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Abstract

A method for parameter estimation of two time-scale model of photosynthesis and photoinhibition is presented.
The model structure coincides with the earlier mechanistic concept of photosynthetic factory by Eilers and Peeters, however,

our formulation respects the decomposition of the phase-space into the fast phase xA, and the slow one, xB. The experimental
design for model parameters estimation is based on three complementary measurements. In addition to the standard measurement of
microbial kinetics, identifying three of five model parameters, two time dependent experiments are proposed. The first one resides
in photoinhibition measurement under constant irradiance (identifying the slow system dynamics), and the second one is based on
periodic piecewise constant input. It is shown how to set up the input signal in order to maximize the sensitivity to the fast dynamics
parameter.
© 2009 IMACS. Published by Elsevier B.V. All rights reserved.

PACS: 93C10; 37N25
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1. Introduction

The identification of model structure and parameters from experimental data remains a bottleneck for a major
breakthrough of the computational analysis of biological systems.

In this paper, we show the modelling and experimental design for parameter estimation of a dynamical system of
photosynthesis and photoinhibition evolving on widely separated time-scales.

The photosynthetic microorganisms growth modelling has long been regarded as a well-defined discipline in algal
biotechnology, consisting of the coupling between photosynthesis and irradiance, resulting in the light response curve,
which represents the microbial kinetics, see e.g. so-called Monod or Haldane type kinetics [2,12]. The main difficulty
in considering the dynamic behavior of the photosynthetic processes (i.e. light and dark reactions and photoinhibition)
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Fig. 1. States and transition rates of the photosynthetic factory – Eilers and Peeters’s PSF model.

consists in their different time scales. While the characteristic time of microalgal growth (e.g. doubling time) is in
order of hours, light and dark reactions occur in milliseconds and photoinhibition in minutes.

Since we possesses some experiment based knowledge of relevant processes, we can formulate the basic model
behavior and further determine the model structure and the number of model parameters. These are our most important
qualitative experimental results: (i) the steady state kinetics is of Haldane type, and (ii) the microalgal culture in
suspension has so-called light integration property, i.e. as the so-called light/dark cycle frequency is going to infinity,
the value of resulting production rate goes to a certain limit value, which depends on average irradiance only [8].

The widely cited phenomenological model of photosynthetic factory PSF model proposed by Eilers and Peeters in
1988 [3] inherently fulfills the above requirements.

Nevertheless, there is only one work where all PSF model parameter estimation is broadly studied [14].1

For that reason we aim to describe in this contribution our optimal experimental design based methodology to
estimate PSF model parameters.

2. Model of photosynthesis and photoinhibition in microalgae

The so-called model of photosynthetic factory, see Fig. 1, has been recently studied in the biotechnological literature
[3,4,6,14]. It has the following form

ẋ = [A + u(t)B]x, (1)

A =

⎡
⎢⎢⎢⎣

0 γ δ

0 −γ 0

0 0 −δ

⎤
⎥⎥⎥⎦ ,B =

⎡
⎢⎢⎢⎣

−α 0 0

α −β 0

0 β 0

⎤
⎥⎥⎥⎦ . (2)

The state vector x is three dimensional, namely, x = (xR, xA, xB)�, where xR represents the probability that PSF is
in the resting state R, xA the probability that PSF is in the activated state A, and xB the probability that PSF is in the
inhibited state B. The transition rates are: αu, βu, γ, δ (unit: s−1).

The single scalar input u(t) represents the irradiance (unit: μE m−2 s−1) in the culture (it is assumed that u(t) is at
least piecewise continuous, see e.g. Fig. 2).

The PSF can only be in one of these states, so:

xR + xA + xB = 1. (3)

Taking into account the above normalization condition and preferring the states xA, xB (due to their measurability),
we further analyze only two differential equations (for more detail see our paper [11] where this formulation of PSF

1 However, either the “dynamic” and “static” model parameters were treated together, which resulted in large 95 % confidence interval; see Table
2 in [14].
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Fig. 2. Schematic presentation of the periodic intermittent input signal u(t), total cycle period is h = ha + hb.

model was firstly used) in the form:[
ẋA

ẋB

]
=
[−γ 0

0 −δ

][
xA

xB

]
+ u(t)

[−(α + β) −α

β 0

][
xA

xB

]
+ u(t)

[
α

0

]
, (4)

where α, β, γ , δ are four rate constants of PSF model and u(t) is the known scalar function. In other words, PSF model
is the so-called bilinear controlled system, cf. [1] and references within there.

The PSF model has to be completed by an equation connecting the hypothetical states of PSF model with some
quantity related to the cell growth.

This quantity is the specific growth rate μ.2 According to [3,14], the rate of photosynthetic production (specific
growth rate) is proportional to the number of transitions from the activated to the resting state, i.e. γxA(t). Finally, for
the average specific growth rate we have the relation:

μ = κγ

tf − t0

∫ tf

t0

xA(t)dt, (5)

where κ is a new dimensionless constant – the fifth PSF model parameter.
Eq. (5) reveals the reason why PSF model can succesfully model the microalgae growth in high-frequency intermit-

tent light: the growth is described through the “fast” state xA, hence the sensitivity to high-frequency input fluctuations
(e.g. flashing light experiments [8]) is reached.

The normalized (by its maximum) rate of photosynthetic production (i.e the normalized average value of xA) will
be further used in Section 3.3.

Having the constant input signal u, there are three eigenvalues of system matrix of (1), i.e. A + uB. Two eigenvalues
are negative and the third is zero (its corresponding eigenvector is the steady state solution of (1)). Two non-zero
eigenvalues can be determined also from (4). Let |λF | ≥ |λS |, then the next formulas hold (for details see [9]):

λF = −1

2

[
(α + β)u + γ + δ +

√
[(α − β)u + γ − δ]2 + 4βu(γ − δ)

]
, (6)

λS = −1

2

[
(α + β)u + γ + δ −

√
[(α − β)u + γ − δ]2 + 4βu(γ − δ)

]
. (7)

Let us realize that the system (4) is a stiff system, moreover, according to [3,14], α � β and γ � δ then the following
approximation of the above formulas ((6) and (7)) can be derived (for details see [10]): λF

∼= − [(α + β)u + γ
]
, λS

∼=
− [αβu2/(α + β)u + γ + δ

]
. The steady state values of states xA and xB, for a constant u ≥ 0, are then

xAss = δ · αu

λFλS

, xBss = αβu2

λFλS

. (8)

We note that this steady-state solution of (4) is stable, because the eigenvalues are negative for every u ≥ 0.

2 μ := ċx/cx, where cx is the cell density. The notation used is the most usual in biotechnological literature, cf. [2].
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Moreover, there exists a value of irradiance to maximize growth rate in steady-state condition. Let be denoted the
input which maximize xAss with respect to u as uoptss . Then holds:

uoptss :=
√

γδ

αβ
. (9)

Remark 1. Notice that both in the Introduction mentioned requirements for a process model are accomplished:

(1) the PSF model steady state behavior corresponds to Haldane type kinetics: Let put xAss from (8) into (5), then the
next relation is received: μ = κγδαu/αβu2 + δ(α + β)u + γδ).

The governing relation of the steady-state production curve of Haldane type (or so-called Substrate inhibition
kinetics) is: μ = μ∗S/KS + S + S2/KI , where S is a limiting substrate and μ∗, KS, KI are model constants.
Maximum occurs at S = √

KSKI , when μmax = μ∗/2
√

KS/KI + 1. Note that for KI → ∞, the production
curve changes to Monod kinetics. The connection between PSF model and Haldane kinetics could be described
as follows: μ∗ = κγα/α + β, KS = γ/α + β, and KI = δ(α + β)/αβ.

(2) the light integration capacity is the inherent property of bilinear system due to the Lipschitz dependence of
trajectories on control [1].

2.1. PSF model re-parametrization

In the sequel, we define the dimensionless input as u∗ := u/uoptss , and we further rewrite the ODE system (4) and
one algebraic-integral Eq. (5) by introducing new parameters θi, i = 1,..,5:

θ1 :=
√

γδ

αβ
, θ2 :=

√
αβγ

δ

1

α + β
, θ3 := κγ

√
αδ

βγ
, (10)

θ4 := αθ1, θ5 := β

α
. (11)

Notice that θ1 units are those of irradiance (μE m−2 s−1), θ2, θ5 are dimensionless, θ3, θ4 are in s−1. The reasoning
for such a choices arises either from the steady state PSF model behaviour (parameters θ1, θ2, θ3) and from the PSF
model dynamics (the fast rate θ4 := αuoptss and the slow rate θ4θ5 := βuoptss ), for more details see [11]. The parameter
θ5 quantifies the separation between the fast and slow dynamic; θ5 ≈ 10−4, based on [14].3

Hence, introducing new parameters θi, i = 1,..,5 and the dimensionless irradiance u∗, the resulting ODE is:

1

θ4

[
ẋA

ẋB

]
=

⎡
⎢⎣

−θ2(1 + θ5) 0

0 − θ5

θ2(1 + θ5)

⎤
⎥⎦
[

xA

xB

]
(12)

+u∗
[

−(1 + θ5) −1

θ5 0

][
xA

xB

]
+ u∗

[
1

0

]
.

The relation for the specific growth rate is:

μ = θ2θ3(1 + θ5)
1

tf − t0

∫ tf

t0

xA(t)dt. (13)

3 For the microalga Porphyridium sp. the following values of PSF model parameters θ1, . . ., θ5 (on basis of Wu and Merchuk’s parameters
α, β, γ, δ, κ) were calculated: θ1 = 250.106μ E m−2, θ2 = 0.301591, θ3 = 0.176498e − 3 s−1, θ4 = 0.483955 s−1, θ5 = 0.298966e − 3.
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The purpose of such a re-parametrization was twice:

• To underline the two-time scale system nature.
• To prepare the three-step PSF model parameter estimation (i.e. three different experiments):

(1) the “sufficiently long” growth measurements under constant input signal leading to the steady state, and consequent
estimation of parameters θ1, θ2, θ3;

(2) the determination of the step input response of the “slow” state xB, leading to the estimation of the photoinhibition
rate (e.g. via measuring the chlorophyll fluorescence quantum yield), and consequently to estimate the product
(θ4 · θ5);

(3) the dynamic measurements of a time-varying asymptotic steady state regime (e.g. via measuring the photosynthetic
oxygen evolution rate) forced by the periodic piecewise constant signal u, in order to determine the fast dynamic
parameter θ4.

3. Experimental design

As stated in the preceding section, to estimate the first three PSF model parameters (θ1, θ2, θ3) is equivalent to
determine the steady state photosynthetic production, see e.g. [3]. Neither the determination of the step input response
in order to determine the slow dynamics (θ4 · θ4) represents serious problems. Conversely, the reliable estimation of
the remaining “fast rate” parameter θ4 represents a scientific challenge. It was shown in our paper [11] that due to the
presence of the fast and the slow dynamics, the step response is able to determine slow dynamics time constant only.

While in [11] the harmonic forcing was studied, here we develop the optimal experimental design based on the
periodic intermittent piecewise constant input response. This is the main contribution of the paper.

3.1. Modelling of flashing light experiments

It was proved in [9] that the solution of ODE system (1), i.e. the state trajectories of PSF model, for the intermittent
piece-wise constant input (see Fig. 2: u ∈ {ua, ub}, cycle period h = ha + hb, where ha is “dark” period and hb is light
period) has after a “sufficiently large” time of transition to this so-called quasi steady-state the same periodic pattern
as the input variable u(t). This can be formulated as

x(t0) = x(t0 + h). (14)

Because we are able to measure the average photosynthetic rate only, it is the average value of state xA which is
proportional to the photosynthetic rate, see (5), we are interested in. This value xAav can be evaluated by the integration
of xA over one cycle period h:

xAav = 1

h

∫ h

0
xA(t)dt = 1

h

(∫ ha

0
xA(t)dt +

∫ h

ha

xA(t)dt

)
. (15)

A somewhat tedious but straightforward evaluation of (15) was performed in detail in [9] for the case of so-called
flashing light experiments (i.e. for ua = 0).4

3.2. Order reduction of the ODE system (2)

The resulting expression for xAav published in [9] is too complicated for our purposes of experimental design.
Nevertheless, when the period h of light/dark cycles is “small”, we can further simplify the ODE system (12) by
reducing the PSF model dynamics to the one dimensional one using the singular perturbation approach with respect
to the small parameter q5 ≈ 10−4 [13]. The system (12) thanks to the properties of its right hand side clearly satisfies

4 See [5,8] for more details about these so-called flashing light experiments.
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Fig. 3. Dependence of the photosynthetic production P := xAav/xAss(uav
∗) on cycle period.

the sufficient condition for the convergence of the singular perturbation.5 One can therefore take the limit q5 → 0 in
(12) to obtain ẋB = 0, i.e. xB = xBss(uav

∗), uav
∗ := hbub

∗. Consequently, only one ODE for the fast dynamics of xA

state is received:

ẋA = −θ4(u∗ + θ2)xA + θ4u
∗ [1 − xBss(uav)] . (16)

3.3. Photosynthetic productivity under high frequency light/dark cycles

The time averaged value of state xA under high frequency light/dark cycles is calculated similarly as in [9]. When
we set up hb/ha = 1, then holds:

xAav = xAss(uav
∗)

1 + θ2

2 + θ2

[
1 + sinh(θ2θ4h)

θ2θ4h(1 + θ2/2)

sinh((2 + θ2)θ4h)

sinh(2(1 + θ2)θ4h)

]
. (17)

Notice that limh→0xAav = xAss(uav
∗), i.e. once more is demonstrated the light integration property of the PSF model.

Eq. (17), which connects the average value of state vector xA with the fast dynamic model parameters θ4 and the period
of intermittent input h actually represents our mathematical tool to simulate flashing light experiments. Moreover, in
order to define the dimensionless normalized photosynthetic production rate (normalized specific growth rate), we
divide (17) by xAss(uav

∗) and define P :

P = 1 + θ2

2 + θ2

[
1 + sinh(θ2θ4h)

θ2θ4h(1 + θ2/2)

sinh((2 + θ2)θ4h)

sinh(2(1 + θ2)θ4h)

]
. (18)

We see that the unknown parameter θ4 arises in the above equation always in product with the cycle period h, i.e. with
the independent variable. In order to study the sensitivity of P with respect to θ4 it is convenient to substitute in (17)
the product θ4h by H :

P = 1 + θ2

2 + θ2

[
1 + sinh(θ2H)

θ2H(1 + θ2/2)

sinh((2 + θ2)H)

sinh(2(1 + θ2)H)

]
. (19)

Fig. 3 shows the dependence of P on H (for θ2 = 0.3). In the following subsection we will study the sensitivity of P

with respect to θ4, aiming to derive an analytical condition to maximize the sensitivity with respect to the period h.

5 Roughly speaking we can also apply the theorem of Lipschitz dependence of trajectories on control [1,9] when we suppose that the period h is
“sufficiently small” for “averaging” of xB but not so small for averaging xA.
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Fig. 4. Dependence of the sensitivity S := ∂P/∂H on log H (H := hθ4).

3.4. Sensitivity analysis of the relation (19)

As a matter of fact, while maximizing the sensitivity of P with respect to θ4, we have to consider the following
equation:

∂(∂P/∂θ4)

∂h
= 0. (20)

Because P depends on H := θ4h only (θ2 is supposed to be known from previous steady state experiments), Eq. (20)
can be evaluated as follows (applying theorem for derivative of composed function):

∂2P

∂H2 H + ∂P

∂H
= 0. (21)

Fig. 4 shows the dependence of ∂P/∂H on H (for θ2 = 0.3) and encourages us to look for a solution of (21). After the
straightforward calculation, the Eq. (21) is solved for H in a closed form. Computer Algebra System helps us in this
process and for the known value of θ2 we finaly find the value H∗ ∼= 12 (log H∗ ∼= 2.48), and consequently from (19)
the corresponding value P∗ ∼= 0.79. The value of P∗ helps us to find h∗, and the subsequent experiments performed
for this “optimal cycle period” will be used to estimate the value of parameter θ4, see the next subsection.

3.5. Algorithm of experimental design for θ4 parameter estimation

Having the condition for an optimal value H∗ (maximizing the sensitivity of P with respect to the period h), we
can propose an algorithm which design the experiment leading to h∗. The idea is to perform as much experiments as
possible for this value h∗. The corresponding experimental results of normalized productivity let be denoted as P∗

i ,
i = 1,..,N∗, where N∗ is the number of measurements performed for period h∗.

(1) set up h0, hstep, δ

(2) loop until convergence:

— perform the experiment for the h0:

• measure P(h0)
• evaluate 
 := P(h0) − P∗



Š. Papáček et al. / Mathematics and Computers in Simulation 80 (2010) 1302–1309 1309

◦ if |
| < δ then h∗ := h0 continue to (3)
◦ if 
 > 0 then h := h0 + hstep

◦ if 
 < 0 then: new value of hstep := hstep/2 and h := h0 − hstep

— return the new value of period h0 = h

(3) return the identified h∗

Having performed N∗ experiments for just identified period h∗ we further can evaluate the mean value and variance
of P(h∗), in order to finally solve (17) with respect to θ4. By this way the variance of the θ4 parameter estimate is
minimized.

4. Conclusions

In this paper, an experimental design for parameter estimation of two time-scale model of photosynthesis and
photoinhibition was presented. Its main purpose was to propose the reliable methodology of the PSF model parameter
θ4 (corresponding to the fast dynamics phenomena) estimation. This nonlinear parameter estimation was based on
the prediction of the response to periodic piecewise constant forcing. Important lesson here is that using singular
perturbation approach the order reduction of the ODE system (4) permits the analytical study of the sensitivity of
photosynthetic production on its factors. Consequently, the algorithm searching the optimal period of flashing light
experimets has been established. Once having the reliable methodology of PSF model parameters estimation, the PSF
model may further serve for optimizing photosynthetic production of real biotechnological plants [7].
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