10 [
-1.x10 2107
04001‘}120 0.00h125 0.006130 0.006135 0.006140 0.006120 0.006125 0.000130 0.00b135 0.006140
t t
Fig. 3.71 Simulation of the diode circuit ... Fig. 3.72 ... for different values of v.
V=03 . ‘ V=04
1.x107°F
8.x107F 1.x107F
6.x107F
g Ax1 € s.x10f
2.x107F
of ol
-2.x107F
0.00;)120 0.00b125 0.000130 0.006135 0~00(‘)140 0.000120 0.001‘)125 0.006130 0.00b135 0‘00‘0140
t t
Fig. 3.73 Simulation of the diode circuit ... Fig. 3.74 ... for different values of v.

The bifurcation diagram of the circuit with a diode is shown in Fig. The
diagram clearly displays transition to chaotic behavior with increasing parameter V.
From the structure of the bifurcation diagram one can not only see structure repe-
tition (self-similarity) but also the fact that all three parts are visually very similar
to bifurcation diagrams of the logistic equation (Fig. 3.81)), which is just another
evidence in a series of experimental evidences of universality of chaos as such.

3.5.4 Biological System — Logistic Equation

The logistic equation is the most typical example in the domain of biological sys-
tems. This equation models the evolution of dynamic co-evolutionary systems of the
predator-prey type in which all the relevant behavior types are present. The logistic
equation is modeled by relation eq. (3.34). An important element in this equation is
the control parameter A, whose gradual change in the equation gives rise to behavior
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Fig. 3.75 Dependance of i on g(t) ... Fig. 3.76 ... for different values of v.
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Fig. 3.77 Dependance of i on g(¢) ... Fig. 3.78 ... for different values of v.

which can be visualized conventionally (Fig. or by means of the bifurcation
diagram (Fig. B.81). Logistic equation is a suitable tool for studying the transition
from deterministic behavior to chaotic behavior as well as phenomena accompany-
ing that transition, such as intermittence and period doubling. Recall that logistic
equation takes the form

Xnr1 =Ax, (1 —xp) (3.34)

Fig. shows chaotic behavior of the logistic equation for precisely defined
initial conditions and control parameter A. The behavior depends both on the initial
conditions and on the control parameter, as the two bifurcation diagrams in Fig.[3.87]
clearly demonstrate.
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Fig. 3.79 Circuit with a diode - bifurcation diagram
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Fig. 3.80 Behavior of the logistic equation in time for A = 4, xy = 0.2027

The diagrams show the chaotic patterns of the system behavior in dependence on
the control parameter. We would like also to note that the bifurcation diagram (and
bifurcation in general) is related to abrupt changes in the system behavior, referred
to as catastrophes, in dependence on the control parameter (Thom’s catastrophe
theory, see also [13]], [4], [21]).
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Fig. 3.81 Bifurcation diagram of the logistic equation

3.5.5 Meteorological System — Lorenz Weather Model

131

A typical representative of deterministic chaos is a very simple model of the behav-
ior of weather expressed by a system of equations devised by Edward Lorenz at MIT
in 1963. Lorenz is generally regarded as the discoverer of deterministic chaos. The
equations, including the initial conditions, are given by (3.33). They represent a hy-
drodynamic model of the behaviour of a gas or liquid during external heating [[16]].
A simulation of (3.33)) provides the chaotic attractor that is shown in Fig.[3.82H3.83]

y®

-10 70y

7/ -10

10 =20

Fig. 3.82 The Lorenz attractor in 3D ...

Fig. 3.83 ... and 2D representation.



132 S. Celikovsky and I. Zelinka

The attractor consists of two lobes in whose centers are singular points that attract
trajectories from their neighborhood and, after certain attraction, repulse them away.
The arrangement of the two singular points is such that the repulsed trajectories
get into the attraction domain of the opposite singular point, where the process is

repeated.
X1(t) = —a(x(t) —x2(1))
)Q(t) = 7X1(I)X3(t)+bxl(t)+X3(t) (3.35)
X3(1) = x1(1)x2(r) — x3(2)

The origin of the Lorenz attractor, including modifications in the nature and po-
sitions of the singular points, is described in detail in [13]. It should be noted that
the accuracy of calculation of the behavior of a chaotic system also depends on the
software and method used.

3.5.6 Spatiotemporal Chaos

The systems discussed so far demonstrated deterministic chaos in the time domain,
i.e. where chaotic behavior can be observed in the system behavior developing in
time. In addition to this type of chaotic behavior, another type exists, see spatiotem-
poral behavior ([16]], [24]]), occurring in systems that are described, e.g., by partial
differential equations. Hence, they are systems with distributed parameters. This
type of behavior can be nicely and simply demonstrated on the logistic equation
discussed above (other iteration equations can also be used, of course) in parallel
connection, referred to as Coupled Map Lattices (CML). This is a spatiotemporally
coupled system with the development of n equations that affect each other via a
coupling constant, usually denoted £. CML can be regarded as a field of kind of
“oscillators” which affect each other. Mathematical description of a CML using an
iteration equation for its activity consists in (3.36) where the function which is de-
noted f(...) represents the iteration equation.

51 (1) = (1= )£ (5a(0) + S(F(ali = 1)+ FCuli+1))  (3.36)

Equation (3.36) is referred to as a symmetric CML because the kth equation acts
on its neighbors (through the coupling constant €) equally on both sides. Asymmet-
ric CMLs whose description is, naturally, slightly modified, also exist. Such types
of relatively simple spatiotemporal chaotic systems provide a very wide scale of
behavior, which is used for modelling this type of chaos as well as for the study
of its control and use in information transmission and encoding. Figs 3.84 to
show the behavior of a CML according to eq. (336) where term f(...) is replaced
by the logistic equation, or more precisely by 100 logistic equations that affected
each other during 100 iterations. In Fig.[3.84] black points denote values exceeding
the level of 0.88 (according to [24]). The other points remain white, due to which
information regarding the actual diversity of the spatiotemporal chaos is lost. This is
demonstrated by Fig. where a gray-scale picture is depicted. Fig. shows
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Fig. 3.86 2D CML

another version of CML: 2D version, i.e. both axes x and y are logistic equations
joined together. Time line is axe z, which is not visible in Fig. this figure is
basically only slice cut of 2D CML in iteration 200.

Naturally, CML is not the only method to simulate spatiotemporal chaos. Consid-
erably more complex descriptions (as regards mathematical formalism and solution)
exist and will be discussed in the Chapter 6, dealing with the control of chaos.

3.5.7 Cellular Automata — Game of Life

Cellular automata represent a tool that can be employed to simulate exten-
sive or complex systems. The history of cellular automata can be traced back to
ancient China, specifically to the year 1303. This is the era of origin of the Chi-
nese arithmetic triangle, better known as Pascal’s triangle (after the French math-
ematician Blaise Pascal, 1623 - 1662) published in 1527, which indirectly led to
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the later development of probability theory. Cellular automata only enjoyed boom
with the development of PCs, which enabled their use in virtually any branch of
human activity. Among applications of cellular automata are, for instance, simula-
tion of forest fires, differentiation of cells in human body (Kuffman’s model), the
human body’s immune failure, hydrodynamic phenomena (e.g. motion of particles
of a fluid, was used to simulate the behavior of 4 million molecules) and passage of
a liquid through unordered geometric structures such as sand. Given the computa-
tional capacity of currently available hardware, cellular automata appeared to be so
to say predestined for technically demanding “parallel” simulations of systems such
as the flow of molecules of a liquid or gas, etc. In such “huge” simulations cellular
automata feature simplicity as well as a high speed as compared to conventional cal-
culations. Cellular automata can also be used to simulate tessellations, i.e. mosaics,
which find application in investigations into the creation of mosaics in various ma-
terials, the shape of boundaries of territories of various predators or the propagation
of epidemics. A cellular automaton can be imagined as a grid/matrix, where each
square/matrix element represents a cell. In simple automata all cells are subject to
a single law, owing to which the most bizarre images can emerge. Apart from their
geometrical meaning, such images can provide information about the dynamics of
the process involved. If a phenomenon is simulated which is not homogeneous or
isotropic (which means identical properties in all points and directions), then this
fact must be taken into account when formulating the rule governing the cellular
automaton. Among the best known and most popular cellular automata is Game of
Life, governed by a very primitive rule and still exhibiting very complex behavior.
The rules are very simple and are identical for all cells:

Any live cell with more than three live neighbors dies, as if by overcrowding.
Any live cell with fewer than two live neighbors dies, as if caused by under-
population.

Any dead cell with exactly three live neighbors becomes a live cell.

Dead cells are shown in white, live cells shown in black.

This simple set of rules gives rise to incredibly complex behavior (Fig.
forming groups of cells that die and become live cells again (blinkers), travel along
the cellular automaton (gliders), shoot down gliders (guns) or travel leaving blinkers
in their traces (star ships). Cellular automata generate both chaotic behavior and de-
terministic behavior (Fig.[3.88). The above CML simulation can also be considered
a cellular automaton based on eq. which is the single rule for all cells here.

3.5.8 Artificial Intelligence — Neuron Networks

Neuron networks - biological or artificial - represent another chaos-generating sys-
tem. The presence of chaos in biological networks is associated with diseases such
as epilepsy, in artificial networks, with the phases of learning and recollection. A
neuron network [[7] can be represented by an oriented graph whose nodes are neu-
rons, i.e. simple computational units performing primitive mathematical operations
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Fig. 3.88 Order in a cellular automaton

such as summation, multiplication, etc. Since a network is formed by discrete ob-

jects, it can be looked upon as a special type of cellular automaton, with a special

set of cells (input and output neurons). Hence, it is reasonable to expect information
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Fig. 3.89 Steadying of chaos generated by a neuron network (w € [—0.3,0.3])

Neuron
w
o
o
:

200

0 50 100 150 200 250 300
Time

Fig. 3.90 “Intermittence” in the behavior of a neuron network (w € [—0.6,0.6])

processing by neuron networks to be accompanied by chaotic behavior. This was
confirmed both experimentally (association with epilepsy found) and by simula-
tions (numerical studies on various models). By way of example, consider a simple
network [23]] which is defined by (3.37). This is a single-layer network where out-
puts from neurons not farther than r enter the i,;, neuron. Hyperbolic tangent is the
transfer function [[7] and w is weight, which is generated at random. Fig.[3.89]to[3.91]
display the network’s behavior for identical initial conditions with differently large
intervals at which weights w were generated. The color of each point represents the
state of the neuron, of which they are 640. Fig.[3.89 clearly demonstrates that start-
ing from an initial chaotic state, all neurons will ultimately assume the same value.
It is clear from Fig. and[3:91] that even a slight change in the weight generating
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Fig. 3.91 Chaos generated by a neuron network (w € [—0.9,0.9])

interval brings about non-uniform stabilization, and regions can be observed where
neurons pass from a chaotic regime to a steady-state regime and back (see the group
of neurons around neuron 100-150 in Fig. B.97) - a situation called intermittence.
When the interval for weight generation is extended again, the network’s behavior
is free from any determinism and the networks is in the chaotic regime:

X1 (0) = tan [ Y wi (xa(i = j) +xa(i + ) (3.37)
j=1

3.5.9 Artificial Intelligence — Evolutionary Algorithms

Optimization algorithms are powerful tools in solving many problems in practi-
cal engineering. They are typically used where solving a problem by an analyti-
cal method is inappropriate or infeasible. Suitably implemented, optimization algo-
rithms can be used without frequent user interventions into the performance of the
facility where they are used. The majority of problems in engineering practice can
be defined as optimization problems, such as finding the optimal trajectory for a
robot, optimal pressure vessel wall thickness, optimal controller parameter setting,
optimal relation between fuzzy sets, etc. In other words, the problem to be solved
can be transformed into a mathematical problem defined by a functional prescrip-
tion whose optimization leads to the finding of arguments of the objective func-
tion, which is the goal of the optimization exercise. A number of highly efficient
algorithms were developed during the past two decades, enabling highly complex
problems to be solved very efficiently and effectively. This class of algorithms has
a specific name of evolutionary algorithms. Such algorithms are capable of solving
highly complex problems quite well, owing to which they are widespread and popu-
lar in many fields of technology. A typical feature of evolutionary algorithms is that
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Fig. 3.92 Bifurcation diagram of simple
genetic algorithm for a € [4,15], b =1,
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Fig. 3.93 Bifurcation diagram of simple
genetic algorithm for a € [4,15], b =7,
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Fig. 3.94 Bifurcation diagram of simple
genetic algorithm for a =9, b € [1,20],
T=1/8

Fig. 3.95 Bifurcation diagram of simple
genetic algorithm fora=4,b=1,T €
[0.7,0.9]

they work on populations of possible solutions, called individuals. Such individuals
affect each other’s quality based on certain evolutionary principles in cycles, usually
bearing the name “Generation”.

Deterministic chaos has been also observed, mathematically proven and numer-
ically demonstrated in evolutionary algorithms, especially in genetic algorithms as
reported in [32].

In that research, dynamical system models of genetic algorithms were consid-
ered with the expected behavior of the algorithm analyzed as the population size
goes to infinity. Their work is based on the research of [28§], and [27]]. An el-
egant theory of simple genetic algorithms is based on random heuristic search on
the idea of a heuristic map G. An important point of the research in [32]] is that the
map G includes all of the dynamics of the simple genetic algorithm, based on eq.
(truncation selection) and eq. (mutation heuristic function). It is defined
by Gy .1 = Fr oU,. In both equations, p represents population and 7 =t /r is an
ratio of ¢ most fitted individuals selected from population of size r for reproduction.
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Sample bifurcation diagrams are depicted in Figs. - Ideas about chaos
in simple genetic algorithm are explained in detail in [32]]. In this chapter, it has
been proven that chaos in heuristic algorithms can be observed. This observation is
certainly not valid only for simple genetic algorithms.

1 ifT
Fr(p) = { 2 li; Ti’; (3.38)
b
Uap(P) =pP—5 2P - 11°(2p—1) (3.39)

3.5.10 Astronomy — The Three-Body Problem

Quite a number of systems are encountered in astrophysics exhibiting chaotic behav-
ior. As a typical example, let us discuss the three-body problem. This is a celestial
mechanics problem describing the motion of three (or more) bodies affecting one
another by gravitational forces. Mathematically, the three-body problem is formu-
lated by a system of equations of motion, see (3.40).

. o mm(q;—qr) .
qujz}/zij( S ),]=1, ) (3.40)
iz |ai—al

In this system of equations, m is the mass of the mutually affecting bodies and g
is a vectorial function of time defining the positions of the bodies. The problem of
n bodies involves 6n variables (because each body has 3 position components and
3 velocity components). The motion of a system of n bodies is practically analyti-
cally unsolvable starting from n = 3, and simulations of the behavior are performed
numerically on computers. This problem attracted interest of such mathematicians
as Euler (1767, discovery of colinear periodic trajectories), Lagrange (1772, cen-
tral configuration of a system of n bodies), Charles-Eugene Delaunay (1860-1867,
a study 900 pages volume dealing with the Earth-Moon-Sun system).

A simplified version of the three-body problem, called the restricted three-body
problem, has been formulated in this context. In this simplification, the mass of one
of the bodies is disregarded or the trajectories of the bodies are reduced to some
shapes such as circular or elliptical. Fig. - shows the behavior of three
bodies for different initial conditions. Chaotic behavior, or more precisely chaotic
orbits of the three bodies are clearly seen.

The n-body problem (or more precisely its restricted version) can also be simu-
lated by means of a relatively simple device called a mad pendulum. This pendulum
consists of N magnets located in the apexes of an N-angle, above which hangs a
steel ball on a thin string (see Fig.[3.100). The mathematical model describing the
behavior of the pendulum is given by (3.41).
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Each magnet attracts in some way the ball suspended from the starting position,
and a chaotic trajectory results. For example, Fig. -[B.101] shows two trajec-
tories which are entirely different although the starting conditions only differ by
one-hundredth in the velocity.
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Fig. 3.96 Three body problem - random ini-  Fig. 3.97 Three body problem - different ini-
tial conditions tial conditions

Fig. 3.98 Three body problem - different ini-  Fig. 3.99 Three body problem - different ini-
tial conditions tial conditions
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Fig. 3.100 Trajectories of a mad pendulum  Fig. 3.101 ... and another trajectories for
for vy y =-1.05,-2.31... Vyy =-1.05,-2.3.

Fig. 3.102 Another trajectory for vy y =3, -1

It is clear from the pictures and from the physical nature of the problem that the
chaotic mode can only be observed during a certain time interval. Due to energy
dissipation the pendulum will eventually stay in the resting position at one of the
magnets or in the origin of the N-angle. Fig. shows the development of the
x-component of the pendulum motion. Chaotic behavior can be observed during
the first 20 seconds of development. Subsequently, chaos vanishes due to energy
dissipation, quasi-periodic oscillation follows, and ultimately the pendulum remains
at rest.
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Fig. 3.103 Time development of the behavior of the pendulum for different starting values
of vy,

3.6 Conclusion

This chapter presents a very simple introduction to deterministic chaos theory. Main
and well known icons of chaos, like Lyapunov exponent, Feigenbaum’s constant,
U-sequence, self-similarity etc has been introduced. The way how deterministic be-
havior can be changed into a chaotic one is also discussed like intermittence, period
doubling, crises as well as chaotic transients. At the end of this chapter, selected
examples from mechanics, astrophysics, computer sciences, electronics amongst
others are described. Main attention has been paid to demonstration of determin-
istic chaos behavior. For more detailed explanation and description of deterministic
chaos it is recommended to study literature in the references.
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