
2382 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 57, NO. 7, JULY 2010

Complete Fast Analytical Solution of the Optimal
Odd Single-Phase Multilevel Problem
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Abstract—In this paper, we focus on the computation of optimal
switching angles for general multilevel (ML) odd symmetry wave-
forms. We show that this problem is similar to (but more general
than) the optimal pulsewidth modulation (PWM) problem, which
is an established method of generating PWM waveforms with
low baseband distortion. We introduce a new general modulation
strategy for ML inverters, which takes an analytic form and
is very fast, with a complexity of only O(n log2 n) arithmetic
operations, where n is the number of controlled harmonics. This
algorithm is based on a transformation of appropriate trigonomet-
ric equations for each controlled harmonics to a polynomial system
of equations that is further transformed to a special system of
composite sum of powers. The solution of this system is carried out
by a modification of the Newton’s identity via Padé approximation,
formal orthogonal polynomials (FOPs) theory, and properties of
symmetric polynomials. Finally, the optimal switching sequence
is obtained by computing zeros of two FOP polynomials in one
variable or, alternatively, by a special recurrence formula and
eigenvalues computation.

Index Terms—Composite sum of powers, formal orthogo-
nal polynomials (FOPs), multilevel (ML) inverters, Newton’s
identities, optimal pulsewidth modulation (PWM) problem,
Padé approximation, polynomial methods, selected harmonics
elimination.

I. INTRODUCTION

THE optimal multilevel (ML) or pulsewidth modulation
(PWM) problem, sometimes called the selected harmonic

elimination (SHE) problem, is an established method for gen-
erating ML waveforms with low baseband distortion. The prin-
cipal problem is to determine the switching times (angles) to
produce the baseband and to not generate specific higher order
harmonics. This way, it is possible to separate the undesirable
highest harmonics.

The optimal ML problem offers several advantages com-
pared to traditional modulation methods [1]–[4]. This approach
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allows better performance with low switching frequency, direct
control over output waveform harmonics, and the ability to
leave untouched harmonics divisible by three for three-phase
systems.

Up to now, a lot of different perspectives were proposed.
All the methods assume quarter symmetry, and all formula-
tions result in the Fourier series representation for different
waveforms. The principal problem lies in solving a multivariate
trigonometric system of equations or, after substitution for
Chebyshev polynomials, in solving a multivariate polynomial
system of equations. There are several techniques of how to
solve them.

The most effective method for single-phase quarter-
symmetric inverter is described in [5]–[7]. This method is based
on trigonometric identity for cosine function where the original
trigonometric system is transformed to a polynomial system
of specific structure leading to the polynomial system of sum
of odd powers. The problem results in the construction of a
special set of one variable polynomials and computation of their
zeros. These polynomials are formal orthogonal (FOPs), and a
recurrence formula is derived for them. The solution is based
on diagonal Padé approximation. In the case of single-phase
inverter for a given modulation index,1 one or no solution exists.
An exact algorithm with a small complexity O(n log2 n) was
found. The main result of this paper is, in fact, a generalization
of this work for general odd symmetry ML waveforms.

Three-phase inverter systems pose a very interesting topic
with many industrial applications. In the three-phase connec-
tion, all harmonics divisible by three are ignored as they are
automatically canceled in the electric system. This is a more
complicated problem because a special structure of the system
of equations is damaged. One unique, several different, or no
solution exists for a given modulation index. From these, only
one solution is selected—the one that minimizes other undesir-
able and uncontrolled higher harmonics. For more details, see
[8]–[11]. These papers also rely on the conversion to a system
of polynomials using trigonometric identities. This system of
polynomials is solved by the Gröbner basis theory or by the
elimination method based on computation of resultants [10]. In
addition, a substitution for elementary symmetric polynomials
or power sums is applied in [9] and [10]. Applicability of this
method is restricted to say five odd harmonics because an ap-
propriate system for a higher number of eliminated harmonics
is too large, and its solution is extraordinarily time consuming.
Nevertheless, fast analytical methods similar to the algorithms

1This is basically the ratio of the first harmonic to the amplitude of one level
of an ML waveform.
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Fig. 1. (a) Frequency spectrum of a separated baseband signal. The baseband
can be recovered by an LPF. (b) Principal scheme for the optimal PWM or ML
problem.

for single-phase systems presented further in this paper seem to
appear soon (see [12] for some first results).

Other methods presented in the literature dealing with the
system of polynomial equations are numerical iterative routines
[13], genetic algorithms [14], optimization theory [15]–[18],
homotopy and continuation [19], or a predictive control algo-
rithm [20].

Applications of the optimal ML or PWM problem cover the
control of large electric drives, power electronics converters,
active harmonic filters, control of (micro) electromechanical
systems, or digital audio amplifier. Implementation of fast
and efficient algorithms proposed in this paper on dedicated
hardware, e.g., digital signal processors, opens a possibility
of a more effective on-the-fly realizations and more accurate
and faster solutions. It can result in increasing fuel or power
efficiency and better performance (see [21]).

II. OPTIMAL ML PROBLEM

A key issue in the optimal ML problem is the determination
of the switching times (angles) to produce the signal portion
(baseband) and to not generate specific higher order harmonics
(guard band or zero band). This spectral gap separates the
baseband, which has to be identical to the required output
waveform, from an uncontrolled higher frequency portion. The
required output signal can be recovered by means of an analog
low-pass filter (LPF) with a cutoff frequency in the guard band.
The procedure is depicted in Fig. 1.

Methods described in this section are based on exploiting
appropriate trigonometric transcendental equations that define
the harmonic content of the generated periodic ML waveform
p(t), which is equal to the required finite frequency spectrum
of f(t). The main problem lies in solving these systems of
equations.

The solution of the optimal ML problem is a sequence of
switching times α� = (α1, . . . , αn). This sequence is obtained
from the solution of the following system of equations:

ap0(α) = af 0 (1a)

apk(α) = af k

bpk(α) = bf k

}
for all k ∈ HC (1b)

apk(α) = 0
bpk(α) = 0

}
for all k ∈ HE (1c)

subject to 0 < αi < T (1d)

where α = (α1, . . . , αn) are unknown variables, ap0 and apk,
bpk are the zeroth and kth cosine and sine Fourier coefficients
of the generated waveform p(t), respectively, and af 0 and af k,
bf k are the zeroth and kth cosine and sine Fourier coefficients
of the required output waveform f(t). HC is the set of con-
trolled harmonics, and the number of elements is nC . HE is the
set of eliminated harmonics, and the number of elements is nE .
The number of equations is n = 1 + 2(nC + nE).

If only one solution α of (1) exists, then it is the optimal
solution, and α� = α. If the solutions of (1) are α1, . . . , αm,
m > 1, then the optimal solution α� is chosen as the minimizer
of the total harmonic distortion (THD), i.e.,

α � = arg min
α={α1,...,αm}

THD(α) (2)

where

THD(α) (in percent) = 100

√√√√√√
∑n+N

i=nc+1

(
api

(α)+bpi
(α)

i

)2
∑nc

i=1

(
api

(α)+bpi
(α)

i

)2 .

(3)

If no solution of (1) is found, then the optimal solution α � is
computed as a general minimization problem, i.e.,

α � = arg min
α

√∑
k∈HE

(
apk(α) + bpk(α)

)2
subject to (1a) and (1b). (4)

In the rest of this paper, we focus on single-phase odd ML
and bilevel PWM waveforms, which lead to a special structure
of (1), with only one solution satisfying the condition (1d). The
solution of (1) is then found by an analytical procedure.

III. SWITCHING WAVEFORMS

We will show by analysis of different ML waveforms
(general, odd, even, half-wave, quarter-wave and bilevel, three-
level) that an effective (analytical) solution is possible for wave-
forms with odd and quarter-wave symmetry only. The Fourier
series of these waveforms are odd and, therefore, contain sine
coefficients only (the zeroth harmonic and cosine coefficients
are equal to zero). The sine and cosine Fourier coefficients are
included in other cases, and therefore, it is not possible to make
simplifying arrangements for an effective solution.

The optimal PWM problem for a quarter-symmetric three-
level inverter is solved in [5] and [6]. This waveform gener-
ates only odd sine harmonics, and only the first harmonic is
controlled. In this paper, we present solutions for more general
odd ML waveforms, which generate all (odd as well as even)
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Fig. 2. General odd multilevel (seven-level) waveform.

sine harmonics. Therefore, our approach covers the solution of
the quarter-symmetric PWM and ML problem, and it is more
general. Furthermore, the first few nc harmonics are controlled.

A. General Odd ML Waveform

The Fourier series of a T periodic general odd ML waveform
p(t) with amplitude A (see Fig. 2) is sine, i.e.,

p(t) ∼
∞∑

k=1

bk sinωkt (5)

where

bk =
2A

kπ

(
(−1)k+1on −

n∑
i=1

(−1)i cos ωkαi

)
,

k = 1, 2, 3, . . . . (6)

The unknown switching times α = (α1, . . . , αn) are sub-
ject to 0 < α1 < α3 < · · · < α2�n/2�−1 < T/2 (�n/2� ris-
ing edges) and 0 < α2 < α4 < · · · < α2�n/2� < T/2 (�n/2�
falling edges), and ω = 2π/T is the angular frequency. The
integer n is the number of switching times in the half period,
and on is the odd parity test described by

on =
1 − (−1)n

2
=
{

0, for even n,
1, for odd n.

(7)

The number of levels is equal to

2 max
i=1,...,n

|Λi| + 1 (8)

where

Λ1 = M(a1) Λi+1 = Λi + M(ai+1) i=1, . . . , n − 1

(a1, . . . , an) = sort<(α1, α2, . . . , αn) (9)

M(ai) =
{

1, ai ∈ α2j−1

−1, ai ∈ α2j . (10)

In the following, we describe some special cases:

1) proper odd ML waveform: (2�n/2� + 1)-level waveform
with n switching times in the half period, satisfying the
condition α2�n/2�−1 < α2 (see Fig. 3);

2) proper three-level waveform: only 0 and +A levels in
the half period, satisfying the condition 0 < α1 < α2 <
α3 < · · · < αn (see Fig. 4);

Fig. 3. Odd proper multilevel waveform.

Fig. 4. Odd proper three-level waveform.

3) bilevel waveform: has a slightly different Fourier se-
ries expansion and is therefore described separately in
Section III-B.

For the sequel, we put T = 2π and ω = 1 for simplicity.
Then, all solutions αi are transformed back to the original
period by a substitution αi 	→ αiT/(2π).

For further generalization and simplification of the nota-
tion, we introduce (6) and (27) for the bilevel waveform (see
Section III-B) in the following form:

bk(α) = Ak

(
Bk + Ck

n∑
i=1

(−1)i cos(kαi)

)
,

k = 1, 2, . . . . (11)

The parameters for 2π periodic odd ML waveform are

Ak =
2A

kπ
Bk = (−1)k+1on Ck = −1. (12)

According to the previous analysis of the optimal ML prob-
lem then, for a single-phase system, the controlled harmon-
ics of the output ML waveform p(t) are bpk

, k ∈ HC =
{1, 2, . . . , nC}, and the eliminated harmonics are bpk

, k ∈
HE = {nC + 1, nC + 2, . . . , nC + nE}. Thus, we have

bpk
(α) = Ak

(
Bk + Ck

n∑
i=1

(−1)i cos(kαi)

)
= bfk

,

k = 1, 2, . . . , nc (13a)

bpk
(α) = Bk + Ck

n∑
i=1

(−1)i cos(kαi) = 0,

k = nc + 1, nc + 2, . . . , n (13b)

subject to

0 < α1 < α3 < · · · < α2�n/2�−1 < π (13c)

0 < α2 < α4 < · · · < α2�n/2� < π (13d)
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where α = (α1, . . . , αn) are unknown variables (switching
times), n = nC + nE , Ak, Bk, and Ck are set according to
(12), and bfk

, k = 1, 2, . . . , nC , on the right-hand side (RHS)
of the equations are real numbers defining the required signal
f(t) (baseband frequency spectrum). The integer nE defines
the number of zero harmonics in the guard band.

1) Polynomial Equations: In this section, we convert the
trigonometric equations in (13) to polynomial equations and
simplify them. According to the trigonometric identity for
multiple angles of cosine

cos(kαi) = Tk(cos αi). (14)

We substitute by Chebyshev polynomial Tk of the first kind
(see, e.g., [22, p.771] or [5]) and convert the kth harmonic of
(11) to multivariate polynomials, i.e.,

bpk
(x) = Ak

(
Bk + Ck

n∑
i=1

(−1)iTk(xi)

)
(15)

in variables (x1, . . . , xn) = x. The dependence between xi and
αi is given by

αi = arccos xi, i = 1, . . . , n. (16)

According to (13c) and (13d)

− 1 < xn < · · · < x4 < x2 < 1

− 1 < xn−1 < · · · < x3 < x1 < 1. (17)

Thus, the trigonometric system (13) is transformed to a
polynomial system, i.e.,

bpk
(x) = Ak

(
Bk + Ck

n∑
i=1

(−1)iTk(xi)

)
= bfk

,

k = 1, 2, . . . , nc (18a)

bpk
(x) = Bk + Ck

n∑
i=1

(−1)iTk(xi) = 0,

k = nc + 1, nc + 2, . . . , n

subject to (17) (18b)

where the variables are (x1, . . . , xn) = x. This polynomial sys-
tem (18) can be re-solved using existing methods, such as the
Gröbner basis approach, elimination based on resultants, and
other algorithms (see [23] and [24]). Note that the polynomials
in this system are partially symmetric. It means that we can
arbitrarily permutate variables x2i or x2i−1 and the function
bpk

(x) is left unchanged.
However, the following steps show how the system of equa-

tions in (18) [respectively (15)] can be further simplified by
conversion to a new linear system in new variables. These new
variables are composite sums of powers and create new polyno-
mial system of equations. We present new effective algorithm
for this system, which is much more effective compared to
direct application of standard polynomial methods to (18).

From (15), the expression
∑n

i=1(−1)iTk(xi) for odd k reads

n∑
i=1

(−1)iTk(xi) = −
k+1
2∑

j=1

tk,2j−1

n∑
i=1

(−1)i+1x2j−1
i

= −
k+1
2∑

j=1

tk,2j−1p2j−1, k is odd

where tk,2j−1 is the (2j − 1)th coefficient of x2j−1 in the
Chebyshev polynomial of degree k, and p2j−1 are composite
sums of powers (new unknown variables) for which the follow-
ing identity holds:

p2j−1 =
n∑

i=1

(−1)i+1x2j−1
i

=x2j−1
1 − x2j−1

2 + · · · + (−1)n+1x2j−1
n ,

j = 1, 2, . . . . (19)

Then, one can write (15) in the following form:

bp2i−1(p1, p3, . . . , p2i−1)

= A2i−1

⎛⎝B2i−1 − C2i−1

i∑
j=1

t2i−1,2j−1p2j−1

⎞⎠ ,

i = 1, . . . , �n/2�. (20)

Similarly, for even k, we have

bp2i
(p2, p4, . . . , p2i)

= A2i

⎡⎣B2i − C2i

⎛⎝(−1)ion +
i∑

j=1

t2i,2jp2j

⎞⎠⎤⎦ ,

i = 1, . . . , �n/2� (21)

where

p2j =
n∑

i=1

(−1)i+1x2j
i

=x2j
1 − x2j

2 + · · · + (−1)n+1x2j
n , j = 1, 2, . . . .

(22)

Finally, we apply back substitution to (18) having the follow-
ing polynomial system of equations:

bp2i−1(p) = A2i−1

⎛⎝B2i−1 − C2i−1

i∑
j=1

t2i−1,2j−1p2j−1

⎞⎠
= bf2i−1 , i = 1, 2, . . . ,

⌈nc

2

⌉
(23a)

bp2i
(p) = A2i

⎡⎣B2i − C2i

⎛⎝(−1)ion +
i∑

j=1

t2i,2jp2j

⎞⎠⎤⎦
= bf2i

, i = 1, 2, . . . ,
⌊nc

2

⌋
(23b)
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bp2i−1(p) = B2i−1 − C2i−1

i∑
j=1

t2i−1,2j−1p2j−1 = 0,

i =
⌈nc

2

⌉
+ 1, . . . ,

⌈n
2

⌉
(23c)

bp2i
(p) = B2i − C2i

⎛⎝(−1)ion +
i∑

j=1

t2i,2jp2j

⎞⎠ = 0,

i =
⌊nc

2

⌋
+ 1, . . . ,

⌊n
2

⌋
(23d)

where p = (p1, p2, . . . , pn) are unknown variables. Because
HC = {1, 2, . . . , nC} and HE = {nC + 1, nC + 2, . . . , nC +
nE}, n = nC + nE , the previous system is linear and of n
equations with n unknown variables p1, . . . , pn. Now, if we
separate unknowns p1, . . . , pn on the left-hand side (LHS) of
(23), then the new RHS for b′fi

are

− 1
C2i−1

(
bf2i−1

A2i−1
− B2i−1

)
− (−1)ion − 1

C2i

(
bf2i

A2i
− B2i

)
B2i−1

C2i−1

− (−1)ion +
B2i

C2i
.

The itemized form of (23) for an ML waveform [parameters
Ai, Bi, and Ci are (12)] for n = 6 and nC = 3 reads

⎡⎢⎢⎢⎢⎢⎣
t1,1

0 t2,2 0
t3,1 0 t3,3

0 t4,2 0 t4,4

t5,1 0 t5,3 0 t5,5

0 t6,2 0 t6,4 0 t6,6

⎤⎥⎥⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎢⎢⎣

p1

p2

p3

p4

p5

p6

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

πbf1
2A

πbf2
A

3πbf3
2A
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

(24)

The system of equations in (23) is a special linear system
where tk,i on the LHS are the ith coefficients of the k degree
Chebyshev polynomial of the first kind, and on the RHS, there
are b′fi

and zeros. According to Gauss–Banachiewitz decompo-
sition for orthogonal Chebyshev polynomials (for more details,
see [25]), the solution of (23) for the general ML waveform is

p2i = on + 2−2i+1 π

A

K∑
j=1

(
2i

i − j

)
j bf2j

, (25a)

K :=
{

i, . . . i < �nc/2�
�nc/2�, . . . i ≥ �nc/2� ;

i = 1, 2, . . . , �n/2� (25b)

p2i−1 = − on + 2−2i+1 π

A

K∑
j=1

(
2i − 1
i − j

)
(2j − 1) bf2j−1 ,

(25c)

K :=
{

i, . . . i < �nc/2�
�nc/2�, . . . i ≥ �nc/2� ;

i = 1, 2, . . . , �n/2�. (25d)

Fig. 5. Odd bilevel PWM waveform.

The number of operations is O(nnC) only, instead of the
standard recursive procedure for solution of triangular linear
system (23), which takes O(n2) operations, and it is moreover
not necessary to generate and store in memory the coefficients
of Chebyshev polynomials ti,j . For example, in the converter
problem, where nC = 1 (only the first harmonic is controlled),
the number of operations is linear compared to quadratic.

To sum up, the problem of optimal ML, namely, the solution
of trigonometric system (13) or polynomial system (18), was
converted to a more simple solution of system of composite
sum of powers (19) and (22), which is in compact form, i.e.,

pj = xj
1 − xj

2 + · · · + (−1)n+1xj
n, j = 1, 2, . . . , n

subject to (17) (26)

where pj are easily solved according to (25), and unknowns
are x = (x1, x2, . . . , xn). The effective solution for this special
polynomial system of composite sum of powers is described in
Section IV. The unknown switching times αi are then obtained
according to (16).

B. Odd Bilevel PWM Waveform

The Fourier series of T periodic odd bilevel PWM waveform
p(t) with amplitude A (see Fig. 5) is sine with the following
coefficients:

bk =
4A

kπ

(
on+k +

n∑
i=1

(−1)i cos(ωkαi)

)
,

k = 1, 2, . . . , (27)

where 0 < α1 < α2 < · · · < αn < T/2 are the unknown
switching times.

The parameters according to (11) are

Ak =
4A

kπ
Bk = on+k Ck = 1 (28)

and the composite sum of powers is

p2i = on − 2−2i π

A

K∑
j=1

(
2i

i − j

)
j bf2j

,

i = 1, 2, . . . , �n/2� (29a)

p2i−1 = on+1 − 2−2i π

A

K∑
j=1

(
2i − 1
i − j

)
(2j − 1) bf2j−1 ,

i = 1, 2, . . . , �n/2� (29b)
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where K and K are according to (25d) and (25b). The inequal-
ity condition for variables xi is

−1 < xn < xn−1 < · · · < x2 < x1 < 1. (30)

IV. COMPOSITE SUM OF POWERS

As shown in Section III-A1, the solution of the optimal odd
ML problem depends only on computation of the composite
sum of powers (26). The itemized form is

x1 − x2 + · · · + (−1)n+1xn = p1 (31a)

x2
1 − x2

2 + · · · + (−1)n+1x2
n = p2

...

xn
1 − xn

2 + · · · + (−1)n+1xn
n = pn (31b)

subject to (17) for optimal ML problem or

subject to (30) for optimal bilevel PWM problem

(31c)

where the RHS are real numbers according to (25) for the
general odd ML waveform, or (29) for the odd bilevel PWM
waveform. Note that this system is very similar to standard
power sums

∑n
i=1 xk

i = pk, k = 1, . . . , n, that are easily solv-
able by the Newton’s identity (see [24] and [26]).

For the following steps, it is better to focus on the following
configuration of the power sums:

pj(y1, . . . , yn) =
k∑

i=1

yj
i −

n∑
i=k+1

yj
i , j = 1, . . . , n (32)

where k ≤ �n/2�. When k > �n/2�, we can multiply the
equation system in (32) by −1 and convert it to the case
k < �n/2�. This form in (32) can be obtained by resorting
variables in (31). The polynomials pj(y1, y2, . . . , yn) in (32)
are partially symmetric because the power sums

∑k
i=1 yj

i and∑n
i=k+1 yj

i are symmetric polynomials (see [24]) in variables
y + = (y1, . . . , yk) and y − = (yk+1, . . . , yn) separately. Then,
we have

pj(y1, . . . , yk, yk+1, . . . , yn)

= pj

(
yπ1(1), . . . , yπ1(k), yπ2(k+1), . . . , yπ2(n)

)
(33)

where (yπ1(1), . . . , yπ1(k)) and (yπ2(k+1), . . . , yπ2(n)) are arbi-
trary permutations of y + and y −, respectively. Therefore, the
total number of solutions is k!(n − k)!. All of them are com-
binations of two sets coming from permutations of elements of
vectors y + and y −.

Equation (31) is converted to (32) in the following way. If n
is an even integer, then n/2 variables with positive sign and
the same number with negative sign are in (31). Therefore,
converting to (32) is accomplished by introducing the following
new variables:

y+ = (y1, y2, . . . , yk) = (x1, x3, . . . , x2k−1) (34a)

y− = (yk+1, yk+2, . . . , y2k) = (x2, x4, . . . , x2k) (34b)

where k = n/2. If n is odd, then �n/2� + 1 variables with
positive sign and �n/2� variables with negative sign are in
(31). Therefore, conversion similar to the case with n even
leads to k > �n/2�, which is not in agreement with condition
k ≤ �n/2� of (32). Therefore, each equation in (31) must be
multiplied by −1, and for that reason, the signs of RHS of
(32) must be changed, i.e., pi 	→ −pi. Then, the following
substitution can be done:

y + = (y1, y2, . . . , yk) = (x2, x4, . . . , x2k) (35a)

y − = (yk+1, . . . , y2k+1) = (x1, x3, . . . , x2k+1) (35b)

where k = �n/2�.
The solution x1, . . . , xn of the optimal odd ML problem is

obtained as follows. From all solutions of (32), only one is
chosen—the one that is in agreement with (31c), which means
that all elements y + and y − are real numbers strictly inside
the interval (−1, 1). When no such solution exists, then none
of the switching sequences allows us to generate the required
harmonics (e.g., this situation arises when we require high first
harmonic for low amplitude of ML waveform for a given n).
As all elements y + and y − can be permuted, the elements of
y + and y − are reindexed so that for y +, −1 < yk < · · · <
y1 < 1 holds, and for y−, −1 < yn < · · · < yk+1 < 1 holds.
Therefore, according to (34) for even n and (35) for odd
n, we have (x1, . . . , xn) = (y1, yk+1, y2, yk+2, . . . , yn, yk)
and (x1, . . . , xn) = (yk+1, y1, yk+2, y2, . . . , yk, yn), respec-
tively. Finally, the condition (31c) for x must hold.

A. Solving Composite Sum of Powers

In this section, the algorithm for solving the composite sum
of powers in (32) is described. The solution is inspired by
[5] and [6], where a special case of quarter-symmetric three-
level inverter problem is studied. The problem was also tackled
in [27] and [28], the authors, however, did not use the Padé
approximation and the theory of FOPs that play a crucial role
in the analytical solution of the whole problem. The other
applications of solving composite sum of powers are in coding
theory and geometric optics. We will find the exact solution as
the set of roots of the following two polynomials:

Vk(y) =
k∏

i=1

(y − yi)

= yk + vk,k−1y
k−1 + · · · + vk,0 (36)

Wn−k(y) =
n−k∏
i=1

(y − yi+k)

= yn−k + wn−k,n−k−1y
n−k−1 + · · · + wn−k,0.

(37)

Then, let us do a logarithmic derivative of

Vk(y)
Wn−k(y)

=
∏k

i=1(y − yi)∏n−k
i=1 (y − yi+k)

(38)
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to get

V ′
k(y)

Vk(y)
−

W ′
n−k(y)

Wn−k(y)
=

k∑
i=1

1
y − yi

−
n−k∑
i=1

1
y − yi+k

. (39)

The expansion of 1/(y − z) at y = ∞ is the series∑∞
j=0 zj/yj+1. Then, we have

V ′
k(y)

Vk(y)
−

W ′
n−k(y)

Wn−k(y)
=

∞∑
j=0

p+
j

yj+1
−

∞∑
j=0

p−j
yj+1

. (40)

where p+
j =
∑k

i=1 yj
i , p−j =

∑n−k
i=1 yj

i+k and pj = p+
j − p−j .

Thus, we get

V ′
k(y)

Vk(y)
−

W ′
n−k(y)

Wn−k(y)
=

∞∑
j=0

pj

yj+1
. (41)

By integrating, (41) we get

Vk(y)
Wn−k(y)

= y2k−ne

(
−
∑∞

j=1

pj

jyj

)
= f(y). (42)

The series expansion of f(y) leads to the Padé
approximation.

B. Padé Approximation

In this section, we will find the unknown coefficients of
polynomials Vk(y) and Wn−k(y) according to the theory of
Padé approximation (for more details, see [29] and [30]). We
rewrite (42) in the following way:

Vk(y)
Wn−k(y)

+ O(y−n+k−2)

=
(

1
y

)n−2k
(

μ0 + μ1
1
y

+ μ2

(
1
y

)2

+ · · ·
)

= f(y), y → ∞ (43)

where the RHS of (43) is the series expansion of f(y) at
infinity. In this case, the expansion of function f(y) contains
the negative powers of y.

We consider the following form:

Ṽk(y)

W̃n−k(y)
+ O(yn+1) = y2k−nf(y−1)

= e

(
−
∑∞

j=1

pj
j yj
)

= F (y), y → 0

(44)

where Ṽk(y) = ykVk(y−1) and W̃n−k(y) = yn−kVn−k(y−1)
(this is only reversion of polynomial coefficients). Therefore,
we solve (44) [instead of solving (43)] as the problem of Padé
approximation with the following notation:

[k/n − k]F (y) =
Ṽk(y)

W̃n−k(y)
=

Ṽ
[k,n−k]
k (y)

W̃
[k,n−k]
n−k (y)

(45)

of the function

F (y) = e

(
−
∑∞

j=1

pj
j yj
)

= e

∑∞
j=1

cjyj

at y → 0, where cj = −pj

j
. (46)

The solution of the original problem in (43) is then ob-
tained by reversing the coefficients of polynomials Ṽk(y) and
W̃n−k(y).

Now, it is necessary to solve the series expansion of the
function F (y) at y = 0 in the form

F (y) =
∞∑

i=0

μiy
i = μ0 + μ1y + μ2y

2 + · · · . (47)

The direct solution is carried out according to [31, Ch. 4.7,
exercise 4] and reads

μ0 = 1, μk = −1
k

k∑
j=1

pjμk−j , k = 1, 2, . . . . (48)

In the case of the optimal odd ML problem (or odd bi-level
PWM problem), two eventualities can occur (see Section IV).
The first is for odd n and k = �n/2�, and the second is for even
n and k = n/2. Both cases will be described separately.

Equation (44), after cross multiplication, gives

Ṽ
[k,n−k]
k (y) = W̃

[k,n−k]
n−k (y)F (y) + O(yn+1) (49)

and a detailed form of the previous equation, considering (47),
leads to

(ṽk,kyk + ṽk,k−1y
k−1 + · · · + ṽk,0) − O(yn+1)

=(w̃n−k,n−kyn−k + w̃n−k,n−k−1y
n−k−1 + · · · + w̃n−k,0)

× (μ0 + μ1y + μ2y
2 + · · ·). (50)

First, let us consider the following cases.
n Is an Odd Number and k = �n/2�: The problem of the

shifted diagonal Padé approximation, i.e.,

[k, k + 1]F (y) =
Ṽ

[k,k+1]
k (y)

W̃
[k,k+1]
k+1 (y)

(51)

is solved. Equating the coefficients of yk+1, . . . , y2(k+1)+1 in
(50) leads to the following linear system:⎡⎢⎢⎢⎣

μ0 μ1 · · · μk+1

μ1 . .
. ...

... . .
.

μ2k+1

μk+1 · · · μ2k+1 μ2(k+1)

⎤⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎣

w̃k+1,k+1

...
w̃k+1,1

w̃k+1,0

⎤⎥⎥⎥⎦=

⎡⎢⎢⎣
0
...
0

K̃k

⎤⎥⎥⎦
(52)

where w̃k+1,0 is coefficient of y0 of polynomial W̃
[k,k+1]
k+1 (y),

and due to definiteness and the condition that wk+1,k+1 = 1,
we put w̃k+1,0 = 1, and K̃k will be a nonzero constant. The last
equation of the system in (52) is reduced. Therefore, we solve
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the linear system with a Toeplitz structure (Hankel matrix) of
size (k + 1) × (k + 1) as follows:⎡⎢⎢⎢⎣

μ0 μ1 · · · μk

μ1 . .
. ...

... . .
.

μ2k−1

μk · · · μ2k−1 μ2k

⎤⎥⎥⎥⎦ ·
⎡⎢⎢⎣

w̃k+1,k+1

w̃k+1,k

...
w̃k+1,1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−μk+1

−μk+2

...
−μ2k+1

⎤⎥⎥⎦ .

(53)

From the found solution W̃
[k,k+1]
k+1 (y), the polynomial

W
[k,k+1]
k+1 (y) is recovered by reversing the coefficients. Alter-

natively, the solution can be obtained as the solution of the
following linear system:⎡⎢⎢⎢⎣

μ0 μ1 · · · μk+1

μ1 . .
. ...

... . .
.

μ2k+1

μk+1 · · · μ2k+1 μ2(k+1)

⎤⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎣

w̃k+1,0

...
w̃k+1,k

w̃k+1,k+1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎣
0
...
0

Kk

⎤⎥⎥⎦
(54)

where wk+1,k+1 is equal to 1.

Unknown polynomial coefficients of V
[k,k+1]
k (y) are ob-

tained from the known polynomial coefficients of W̃
[k,k+1]
k+1 (y)

as follows:

⎡⎢⎢⎣
ṽk,0

ṽk,1

...
ṽk,k

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
0 0 . . . 0 μ0
...

... . .
.

. .
.

μ1

0 0 . .
.

. .
. ...

0 μ0 μ1 . . . μk

⎤⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎢⎣

w̃k+1,k+1

w̃k+1,k

...
w̃k+1,1

w̃k+1,0

⎤⎥⎥⎥⎥⎦ (55)

equating coefficients of x0, x1, . . . , xk in (50). Obviously,
w̃k+1,0 = 1, μ0 = 1, and ṽk,0 = 1. Therefore, the previous
matrix equation is simplified to⎡⎢⎢⎣

ṽk,1

ṽk,2

...
ṽk,k

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
0 . . . 0 μ0
... . .

.
. .

.
μ1

0 . .
.

. .
. ...

μ0 μ1 . . . μk−1

⎤⎥⎥⎥⎦ ·
⎡⎢⎢⎣

w̃k+1,k

w̃k+1,k−1

...
w̃k+1,1

⎤⎥⎥⎦+

⎡⎢⎢⎣
μ1

μ2
...

μk

⎤⎥⎥⎦ .

(56)

The polynomial V
[k,k+1]
k (y) can be constructed analogously

from the found solution Ṽ
[k,k+1]
k (y) by reversing coefficients

or by the following linear system:

⎡⎢⎢⎣
vk,k−1

vk,k−2

...
vk,0

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
0 . . . 0 μ0
... . .

.
. .

.
μ1

0 . .
.

. .
. ...

μ0 μ1 . . . μk−1

⎤⎥⎥⎥⎦ ·
⎡⎢⎢⎣

wk+1,1

wk+1,2

...
wk+1,k

⎤⎥⎥⎦+

⎡⎢⎢⎣
μ1

μ2
...

μk

⎤⎥⎥⎦ .

(57)

n Is an Even Number and k = n/2: The procedure is similar
to the previous case. The diagonal Padé approximation, i.e.,

[k, k]F (y) =
Ṽ

[k,k]
k (y)

W̃
[k,k]
k (y)

(58)

is solved. The coefficients of W̃
[k,k]
k (y) are due to⎡⎢⎢⎢⎣

μ1 μ2 · · · μk

μ2 . .
. ...

... . .
.

μ2k−2

μk · · · μ2k−2 μ2k−1

⎤⎥⎥⎥⎦ ·
⎡⎢⎢⎣

w̃k,k

w̃k,k−1

...
w̃k,1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−μk+1

−μk+2

...
−μ2k

⎤⎥⎥⎦
(59)

equating the coefficients of yk+1, yk+2, . . . , y2k+1 in (50). The
coefficients of Ṽ

[k,k]
k (y) are obtained as follows:⎡⎢⎢⎣

ṽk,1

ṽk,2

...
ṽk,k

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
0 . . . 0 μ0
... . .

.
. .

.
μ1

0 . .
.

. .
. ...

μ0 μ1 . . . μk−1

⎤⎥⎥⎥⎦ ·
⎡⎢⎢⎣

w̃k,k

w̃k,k−1

...
w̃k,1

⎤⎥⎥⎦+

⎡⎢⎢⎣
μ1

μ2
...

μk

⎤⎥⎥⎦ .

(60)

C. Family of FOPs

According to the theory of Padé approximation, V (y) and
W (y) are FOPs, and therefore, related formulas and theorems
can be applied (see, e.g., [30], [32], and [33] for references).

1) Three-Term Recurrence Formula for W (y) and V (y):
n is an odd number and k = �n/2�: According to

[32, p. 101] with (51) we have

[k/k + 1]F (y) =
Ṽ

[k,k+1]
k (y)

W̃
[k,k+1]
k+1 (y)

=
Q̃

(0)
k+1(y)

P̃
(0)
k+1(y)

(61)

where P̃
(0)
k+1(y) = yk+1P

(0)
k+1(y

−1), and Q̃
(0)
k+1(y) =

ykQ
(0)
k+1(y

−1). The polynomial P
(0)
k+1(y) is an FOP of the

first kind with respect to the linear functional L(0)[yi] = μi,
where μi is generated according to (48). The polynomial
Q

(0)
k+1(y) is the associated FOP (sometimes called the

polynomial of the second kind) to P
(0)
k+1(y). Thus, according

to (61), W
[k,k+1]
k+1 (y) = P

(0)
k+1(y), V [k,k+1]

k (y) = Q
(0)
k+1(y), and

we can write the following three-term recurrence formulas:

W
[−2,−1]
−1 (y) = 0 W

[−1,0]
0 (y) = 1 (62a)

W
[i−1,i]
i (y) = (y + Bi)W

[i−2,i−1]
i−1 (y) − CiW

[i−3,i−2]
i−2 (y)

i = 1, 2, . . . , k + 1, . . . (62b)

where

Bi = −
L(0)

[
y
(
W

[i−2,i−1]
i−1 (y)

)2]
Ki−1

Ci =
Ki−1

Ki−2
(63a)

Ki =
i∑

j=0

μi+jwi,j . (63b)

The linear moment functional L(0)[·] in (63a) of arbitrary poly-
nomial Z(y) =

∑n
i=0 ziy

i is solved according to L(0)[Z(y)] =∑n
i=0 ziμi, where L(0)[yi] = μi and wi,j are the coefficients of
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W
[i−1,i]
i (y) =

∑i
j=0 wi,jy

j . Note that the constant Ki in (63b)
is the same as the constant in (54).

The polynomial V
[k,k+1]
k (y) is associated FOP to

W
[k,k+1]
k+1 (y), and therefore, we have

V
[−1,0]
−1 (y) = − 1 V

[0,1]
0 (y) = 0 (64a)

V
[i,i+1]
i (y) = (y + Bi)V

[i−1,i]
i−1 (y) − CiV

[i−2,i−1]
i−2 (y),

i = 1, 2, . . . , k, . . . (64b)

where Bi and Ci are identical to (63).
n is an even number and k = n/2: Similarly as above, we

have the following equation for (58):

[k/k]f (y) =
Ṽ

[k,k]
k (y)

W̃
[k,k]
k (y)

= μ0 + y
Q̃

(1)
k (y)

P̃
(1)
k (y)

(65)

where P̃
(1)
k (y)=ykP

(1)
k (y−1), and Q̃

(1)
k (y)=yk−1Q

(1)
k (y−1).

The polynomial P
(1)
k (y) is the adjacent FOP of the first kind

with respect to the linear functional L(1)[yi] = L(0)[yi+1] =
μi+1, where μi is generated according to (48). The poly-
nomial Q

(1)
k (y) is the associated adjacent FOP to P

(1)
k (y).

Thus, according to (65) W
[k,k]
k (y) = P

(1)
k (y), Ṽ

[k,k]
k (y) =

μ0P̃
(1)
k (y) + yQ̃

(1)
k (y), and therefore, we can write the follow-

ing three-term recurrence formula for W
[i,i]
i (y):

W
[−1,−1]
−1 (y) = 0 W

[0,0]
0 (y) = 1 (66a)

W
[i,i]
i (y) = (y + Bi)W

[i−1,i−1]
i−1 (y) − CiW

[i−2,i−2]
i−2 (y),

i = 1, 2, . . . , k, . . . (66b)

where

Bi = −
L(1)

[
y
(
W

[i−1,i−1]
i−1 (y)

)2]
Ki−1

Ci =
Ki−1

Ki−2
(67a)

Ki =
i∑

j=0

μi+j+1wi,j (67b)

where the linear moment functional L(1)[·] in (67a) of ar-
bitrary polynomial Z(y) =

∑n
i=0 ziy

i is solved according to
L(1)[Z(y)] =

∑n
i=0 ziμi+1, and wi,j are the coefficients of

W
[i,i]
i (y) =

∑i
j=0 wi,jy

j .
Finding a recurrent formula for the polynomial Vk(y) is

more difficult due to the fact that V
[k,k]
k (y) is not an as-

sociated FOP to W
[k,k]
k (y). From (65), we know, however,

that Ṽk(y) = μ0P̃
(1)
k (y) + yQ̃

(1)
k (y). We apply “tilde nota-

tion” (reversion of coefficients) on both sides of the equa-

tion ˜̃V [k,k]

k (y) = μ0
˜̃
P

(1)

k (y) + ỹQ̃
(1)

k (y) and get V
[k,k]
k (y) =

μ0P
(1)
k (y) + Q

(1)
k (y). Thus, the recursion for V

[k,k]
k (y) is a

composition of P
(1)
k (y) and Q

(1)
k (y), where Q

(1)
k (y) is the asso-

ciated FOP to P
(1)
k (y), with the following three-term recurrence

formula:

Q
(1)
−1 (y) = − 1 Q

(1)
0 (y) = 0 (68a)

Q
(1)
i (y) = (y + Bi)Q

(1)
i−1(y) − CiQ

(1)
i−2(y),

i = 1, 2, . . . , k, . . . (68b)

where Bi and Ci are due to (67). The recurrence formula for
P

(1)
k (y) is given by (66), where P

(1)
k (y) = W

[k,k]
k (y). There-

fore, we have

V
[i,i]
i (y) = μ0

(
(y + Bi)P

(1)
i−1(y) − CiP

(1)
i−2(y)

)
+ (y + Bi)Q

(1)
i−1(y) − CiQ

(1)
i−2(y)

= (y + Bi)
(
μ0P

(1)
i−1(y) + Q

(1)
i−1(y)

)
− Ci

(
μ0P

(1)
i−2(y) + Q

(1)
i−2(y)

)
= (y + Bi)V

[i−1,i−1]
i−1 (y) − CiV

[i−2,i−2]
i−2 (y),

i = 1, 2, . . . , k, . . . (69)

where Bi and Ci are according to (67), and the initial condi-
tions are

V
[−1,−1]
−1 (y) =μ0P

(1)
−1 (y) + Q

(1)
−1 (y) = 1 · 0 + (−1) = −1

V
[0,0]
0 (y) =μ0P

(1)
0 (y) + Q0(y)(1) = 1 · 1 + 0 = 1.

2) Determinantal Formulas for W (y) and V (y): According
to [32, Ch. 2], one can write the following determinantal
formulas for polynomials W (y) and V (y).

n is an odd number and k = �n/2�: We have

W
[k,k+1]
k+1 (y)

=Dwk+1det

⎡⎢⎢⎢⎢⎢⎣
μ0 μ1 . . . μk μk+1

μ1 . .
.

. .
.

μk+2

... . .
.

. .
. ...

μk μk+1 . . . μ2k−1 μ2k

1 y . . . yk yk+1

⎤⎥⎥⎥⎥⎥⎦ (70)

V
[k,k+1]
k (y)

=Dvk
det

⎡⎢⎢⎢⎢⎢⎣
μ0 μ1 . . . μk−1 μk

μ1 . .
.

. .
.

μk+1

... . .
.

. .
. ...

μk−1 μk . . . μ2k−2 μ2k−1

0 1 . . .
∑k−1

i=0μiy
k−i−1

∑k
i=0μiy

k−i

⎤⎥⎥⎥⎥⎥⎦
(71)

where Dwk+1 and Dvk
are normalization factors so that

W
[k,k+1]
k+1 (y) and V

[k,k+1]
k (y) are monomials, and the moments

μi are generated according to (48).
n is an even number and k = n/2: We have (72)–(73),

shown at the bottom of the next page, where Dwk
and Dvk

are

normalization factors so that W [k,k]
k (y) and V

[k,k]
k (y) are mono-

mials, and the moments μi are generated according to (48).
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TABLE I
PARTIAL RESULTS FOR AN ILLUSTRATIVE EXAMPLE WHERE nC = 3, nE = 13, A = 2.3, AND (bf1 , bf2 , bf3 ) = (−2, 0.5, 1)

Fig. 6. Solution of an illustrative example.

3) Eigenvalues Formulation: The solution of composite
sum of powers is the set of zeros of polynomials W (y) and
V (y). As these are FOPs, it is possible to obtain these zeros as
eigenvalues of a special matrix (see [32, p. 79]) by

Jk+1 =

⎡⎢⎢⎢⎢⎢⎢⎣

−B1 1 0 . . . 0

C2 −B2 1
. . .

...

0 C3 −B3
. . . 0

...
. . .

. . .
. . . 1

0 . . . 0 Ck+1 −Bk+1

⎤⎥⎥⎥⎥⎥⎥⎦ (74)

where Bi and Ci are computed according to (63). Thus, for odd
n, we have

W
[k,k+1]
k+1 (y) = det(yIk+1 − Jk+1)

V
[k,k+1]
k (y) = det(yIk − J ′

k) (75)

Fig. 7. All intervals of optimal ML solutions for increasing A versus THD (in
percent): n = 16 and (bf1 , bf2 , bf3 ) = (−2, 0.5, 1).

where J ′
k is the matrix obtained by suppressing the first row and

the first column of Jk+1. Therefore, the zeros of W
[k,k+1]
k+1 (y)

are the eigenvalues of Jk+1, and the zeros of V
[k,k+1]
k (y) are

the eigenvalues of J ′
k.

4) Other Orthogonal Properties—The Zeros: The position
of zeros of (classical) orthogonal polynomials has very im-
portant properties. Each n-degree polynomial in an orthogonal
sequence has all n of its roots real from interval (a, b), distinct,
and strictly inside the interval of orthogonality. The roots of
each polynomial lie strictly between the roots of the next higher
degree polynomial in the sequence. This interesting property
can be partially employed in a numerical iterative search algo-
rithms for the zeros in recurrence algorithm—for the choice of
the initial iteration in Newton’s method.

Not all nice properties extend to FOPs nevertheless. In par-
ticular, the zeros of FOPs need not be simple or even real. For

W
[k,k]
k (y) = Dwk

det

⎡⎢⎢⎢⎢⎢⎣
μ1 μ2 . . . μk μk+1

μ2 . .
.

. .
.

μk+2

... . .
.

. .
. ...

μk−1 μk+1 . . . μ2k−1 μ2k

1 y . . . yk−1 yk

⎤⎥⎥⎥⎥⎥⎦ (72)

V
[k,k]
k (y) = Dvk

det

⎡⎢⎢⎢⎢⎢⎣
μ1 μ2 . . . μk μk+1

μ2 . .
.

. .
.

μk+2

... . .
.

. .
. ...

μk−1 μk+1 . . . μ2k−1 μ2k

1 y + μ1 . . .
∑k−1

i=1 μiy
k−i−1

∑k
i=1 μiy

k−i

⎤⎥⎥⎥⎥⎥⎦ (73)
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Fig. 8. All possible configurations of optimal ML waveforms for increasing amplitude: A, n = 16 and (bf1 , bf2 , bf3) = (−2, 0.5, 1).

FOPs, the following holds nevertheless: if L[·] is defined, then
for all k ≥ 0, 1) Pk and Pk+1 have no common zeros, 2) Qk

and Qk+1 have no common zeros, and 3) Pk and Qk have no
common zeros.

V. ILLUSTRATIVE NUMERICAL EXAMPLE

Let us consider the optimal ML problem with controlled
harmonics (bf1 , bf2 , bf3) = (−2, 0.5, 1), fixed n = 16, and am-
plitude A = 2.3. The partial results of computation for this
specific n and A are shown in Table I (the line 2: power sums
pi, 4: moments μi, 6: the coefficients of FOPs W and V ,
8: the zeros W and V , 10: result—switching times αi, 12:
test—the required frequency spectrum of the ML waveform
bpi

computed from αi and THD). Fig. 6 depicts the obtained
solution for the ML problem.

The following figures illustrate complete solution of ML
problem where n and A are varying. Fig. 7 depicts increasing

Fig. 9. All isolated optimal ML (five-level) solutions for increasing n versus
THD (in percent): A = 2.3 and (bf1 , bf2 , bf3) = (−2, 0.5, 1).

amplitude A (in steps of 10−4) and fixed n = 16 versus THD
(in percent) (N = 20). The solution is in 14 intervals for the
amplitude A, where the ML problem has a solution (no other
amplitude A solves this ML problem for n = 16), and Fig. 8
shows all switching configurations for all these intervals.
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Fig. 10. All possible configurations of optimal ML waveforms for different n : A = 2.3 and (bf1 , bf2 , bf3 ) = (−2, 0.5, 1).

Fig. 11. Complete optimal ML solutions (bf1 , bf2 , bf3 ) = (−2, 0.5, 1) for
varying n and A versus THD (in percent).

Fig. 12. Optimal ML with minimal THD (in percent): A = 0.7, n = 96,
number of levels = 11, THD = 0.125%, and (bf1 , bf2 , bf3 ) = (−2, 0.5, 1).

Fig. 9 depicts increasing number of switching n and fixed
A = 2.3 versus THD. The first nine isolated solutions are given
in Fig. 10.

Fig. 13. Optimal bilevel waveform: A = 3, n = 10, THD = 11.96%, and
(bf1 , bf2 , bf3) = (−2, 0.5, 1).

Fig. 14. Complete optimal bilevel solutions, varying n and A versus THD (in
percent) and (bf1 , bf2 , bf3 ) = (−2, 0.5, 1).

The complete solution (n is from 4 to 100, and A is from
0.05 to 10, with step 0.05) is visualized in Fig. 11, where a
varying amplitude A and number of switching n versus THD
are visualized. Fig. 12 show the ML signal with minimal THD.
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Fig. 15. Experimental results: output voltage (switching waveforms and filtered waveforms) and its spectrum. Baseband portion is bf1,2,3 = (1.5,−0.6, 1.2)
and eliminated harmonics (zero band) are 4, 5, 6, . . ., 36. (a) and (b) Five-level waveform. (c) and (d) Bilevel waveform.

The results for the bilevel waveform (there is different solv-
ing procedure, see Section III-B) are depicted in Fig. 13, and
the complete solution is in Fig. 14. We can see that there exist
solutions in all cases (unlike ML), but THD is much worse in
the ML case.

The Mathematica2 package (all algorithms described in this
paper) with other simulations and demo examples can be down-
loaded from the authors’ webpages [35].

VI. EXPERIMENTAL RESULTS

To verify the performance of the proposed algorithms, an
experimental setup was built in the laboratory. It is composed of
the Agilent 33120A waveform generator with related software
Agilent IntuiLink WaveForm Editor installed on a laboratory
personal computer.

In the experimental example, we solve the optimal five-level
and bilevel problems for bf1,2,3 = (1.5,−0.6, 1.2) and n = 36
with a frequency of 50 Hz and A = 1.5 V and A = 3 V, respec-
tively. According to proposed algorithms, we obtain the switch-
ing times α = (0.000373, 0.000533, . . . , 0.009668, 0.009784)
and α = (0.000279, 0.000502, . . . , 0.009533, 0.009725), re-
spectively. The offline fast Fourier transform (FFT) analysis
of the experimental data shows that the THDs are 1.25% and
5.43.%, respectively, which are slightly larger than the theo-
retical values of 1.08% and 5.21.%, respectively, for given A.
The solution is depicted in Fig. 15. Subsequently, the switching
output waveform is filtered by the low-pass Butterworth filter

2The Mathematica Web pages are in [34].

(switched capacitor filter Maxim MAX291, eighth order), and
the filtered output corresponds to the required baseband.

VII. CASE STUDY: ACTIVE FILTERS

The main goal of active filters is the cancellation of noise
or distortion of harmonic signals. These undesirable effects are
consequences of disturbances or nonlinearities of load (see [36]
and [37] for more details).

Let us consider the simplified principal scheme according
to Fig. 16(a). The basic principle of active filters is based on
generating harmonic signals with an amplitude opposite that of
the undesirable harmonics so that they are canceled in total.
This suitable signal is then generated as a filtered PWM or ML
waveform that is easily and efficiently realizable.

Active filters are installed in a wide range of industrial and
nonindustrial applications (pulp and paper facilities, chemical
plants, steel plants, car industry, and banks or telecommu-
nication centers due to the large number of computers and
Uninterruptible Power Supply (UPS) systems).

Numerical Example

Let us consider electrical power grid f = 50 Hz and
compensate the harmonic distortion caused by a set of
drives. The fundamental harmonic in a power grid is
deviated strongly by the odd3 saw signal and in addition
amplified tenth and fifteenth harmonics. The signal, which

3If the analyzed signal is not odd, we can make odd extension and use our
approach.

Authorized licensed use limited to: CZECH TECHNICAL UNIVERSITY. Downloaded on June 16,2010 at 12:52:26 UTC from IEEE Xplore.  Restrictions apply. 



KUJAN et al.: ANALYTICAL SOLUTION OF THE OPTIMAL ODD SINGLE-PHASE MULTILEVEL PROBLEM 2395

Fig. 16. (a) Diagram illustrating components of the connected active filter
with waveforms showing cancellation of harmonics from load. (b) Fundamental
harmonic and deviated fund. Harmonic in a power grid. (c) Spectrum of a
deviated fundamental waveform.

Fig. 17. Restored fundamental harmonic, filtered optimal odd, and filtered
quarter-symmetric PWM waveform.

is biased, is depicted in Fig. 16(b). Its frequency amplitude
spectrum a1, . . . , a20 is depicted in Fig. 16(c), and it is
(250.1, 47.7, 31.8, 23.9, 19.1, 15.9, 13.6, 11.9, 10.6, 50.3, 8.7,
8.0, 7.3, 6.8,−40.6, 6.0, 5.6, 5.3, 5.0, 4.8, . . .).

It is desirable to suggest appropriate switching
(α1, . . . , α220) of the odd bilevel PWM waveform so that
after its filtration, we get harmonic signal with reverse
amplitude spectrum (b1, b2, . . . , b20, b21, . . . , b220) =
(−30.1,−47.7, . . . ,−4.8, 0, . . . , 0). In this operation, we
restrict the first 20 harmonics only, and the following 200
harmonics are zeroed. The nullity of higher harmonics is given
because of consequent filtering (we use the Chebyshev filter
of the fourth order with cutoff frequency fc = 23f ) of the odd
bilevel waveform. The solution is depicted in Fig. 17. The
solution obtained by a numerical algorithm for quarter-wave
signals (see [5]) is also displayed in the figure. Apparently, the
improvement in quality of filtration due to the results for odd

harmonics presented in this paper is considerable compared
to [5], where only quarter-symmetric waveforms are studied.
The THD of odd symmetric waveform is 2.75% compared
to the quarter symmetric 18.3% (the even harmonics are
uncontrolled).

VIII. COMPLEXITY OF THE OPTIMAL ODD ML PROBLEM

The complexity analysis of the optimal odd ML problem
follows. Solving the RHS of the system of composite sum
of powers pi [see (23)] takes O(nnC) number of operations.
The moments μi are computed in O(n2) operations according
to (47), but a significantly faster algorithm can be found. We
can, for instance, use the fast Newton iteration method that
takes only O(n log n) operations (this method employs an FFT
technique for polynomial multiplication) (see [38] and [39]).
The computation of Hankel linear system takes O(n log2 n)
number of operations (superfast algorithm; see [40] and [41])
or we can use the well-known Levinson–Durbin algorithm
with complexity O(n2) operations. The calculation of matrix
equation with a triangular Hankel matrix takes O(n log n) op-
erations (see [40]). It is somewhat more intricate to establish the
complexity for computations of the zeros of polynomials V (y)
and W (y) because many algorithms of different complexity are
available. For example, the algorithm based on computing the
eigenvalues of the companion matrix takes O(n3) operations.
In contrast, the combination of three-term recurrence algorithm
(which takes O(n2) operations), employing the property of
interlacing the zeros (if it is possible, but this property is
not always guaranteed for FOPs), and the iterative Newton
algorithm leads to a linear number of operations—we easily
compute the zeroes in every step. Hence, the highest possible
number of operations is considered during the computation of
the recurrence formula.

It is important to mention that the solution of the Hankel
system is ill-conditioned for high n, which restricts the com-
putation in double precision real arithmetic. Therefore, either
of the polynomials V (y) and W (y) is also ill-conditioned, and
computation of their roots is difficult from numerical point of
view. By using extended precision arithmetic, the range of n
can be enlarged. However, we show that the solution can also be
expressed as the solution to a Padé approximation problem and,
consequently, introduce FOPs. Numerically stable algorithms
using properties of FOPs should therefore exist and are subject
to research now.

For a special case of the quarter-symmetric waveforms [5],
it is possible to adopt these results and devise the solution of
system of sums of odd powers that is needed for the solution of
this problem. It is sufficient to put the odd harmonics equal to
zero and compute the polynomial W (y) only. Such a solution
was described in [5] and [6], and our procedures cover their
solution for nC = 1 as a special case.

IX. CONCLUSION

Efficient algorithms for the optimal odd ML problem in the
single-phase connection have been developed and studied in
this paper. In Section III, we revealed that an efficient analytical
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solution can be found only for odd and quarter-wave symmetric
waveforms with arbitrary number of levels. The quarter-wave
symmetric case is solved in [5] and [6]. Therefore, we concen-
trated on more general odd symmetry waveforms, including all
harmonics.

Both cases lead to the solution of special systems of com-
posite sum of powers that are derived from generalization of
the Newton’s identity. We formulated and solved the prob-
lem via Padé approximation. The optimal switching times are
the zeros of shifted diagonal Padé approximation polynomials
[k, k + 1]F (y) = V

[k,k+1]
k (y)/W

[k,k+1]
k+1 (y) for an odd number

of switching n and diagonal Padé approximation [k, k]F (y) =
V

[k,k]
k (y)/W

[k,k]
k (y) for an even n. Due to the connection

between the theory of Padé approximation and FOPs, we
demonstrated that V (y) and W (y) are FOPs, and we formu-
lated other methods for the solution of the optimal odd ML
problem. Namely, we derived an appropriate three-term recur-
rence formula, a determinantal formula, and a formulation via
eigenvalue computation. The obtained polynomials are FOPs.

The results are summarized as follow.

1) After variable transformations, the solution of the optimal
odd ML problem is given by the zeros of two polynomials
W (y) and V (y) that are suitably sorted.

2) The polynomials W (y) and V (y) are given by the shifted
diagonal Padé approximation

[k, k + 1]f (y) = V
[k,k+1]
k (y)/W

[k,k+1]
k+1 (y)

= exp

⎛⎝− ∞∑
j=1

pj

j
yj

⎞⎠ = F (y) (76)

for odd n and by the diagonal Padé approximation

[k, k]f (y) = V
[k,k]
k (y)/W

[k,k]
k (y) = F (y)

for even n, where pj =
∑k

i=1 yj
i −
∑n

i=k+1 yj
i , j =

1, . . . , n, is computed according to (25) for ML and (29)
for the bilevel odd waveform.

3) The polynomials V (y) and W (y) also give the solution
of a Padé approximation and therefore constitute a set
of FOPs, where the polynomial V

[k,k+1]
k (y) is the as-

sociated polynomial (or polynomial of the second kind)
to W

[k,k+1]
k+1 (y) (polynomial of the first kind) for odd

n. In the case of even n, the polynomials V
[k,k]
k (y) and

W
[k,k]
k (y) are deduced from the adjacent family of FOPs

V
(1)[k,k+1]
k (y) and W

(1)[k,k+1]
k+1 (y).

4) The solution to the optimal ML problem can be obtained
through the following:
a) the Hankel system in (53) and (56) for odd n and

in (59) and (60) for even n: the complexity of a fast
algorithm being O(n log n2);

b) the simple three-term recurrence relationship in (62)
and (64) for odd n and in (66) and (69): the complexity
being O(n2) operations;

c) the determinants of special polynomial matrices in
(70) and (71) for odd n and in (72) and (73) for
even n;

d) the eigenvalues of special matrices in (74) and (75) for
odd n.

It is also important to stress that our solution is consistent
with the solution of [5] in the case of waveforms with quarter
symmetry.

At the end of this paper, a numerical example and ex-
perimental verification results are presented. The numerical
example illustrates a complete solution of the ML and bilevel
PWM problem and the presented exact results could not be
obtained without our fast analytical methods. Experimental re-
sults verified our expected behavior of optimal ML and bilevel
PWM problem. An active filter case study then illustrates an
advantage of our approach compared to an existing analytical
scheme for quarter-symmetric waveforms.
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