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The effective resolution of an imaging system is limited not only
by the physical resolution of an image sensor but also by blur. If the
blur is present, super-resolution makes little sense without removing
the blur. Some super-resolution methods considering space-invariant
blur are described in other chapters of this book. The presence of a
spatially varying blur makes the problem much more challenging and
for the present, there are almost no algorithms designed specifically for
this case. We argue that the critical part of such algorithms is precise
estimation of the varying blur, which depends to large extent on a specific
application and type of blur.

In this chapter, we discuss possible sources of spatially varying blur,
such as defocus, camera motion or object motion. In each case we review
known approaches to blur estimation, illustrate their performance on

3



4 Book title goes here

experiments with real data and indicate problems that must be solved
to be applicable in super-resolution algorithms.

1.1 Introduction

At the very beginning, we should remark that in this chapter we con-
sider only algorithms working with multiple acquisitions – situations
where we fuse information from several images to get an image of better
resolution. To our best knowledge, there are no true super-resolution
algorithms working with unknown space-variant blur. A first step in
this direction is the algorithm [34], detailed in Sec. 1.5.1. On the other
hand, considerable amount of literature exists on deblurring of images
degraded by space-variant blur. Our results [33, 32, 31] are described
in Sec. 1.5, other relevant references [4, 22, 14, 8, 20] are commented in
more detail at the beginning of Secs. 1.4 and 1.5.3.

We do not treat super-resolution methods working with one image
that need a very strong prior knowledge – either in the form of shape
priors describing whole objects or sets of possible local patches in the
case of example based methods [11, 7, 13]. Nor we consider approaches
requiring hardware adjustments such as special shutters (coded-aperture
camera [15]), camera actuators (motion-invariant photography [16]) or
sensors (Penrose pixels [5]). However, these approaches can be consid-
ered in the same framework presented in this chapter.

We first introduce a general model of image acquisition that includes
sampling, which we need for modeling resolution loss. This model is used
for deriving a Bayesian solution to the problem of super-resolution. Next,
a substantial part of the chapter discusses possible sources of spatially
varying blur, such as defocus, camera motion or object motion. Where
possible, we included analytical expressions for the corresponding point-
spread function (PSF). In each case we discuss possible approaches for
blur estimation and illustrate their use in algorithms described in the
second part of the chapter. Where the existing algorithms work only with
deblurring, we indicate problems that must be solved to be applicable
in true super-resolution.

All the above mentioned types of spatially varying blur can be de-
scribed by a linear operator H acting on an image u in the form

[Hu] (x, y) =

∫
u(x− s, y − t)h(s, t, x− s, y − t) dsdt , (1.1)

where h is a PSF. We can look at this formula as a convolution with a
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PSF that changes with its position in the image. The convolution is a
special case thereof with the PSF independent of coordinates x and y,
i. e. h(s, t, x, y) = h(s, t) for an arbitrary x and y.

In practice, we work with a discrete representation of images and the
same notation can be used with the following differences. Operator H
in (1.1) corresponds to a matrix and u to a vector obtained by stacking
columns of the image into one long vector. In the case of convolution,
H is a block-Toeplitz matrix with Toeplitz blocks and each column of
H contains the same PSF. In the space-variant case, each column may
contain a different PSF that corresponds to the given position.

1.1.1 Representation of spatially varying PSF

An obvious problem of spatially varying blur is that the PSF is now a
function of four variables. Except trivial cases, it is hard to express it
by an explicit formula. Even if the PSF is known, we must solve the
problem of efficient representation.

If the PSF changes smoothly without discontinuities, we can store the
PSF on a discrete set of positions and use interpolation to approximate
the whole function h (see Fig. 1.7). If the PSF is not known, as is usually
the case, the local PSF’s must be estimated as in the method described
in Sec. 1.5.

Another type of representation is necessary if we consider for example
moving objects, where the blur changes sharply at object boundaries.
Then we usually assume that the blur is approximately space-invariant
inside objects, and the PSF can be represented by a set of convolution
kernels for each object and a corresponding set of object contours.

Final case occurs when the PSF depends on the depth. If the relation
cannot be expressed by an explicit formula, as in the case of ideal pillbox
function for defocus, we must store a table of PSF’s for every possible
depth.

1.1.2 General model of resolution loss

Let us represent the scene by two functions: intensity values of an ideal
image u(x, y) and a depth map d(x, y). A full 3D representation is
necessary only if occlusion is considered, which will not be our case.

Digital imaging devices have limited achievable resolution due to
many theoretical and practical restrictions. In this section, we show
a general model of image acquisition, which comprises commonly en-
countered degradations. Depending on the application, some of these
degradations are known and some can be neglected.

First, light rays emanating from the scene come from different direc-
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tions before they enter the lens as the camera orientation and position
change, which can be modeled by a geometric transformation of the
scene. Second, several external and internal phenomena degrade the
perceived image. The external effects are, e.g., atmospheric turbulence
and relative camera-scene motion. The internal effects include out-of-
focus blur and all kinds of aberrations. As the light passes through the
camera lens, warping due to lens distortions occurs. Finally, a camera
digital sensor discretizes the image and produces a digitized noisy image
g(x, y). An acquisition model, which embraces all the above radiometric
and geometric deformations, can be written as a composition of opera-
tors

g = DLHWu+ n . (1.2)

Operators W and L denote geometric deformation of the original
scene and lens distortions, respectively. Blurring operator H describes
the external and internal radiometric degradations. D is a decimation
operator modeling the camera sensor and n stands for additive noise.
Our goal is to solve an inverse problem, i.e., to estimate u from the
observation g.

The decimation operator D consists of filtering followed by sampling.
Filtering is a result of diffraction, shape of light sensitive elements and
void spaces between them (fill factor), which cause the recorded signal
to be band-limited. Sampling can be modeled by multiplication by a
sum of delta functions placed on an evenly spaced grid. For principle
reasons, D is not invertible but we will assume that its form is known.

Many restoration methods assume that the blurring operator H is
known, which is only seldom true in practice. The first step towards
more general cases is to assume that H is a traditional convolution with
some unknown PSF. This model is true for some types of blurs (see
e.g.[23]) and narrow-angle lenses. In this chapter, we go one step further
and assume spatially varying blur, which is the most general case that
encompasses all the radiometric degradations if occlusion is not consid-
ered. Without additional constraints, the space-variant model is too
complex. Various scenarios that are space-variant and allow solution are
discussed in Sec. 1.5.

If lens parameters are known, one can remove lens distortions L from
the observed image g without affecting blurring H, since H precedes L
in (1.2). There is a considerable amount of literature on estimation of
distortion [36, 2]. In certain cases the distortion can be consider as a
part of the estimated blurring operator as in the algorithm 1.5.2.

A more complicated situation materializes in the case of geomet-
ric deformation W . If a single acquisition is assumed, calculation of
W is obsolete since we can only estimate Wu as a whole. In the case
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of multiple acquisitions in (1.3), the image u is generally deformed by
different geometric transforms Wk’s and one has to estimate each Wk

by a proper image registration method [38]. By registering the im-
ages gk’s, we assume that the order of operators Hk and Wk is in-
terchanged. In this case the blurring operator is H̃k = W−1

k HkWk

(HkWk = WkW
−1
k HkWk = WkH̃k). If Hk is a standard convolution

with some PSF hk and Wk denotes a linear geometric transform, then
by placing Wk in front of Hk, the new blurring operator H̃k remains
a standard convolution but with hk warped according to Wk. If Wk

denotes a nonlinear geometric transform, then after interchanging the
order, H̃k becomes a space-variant convolution operator in general. It
is important to note that the blurring operator is unknown and instead
of Hk we are estimating H̃k, which is an equivalent problem as long as
the nature of both blurring operators remains the same. Thus to avoid
extra symbols, we keep the symbol Hk for the blurring operator even if
it would be more appropriate to write H̃k from now on.

As mentioned in the introduction, we need multiple acquisitions to
have enough information to improve resolution. Hence we write

gk = DWkHku+ nk = DkHku+ nk , (1.3)

where k = 1, . . . ,K, K is the number of input images, lens distortions L
are not considered, D remains the same in all the acquisitions, and the
order of operators Hk and Wk has been interchanged. We denote the
combined operator of Wk and D as Dk = DWk and assume it is known.

In practice, there may be local degradations that are still not in-
cluded in the model. A good example is a local motion that violates an
assumption of global image degradation. If this is the case, restoration
methods often fail. In order to increase flexibility of the above model,
we introduce a masking operator M , which allows us to select regions
that are in accordance with the model. The operator M multiplies the
image with an indicator function (mask), which has ones in the valid
regions and zeros elsewhere. The final acquisition model is then

gvk = MkDkHku+ nk = Gku+ nk , (1.4)

where gvk denotes the k-th acquired image with invalid regions masked
out. The whole chain of degradations will be denoted as Gk. More about
masking is in Sec. 1.5.1.

1.1.3 Bayesian view of solution

There are a number of possible directions, from which we can approach
the problem of super-resolution. One of the most frequent is the Bayesian
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approach, which we adopt here as well. Other approaches can be con-
sidered as approximations to the Bayesian solution.

An important fact is that if we know degradation operators Gk, the
MAP (maximum a posteriori) solution under the assumption of Gaussian
noise1 corresponds to the minimum of a functional

E(u) =
∑
k

1

2σ2
k

‖Gku− gvk‖2 +Q(u), (1.5)

where the first term describes an error of our model and the second term
Q(u) is a so called regularization term that corresponds to the negative
logarithm of the prior probability of the image u. Noise variance in the
k-th image is denoted as σk.

The prior probability is difficult to obtain and it is often approxi-
mated by statistics of the image gradient distribution. A good approxi-
mation for common images is for example total variation regularization
[21]

Q(u) = λ

∫
Ω

|∇u| , (1.6)

which corresponds to an exponential decay of gradient magnitude. The
total variation term can be replaced by an arbitrary suitable regularizer
(Tikhonov, Mumford-Shah, etc.) [3, 29, 25]. The functional (1.5) can be
extended to color images in quite a straightforward manner. The error
term of the functional is summed over all three color channels (ur, ug,
ub) as in [28]:

Q(u) = λ

∫ √
|∇ur|2 + |∇ug|2 + |∇ub|2. (1.7)

This approach has significant advantages as it suppresses noise effectively
and prevents color artifacts at edges.

To minimize functional (1.5) we can use many existing algorithms,
depending on a particular form of the regularization term. If it is
quadratic (such as the classical Tikhonov regularization), we can use
an arbitrary numerical method for solution of systems of linear equa-
tions. In the case of total variation, the problem is usually solved by
transforming the problem to a sequence of linear subproblems. In our
implementations, we use the half-quadratic iterative approach as de-
scribed for example in [32].

The derivative of functional (1.5) with the total variation regularizer

1Poisson noise can be considered by prescaling the operators Gk in equation (1.5)
according to values of corresponding pixels in gk.
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(1.7) can be written as

∂E(u)

∂u
=
∑
k

G∗k(Gku− gvk)

σ2
k

− λdiv

(
∇u
|∇u|

)
. (1.8)

G∗k = H∗kD
∗
kM
∗
k is an operator adjoint to Gk and it is usually easy to

construct. Adjoint masking M∗k is equal to the original masking Mk. If
Dk is downsampling, then D∗k is upsampling. The operator adjoint to
Hk defined in (1.1) can be written as

[H∗u] (x, y) =

∫
u(x− s, y − t)h(−s,−t, x, y) dsdt. (1.9)

We can imagine this correlation-like operator as putting the PSF to
all image positions and computing dot product. The gradient of any
regularization functional of form

∫
κ (|∇u|), where κ is an increasing

smooth function, can be found in [28].
If we know the operators Gk, the solutions are in principle known,

though the implementation of the above formulas can be quite compli-
cated. In practice however, the operators Gk are not known and must
be estimated.

Especially in the case of spatially varying blur, it turns out to be
indispensable to have at least two observations of the same scene, which
gives us additional information that makes the problem more tractable.
Moreover, to solve such a complicated ill-posed problem, we must exploit
the internal structure of the operator, according to the particular prob-
lem we solve. Some parts of the composition of sub-operators in (1.2)
are known, some can be neglected or removed separately – for example
geometrical distortion. In certain cases we can remove the downsam-
pling operator and solve only a deblurring problem, if we find out that
we work at diffraction limit (read more about diffraction in 1.2.4). All
the above cases are elaborated in the section on algorithms 1.5.

Without known PSF’s it is in principle impossible to register precisely
images blurred by motion. Consequently, it is important that image
restoration does not necessarily require sub-pixel and even pixel precision
of the registration. The registration error can be compensated in the
algorithm by shifting the corresponding part of the space-variant PSF.
Thus the PSF estimation provides robustness to misalignment. As a side
effect, misalignment due to lens distortion does not harm the algorithm
as well.

In general, if each operator Gk = G(θk) depends on a set of pa-
rameters θk = {θ1

k, . . . , θ
P
k }, we can again solve the problem in the

MAP framework and maximize the joint probability over u and {θk} =
{θ1, . . . ,θK}. As the image and degradation parameters can be usually
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considered independent, the negative logarithm of probability gives a
similar functional

E(u, {θk}) =

K∑
k=1

1

2σ2
k

‖G(θk)u− gvk‖2 +Q(u) +R({θk}) , (1.10)

where the additional term R({θk}) corresponds to a (negative logarithm
of) prior probability of degradation parameters. The derivative of the
error term in (1.10) with respect to the i-th parameter θik of θk, equals

∂E(u, {θk})
∂θik

=
1

σ2
k

〈∂G(θk)

∂θik
u,G(θk)u− gvk〉+

∂R({θk})
∂θik

, (1.11)

where 〈.〉 is the standard inner product in L2. In discrete implementa-

tion, ∂G(θk)
∂θik

is a matrix that is multiplied by the vector u before com-

puting the dot product.
Each parameter vector θk can contain registration parameters for

images, PSF’s, depth maps, masks for masking operators, etc. according
to the type of degradation we consider.

Unfortunately in practice, it is by no means easy to minimize the
functional (1.10). We must solve the following issues:

1. How to express the Gk as a function of parameters θk, which may
be sometimes complex – for example dependence of PSF on the
depth of scene. We also need to be able to compute the corre-
sponding derivatives.

2. Design an efficient algorithm to minimize non-convex functional
we derive. In particular, the algorithm should not get trapped in
a local minimum.

All this turns out especially difficult in the case of spatially varying
blur, which is also the reason why there are so few papers considering
super-resolution or just deblurring in this framework.

An alternative to MAP approach is to estimate the PSF in advance
and then proceed with (non-blind) restoration by minimization over the
possible images u. This can be regarded as an approximation to MAP.
One such approach is demonstrated in Section 1.5.2.

To finalize this section, note that MAP approach may not give op-
timal results, especially if we do not have enough information and the
prior probability becomes more important. This is a typical situation for
blind deconvolution of one image. It was documented (blind deconvolu-
tion method [10] and analysis [15]) that in these cases marginalization
approaches can give better results. On the other hand, we are interested
in the cases of multiple available images, where the MAP approach seems
to be appropriate.



Towards super-resolution in the presence of spatially varying blur 11

1.2 Defocus and optical aberrations

This chapter describes degradations produced by optical lens systems
and relation of the involved PSF to camera parameters and three-dimensional
structure of an observed scene (depth).

We describe mainly the geometrical model of optical systems and
corresponding PSF’s, including the approximation by a Gaussian PSF.
We mention also the case of general axially-symmetric optical system.
Finally, we describe diffraction effects even though these can be consid-
ered space-invariant. The classical theory of Seidel aberrations [6] is not
treated here as in practice the PSF is measured by an experiment and
there is no need to express it in the form of the related decomposition.
Also the geometrical distortion is omitted as it actually introduces no
PSF and can be compensated by a geometrical transformation of images.

1.2.1 Geometrical optics

Image processing applications widely use a simple model based on geo-
metrical (paraxial, Gaussian) optics which follows the laws of ideal image
formation. The name paraxial suggests that in reality it is valid only in
a region close to the optical axis.

In real optical systems, there is also a roughly circular aperture, a
hole formed by the blades that limit the pencils of rays propagating
through the lens (rays emanate within solid angle subtended by the
aperture). The aperture size is usually specified by f-number F = f/2ρ,
where ρ is the radius of the aperture hole and f is a focal length. The
aperture is usually assumed to be placed at the principal plane, i. e.
somewhere inside the lens. It should be noted that this arrangement
has an unpleasant property that magnification varies with the position
of focal plane. If we work with more images of the same scene focused
at different distances, it results in more complicated algorithms with
precision deteriorated either by misregistration of corresponding points
or by errors introduced by resampling and interpolation2.

If the aperture is assumed to be circular, the graph of the PSF has a
cylindrical shape usually called a pillbox in literature. When we describe

2These problems can be eliminated using so called front telecentric optics, i. e.
optics with aperture placed at the front focal plane. Then all principal rays (rays
through principal point) become parallel to the optical axis behind the lens and
consequently magnification remains constant as the sensor plane is displaced [35].
Unfortunately most conventional lenses are not telecentric.
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the appearance of the PSF in the image (or photograph), we speak about
a blur circle or a circle of confusion.

It can be easily seen from the similarity of triangles that the blur
circle radius for an arbitrary point at distance l is

r = ρζ

(
1

ζ
+

1

l
− 1

f

)
= ρζ

(
1

l
− 1

ls

)
, (1.12)

where ρ is the aperture radius, ζ is the distance of the image plane from
the lens and ls distance of the plane of focus (where objects are sharp)
that can be computed from ζ using the relation 1/f = 1/ls + 1/l.

Notice the importance of inverse distances in these expressions. The
expression (1.12) tells us that the radius r of the blur circle grows pro-
portionally to the difference between inverse distances of the object and
of the plane of focus. Other quantities, ρ, ζ and f , depend only on the
camera settings and are constant for one image.

Thus, PSF can be written as

h(s, t, x, y) =

{ 1
πr2(x,y) , for s2 + t2 ≤ r2(x, y),

0, otherwise,
(1.13)

where r(x, y) denotes the radius r of the blur circle corresponding to the
distance of point (x, y) according to (1.12). Given camera parameters
f , ζ and ρ, matrix r is only an alternative representation of depth map.

Now, suppose we have another image of the same scene, registered
with the first image and taken with different camera settings. As the
distance is the same for all pairs of points corresponding to the same
part of the scene, inverse distance 1/l can be eliminated from (1.12) and
we get linear relation between the radii of blur circles in the first and
the second image

r2(x, y) =
ρ2

ρ1

ζ2
ζ1
r1(x, y) + ρ2ζ2(

1

ζ2
− 1

ζ1
+

1

f1
− 1

f2
) (1.14)

Obviously, if we take both images with the same camera settings except
for the aperture, i. e. f1 = f2 and ζ1 = ζ2, we get the right term zero
and the left equal to the ratio of f-numbers.

In reality the aperture is not a circle but a polygonal shape with
as many sides as there are blades. Note that at full aperture, where
blades are completely released, the diaphragm plays no part and the
PSF support is really circular. Still assuming geometrical optics, the
aperture blur projects on the image plane with a scale changing the
same way as for circular aperture, i. e. with a ratio

w =
l′ − ζ
l′

= ζ

(
1

l
− 1

ls

)
=

1

l
ζ + ζ

(
1

ζ
− 1

f

)
(1.15)
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and consequently

h(s, t, x, y) =
1

w2(x, y)
ĥ(

s

w(x, y)
,

t

w(x, y)
), (1.16)

where ĥ(s, t) is the shape of the aperture. The PSF keeps the unit
integral thanks to the normalization factor 1/w2. Comparing (1.15)
with (1.12), one can readily see that the blur circle (1.13) is a special
case of (1.16) for w(x, y) = r(x, y)/ρ and

ĥ(s, t) =

{ 1
πρ2 , for s2 + t2 ≤ ρ2,

0, otherwise.
(1.17)

Combining (1.15) for two images yields, analogously to (1.14),

w2(x, y) =
ζ2
ζ1
w1(x, y) + ζ2(

1

ζ2
− 1

ζ1
+

1

f1
− 1

f2
). (1.18)

Notice that if the two images differ only in the aperture, then the scale
factors are the same, i. e. w2 = w1. The ratio ρ2/ρ1 from (1.14) is hidden
in the different scale of the aperture hole.

1.2.2 Approximation of PSF by 2D Gaussian function

In practice, due to lens aberrations and diffraction effects, PSF will be
a circular blob, with brightness falling off gradually rather than sharply.
Therefore, most algorithms use two-dimensional Gaussian function in-
stead of pure pillbox shape. To map the variance σ to real depth, [26]
proposes to use relation σ = r/

√
2 together with (1.12) with the excep-

tion of very small radii. Our experiments showed that it is often more
precise to state the relation between σ and r more generally as σ = κr,
where κ is a constant found by camera calibration (for the lenses and
settings we tested k varied around 1.2). Then analogously to (1.14) and
(1.18)

σ2 = ασ1 + κβ, α, β ∈ R. (1.19)

Again, if we change only the aperture then β = 0 and α equals the ratio
of f-numbers.

Corresponding PSF can be written as

h(s, t, x, y) =
1

2πκ2r2(x, y)
e
− s2+t2

2κ2r2(x,y) . (1.20)

If possible we can calibrate the whole (as a rule monotonous) relation
between σ and distance (or its representation) and consequently between
σ1 and σ2.
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In all cases, to use Gaussian efficiently, we need a reasonable size of
its support. Fortunately Gaussian falls off quite quickly to zero and it is
usually sufficient to truncate it by a circular window of radius 3σ or 4σ.
Moreover, for common optical systems, an arbitrary real out-of-focus
PSF has a finite support anyway.

1.2.3 General form of PSF for axially-symmetric optical
systems

In case of high-quality optics, pillbox and Gaussian shapes can give
satisfactory results as the model fits the reality well. For poorly corrected
optical systems, rays can be aberrated from their ideal paths to such an
extent that it results in very irregular PSF’s. In general, aberrations
depend on the distance of the scene from the camera, position in the
image and on the camera settings f , ζ and ρ. As a rule, the lenses are
well corrected in the image center, but towards the edges of the image
PSF may become completely asymmetrical.

FIGURE 1.1
Three types of PSF symmetry in an optical system symmetrical about
the optical axis.

Common lenses are usually axially-symmetric, i.e. they behave inde-
pendently of its rotation about the optical axis. For such systems, it is
easily seen (see Fig. 1.1) that

1. in the image center, PSF is radially symmetric,

2. for the other points, PSF is bilaterally symmetric about the line
passing through the center of the image and the respective point
(two left PSF’s in Fig. 1.1),
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3. for points of the same distance from the image center and corre-
sponding to objects of the same depth, PSF’s have the same shape,
but they are rotated about the angle given by angular difference of
their position with respect to the image center (again can be seen
at two left PSF’s in Fig. 1.1).

The second and third property can be written as

h(s, t, x, y) = h

(
|(−t, s)(x, y)T |
|(x, y)|

,
(s, t)(x, y)T

|(x, y)|
, 0, |(x, y)|

)
. (1.21)

In most cases, it is impossible to derive an explicit expression for the
PSF. On the other hand, it is relatively easy to get it by a raytracing
algorithm. The above mentioned properties of the axially-symmetric
optical system can be used to save memory as we need not to store
PSF’s for all image coordinates but only for every distance from the
image center. Naturally, it makes the algorithms more time consuming
as we need to rotate the PSF’s every time they are used.

1.2.4 Diffraction
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FIGURE 1.2
Airy function: surface plot (left) and the corresponding grayscale image
(right). The side lobes are very small and do not appear in the image
plot. For this reason we often talk about Airy disk as only the central
lobe is clearly visible.

Diffraction is a wave phenomenon which makes a beam of parallel
light passing through an aperture to spread out instead of converging to
one point. For a circular aperture it shapes the well known Airy disk
(see Fig. 1.2). The smaller the aperture, the larger the size of the disk
and the signal is more blurry. Due to the diffraction the signal becomes
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band-limited, which defines a theoretical maximum spatial resolution
and hence implies limits on super-resolution as will be shown later.

On a sensor array the signal is sampled by photosensitive devices
(CCD/CMOS). Driven by marketing requirements of more and more
megapixels, present day cameras were brought very close to this diffrac-
tion limit. Especially it is true for compacts with their small sensors. It
means that we cannot neglect this phenomenon and should incorporate
the corresponding PSF to deblurring algorithms.

To study the frequency response of a diffraction-limited optical sys-
tem, we use transfer functions, i. e. the Fourier transform of PSF’s. If we
assume an ideal circular aperture, neglect the defocus phenomena and
other aberrations, the Optical Transfer Function (OTF) of the system
due to diffraction is given [19] as

OTF(ω) =


2
π

(
cos−1

(
ω
ωc

)
− ω

ωc

√
1−

(
ω
ωc

)2
)

for ω < ωc

0 otherwise,

(1.22)

where ω =
√
ω2
x + ω2

y is the radial frequency in a 2D frequency space

[ωx, ωy], and ωc = 1/(Fλ) is the cutoff frequency of the lens (λ is the
wavelength of incoming light). For example for aperture F = 4 and
λ = 500nm (in the middle of visible light), the cutoff frequency is ωc =
0.5MHz and the corresponding OTF is plotted in Fig. 1.3(a) as a solid
line.
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FIGURE 1.3
Correctly sampled signal: (a) Optical transfer function and sensor trans-
fer function; (b) Signal spectrum modified by diffraction and sensor sam-
pling.

Assuming a square sensor without cross-talk, the Sensor Transfer
Function (STF) is given by:
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FIGURE 1.4
Under-sampled signal: (a) Optical transfer function and sensor transfer
function; (b) Signal spectrum modified by diffraction and sensor sam-
pling.

STF(ωx, ωy) = sinc

(
πwωx
ωs

)
sinc

(
πwωy
ωs

)
, (1.23)

where sinc(x) = sin(x)/x for x 6= 0 and sinc(0) = 1, ωs is the sampling
frequency, and w is the relative width of the square pixel (w ≤ 1). For
the fill-factor of 100% (w = 1) and if the signal is properly sampled
(ωs = 2ωc), the corresponding STF is plotted in Fig. 1.3(a) as a dashed
line. As can be seen, the OTF is the main reason for a band-limited
signal, since no information above its cutoff frequency passes through
the optical system.

Fig. 1.3(b) summarizes the effects of diffraction and sensor sampling
on signal spectra. If the frequency spectrum of an original signal is
modeled as a decaying dotted line, the spectrum of the band-limited
signal is the attenuated dashed line, and the spectrum of the sampled
signal is the solid line. The maximum frequency representable by the
sampled signal is 1

2ωs, which in this case is close to the cutoff frequency
ωc (proper sampling), and no aliasing is available, i. e. the solid line
matches the dashed line. It is clear that if super-resolution is applied to
such data, no high-frequency information can be extracted and super-
resolution merely interpolates.

On the other hand, if the optical system is undersampling the signal,
the corresponding OTF and STF looks as in Fig. 1.4(a). For the given
aperture, wavelength and fill-factor, OTF is the same but STF shrinks.
The sampled signal (solid line) has its high frequencies (around 1

2ωs)
disrupted due to aliasing as Fig. 1.4(b) illustrates. In this case, super-
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resolution can in principle unfold the signal spectra and recover the
high-frequency information.

As mentioned above, the sampling of current consumer cameras ap-
proaches the diffraction limit which limits performance of any super-
resolution algorithm. For example, a typical present day 10MP compact
camera Canon PowerShot SX120 IS has its cut-off frequency about 2500
to 4000 per sensor width3, depending on the aperture, with maximum
x-resolution 3600 pixels. Especially with higher f-numbers it is very
close to the theoretical limit. On the other hand, highly sensitive cam-
eras (often near and mid-infrared) still undersample the images which
leaves enough room for substantial resolution improvements.

If the decimation operator D is not considered in the acquisition
model (1.2), the diffraction effect can be neglected as the degradation
by H is far more important. Since the deconvolution algorithm estimates
H, OTF and STF can be considered as part of H and thus estimated
automatically as well. In the case of super-resolution, inclusion of D is
essential as the goal is to increase sampling frequency. The diffraction
phenomenon is irreversible for frequencies above the cutoff frequency ωc
and it is thus superfluous to try to increase image resolution beyond
2ωc. (1.2). The diffraction phenomenon is irreversible and thus we will
assume that the original image u is already bandlimited. The decimation
operator D will model only STF and sampling.

1.2.5 Summary

In this section, we described several shapes of PSF that can be used to
model out-of-focus blur. Gaussian and pillbox shapes are adequate for
good quality lenses or in the proximity of the image center, where the
optical aberrations are usually well corrected. A more precise approach
is to consider optical aberrations. However, an issue arises in this case
that aberrations must be described for the whole range of possible focal
lengths, apertures and planes of focus. In practice, it is indispensable to
take diffraction effects into account as many cameras are close to their
diffraction limits.

3Aperture f/2.8 − 4.3, sensor size 1/2.5” (5.5mm width), 3600 × 2700 maximum
resolution, the diffraction limit (cut-off frequency), given by ωc = 1/(Fλ), is about
2500/sensor width (for F = 4.3) up to 4000/sensor width (F = 2.8). Light wavelength
λ is taken as 500nm.
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1.3 Camera Motion Blur

In this section we analyze various types of camera motion for the classical
pinhole camera model. We treat the case of a general motion in all six
degrees of freedom and detail the special cases of camera rotation and
translation in a plane.

To model camera motion blur by a PSF h from (1.1), we need to
express the PSF as a function of the camera motion and a depth of the
scene. In the case of a general camera motion, it can be computed from
the formula for velocity field [12, 8] that gives apparent velocity of the
scene for the point (x, y) of the image at time instant τ as

v(x, y, τ) =
1

d(x, y, τ)

[
−1 0 x
0 −1 y

]
T (τ)+[

xy −1− x2 y
1 + y2 −xy −x

]
Ω(τ),

(1.24)

where d(x, y, τ) is the depth corresponding to point (x, y) and Ω(τ) and
T (τ) = [Tx(τ), Ty(τ), Tz(τ)]T are three-dimensional vectors of rotational
and translational velocities of the camera at time τ . Both vectors are
expressed with respect to the coordinate system originating in the optical
center of the camera with axes parallel to x and y axes of the sensor and
to the optical axis. All the quantities, except Ω(τ), are in focal length
units. The depth d(x, y, τ) is measured along the optical axis, the third
axis of the coordinate system. The function d is called depth map.

The apparent curve [x̄(x, y, τ), ȳ(x, y, τ)] drawn by the given point
(x, y) can be computed by the integration of the velocity field over the
time when the shutter is open. Having the curves for all the points in
the image, the two-dimensional space-variant PSF can be expressed as

h(s, t, x, y) =

∫
δ(s− x̄(x, y, τ), t− ȳ(x, y, τ))dτ, (1.25)

where δ is the two-dimensional Dirac delta function.
Complexity of derivation of an analytical form of (1.25) depends on

the form of velocity vectors Ω(τ) and T (τ). Though most algorithms do
not work directly with analytical forms and use a discrete representation
extending standard convolution masks.

1.3.1 Rotation

Excessive complexity of a general camera movement can be overcome by
imposing certain constraints. A good example is an approximation used
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in almost all4 optical image stabilizers that they consider only rotational
motion in two axes. What concerns ordinary photographs, it turns out
that in most situations (landscapes and cityscapes without close objects,
some portraits), translation can be neglected.

If we look at formula (1.24) with no translation, i. e. T (τ) = 0, we can
see that the velocity field is independent of depth and changes slowly –
realize that x and y are in focal length units which means the values are
usually less then one (equals one for the border of an image taken with
35mm equivalent lens). As a consequence, also the PSF has no discon-
tinuities, the blur can be considered locally constant and can be locally
approximated by convolution. This property can be used to efficiently
estimate the space-variant PSF, as described in Sec. 1.5.2.

1.3.2 No rotation

A more complicated special case it to disallow rotation and assume that
the change of depth is negligible with an implication that also the ve-
locity in the direction of view can be considered zero (T (3) = 0). It can
be easily seen [32] that in this special case, the PSF can be expressed
explicitly using the knowledge of the PSF for one fixed depth of scene.

If the camera does not rotate, that is Ω = [0, 0, 0]T , and moves in
only one plane perpendicular to the optical axis (Tz(τ) = 0), equation
(1.24) becomes

v(x, y, τ) =
1

d(x, y, τ)

[
−Tx(τ)
−Ty(τ)

]
. (1.26)

In other words, the velocity field has the direction opposite to camera
velocity vector and the magnitudes of velocity vectors are proportional
to inverse depth. Moreover, depth for the given part of the scene does
not change during such a motion (depth is measured along the optical
axis and the camera moves perpendicularly to it), d(x, y, τ) does not
change in time, and consequently the PSF simply follows the (mirrored
because of the minus sign) curve drawn by the camera in image plane.
The curve only changes its scale proportionally to the inverse depth.

The same is true for the corresponding PSF’s we get according to
relation (1.25). Let us denote the PSF corresponding to an object of
the depth equal to the focal length as h0. Note that this “prototype”
PSF also corresponds to the path covered by the camera. Recall that
the depth is given in focal length units. After linear substitution in the

4Recently Canon announced Hybrid IS that works with translational movements
as well.
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integral (1.25) we get

h(s, t, x, y) = d2(x, y)h0(sd(x, y), td(x, y)). (1.27)

Equation (1.27) implies that if we recover the PSF for an arbitrary
fixed depth, we can compute it for any other depth by simple stretching
proportionally to the ratio of the depths.

1.4 Scene motion

The degradation models we have discussed so far resulted either in the
camera motion or in the global scene motion. In many real scenarios, the
observed scene is not static but contains moving objects. Local changes
inflicted by moving objects are twofold. First, local motion creates ad-
ditional varying blurring, and second, occlusion of the background may
occur. To include these two phenomena in the acquisition model is com-
plicated as it requires segmentation based on motion detection. Most
restoration methods assume a rigid transform (e.g. homography) as the
warping operator W in (1.3). If the registration parameters can be cal-
culated, we can spatially align input images. If local motion occurs,
the warping operator must implement a non-global transform, which is
difficult to estimate. In addition, warping by itself cannot cope with
occlusion. A reasonable approach is to segment the scene according
to results obtained by local-motion estimation and deal with individual
segments separately. Several attempts in this direction were explored
in literature recently. Since PSF’s may change abruptly, it is essential
to precisely detect boundaries, where the PSF’s change, and consider
boundary effects. An attempt in this direction was for example proposed
in [4], where level-sets were utilized. Another interesting approach is to
identify blurs and segment the image accordingly by using local image
statistics as proposed, e.g., in [14]. All these attempts consider only
convolution degradation. If decimation is involved, then space-variant
super-resolution was considered, e.g., in [22]. However, this technique
assumes that PSF’s are known or negligible. A method restoring scenes
with local motion, which would perform blind deconvolution and super-
resolution simultaneously, has not been proposed yet.

A natural way to avoid the extra burden implied by local motion is
to introduce masking as in (1.4). Masking eliminates occluded, missing
or corrupted pixels. In the case of local motion, one can proceed in the
following way. A rigid transform is first estimated between the input
images and inserted in the warping operator. Then discrepancies in the
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registered images can be used for constructing masks. More details are
provided in the next section on algorithms, 1.5.1.

1.5 Algorithms

This section outlines the deblurring and super-resolution algorithms that
in a way consider spatially varying blur.

As we already mentioned, for the present, there are no super-resolution
methods working with unknown spatially varying blur. Deblurring and
super-resolution share the same problem of blur estimation and, as we
saw in the introduction, it is useful to consider both in the same frame-
work. This section describes deblurring algorithms based on the MAP
framework explained in the introduction, where a similar approach could
be used for true super-resolution as well.

As the number of blur parameters increases, so does the complexity
of estimation algorithms. We will progress our review from simple to
more complex scenarios. If the blur is space-invariant except relatively
small areas, we can use a space-invariant method supplemented with
masking described in the introduction. An algorithm of this type is
described in Sec. 1.5.1. If the blur is caused by a more complex camera
movement, it generally varies across the image but not randomly. The
PSF is constrained by six degrees of freedom of a rigid body motion.
Moreover, if we limit ourselves to only rotation, we not only get along
with three degrees of freedom, but we also avoid the dependence on a
depth map. This case is described in Section 1.5.2. If the PSF depends
on the depth map, the problem becomes more complicated. Section 1.5.3
provides possible solutions for two such cases: defocus with a known
optical system and blur caused by camera motion. In the latter case,
the camera motion must be known or we must be able to estimate from
the input images.

1.5.1 Super-resolution of a scene with local motion

We start with a super-resolution method [34] that works with space-
invariant PSF’s and treats possible discrepancies as an error of the con-
volutional model. This model can be used for super-resolution of a mov-
ing object on a stationary background. A similar approach with more
elaborated treatment of object boundaries was applied for deblurring in
a simplified case of unidirectional steady motion in [1].

We assume the K-channel acquisition model in (1.4) with Hk being
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convolution with an unknown PSF hk of a small support. The cor-
responding functional to minimize is (1.10) where {θk} = {θ1, . . . ,θK}
consists of registration parameters for images gk’s, PSF’s hk’s, and masks
for masking operators Mk’s. Due to the decimation operators Dk’s, the
acquired images gk’s are of lower resolution than the sought-after image
u. Minimization of the functional provides estimates of the PSF’s and
original image. As the PSF’s are estimated in the scale of the origi-
nal image, positions of PSF’s centroids correspond to sub-pixel shifts
in the scale of the acquired images. Therefore by estimating PSF’s, we
automatically estimate shifts with sub-pixel accuracy, which is essen-
tial for a good performance of super-resolution. One image from the
input sequence is selected as a reference image gr (r ∈ 1, . . . ,K) and
registration is performed with respect to this image. If the camera po-
sition changes slightly between acquisitions, which is typically a case
of video sequences, we can assume homography model. However, ho-
mography cannot compensate for local motion, whereas masking can to
some extent. Discrepancies in preregistered (with homography) images
give us regions where local motion is highly probable. Masking out such
regions and performing simultaneously blind deconvolution and super-
resolution, produces naturally looking high-resolution images.

The algorithm runs in two steps:

1. Initialize parameters {θk}: Estimate homography between the ref-
erence frame gr and each gk for k ∈ 1, . . . ,K. Calculate masks
Mk’s and construct decimation operators Dk’s. Initialize {hk}
with delta functions.

2. Minimization of E(u, {θk}) in (1.10): alternate between minimiza-
tion with respect to u and with respect to {θk}. Run this step for
a predefined number of iterations or until a convergence criterion
is met.

To determineMk, we take the difference between the registered image
gk and the reference image gr and threshold its magnitude. Values below
10% of the intensity range of input images are considered as correctly
registered and the mask is set to one in these regions; remaining areas
are zeroed. In order to attenuate the effect of misregistration errors, the
morphological operator “closing” is then applied to the mask. Note that
Mr will be always identity and therefore high-resolution pixels of u in
regions of local motion will be at least mapped to low-resolution pixels
of gr. Depending on how many input images map to the original image,
the restoration algorithm performs any task from simple interpolation
to well-posed super-resolution.

The regularization term R({θk}) is a function of hk’s and utilizes
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relations between all the input images gk’s. An exact derivation is given
in [23]. Here, we leave the discussion by stating that the regularization
term is of the form

R({hk}) ∝
∑

1≤i,j≤K
i 6=j

‖hi ∗ gj − hj ∗ gi‖2 , (1.28)

which is convex.

FIGURE 1.5
Super-resolution of a scene with local motion. The first row shows five
consecutive input frames acquired by a web camera. The second row
shows masks (white areas), which indicate regions with possible local
motion. The third row shows the estimated original image using sim-
ple interpolation (left), super-resolution without masking (central), and
proposed super-resolution with masking (right).

We use a standard web camera to capture a short video sequence
of a child waving a hand with following setting: 30 FPS, shutter speed
1/30s, and resolution 320× 200. An example of 5 low-resolution frames
is in the top row in Fig. 1.5. The position of the waving hand slightly
differs from frame to frame. Registering the frames in the first step of
the algorithm removes homography. Estimated masks in the middle row
in Fig. 1.5 show that most of the erroneous pixels are around the waving
hand. Note that only the middle frame, which is the reference one and
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FIGURE 1.6
A night photo taken from hand with shutter speed 1.3s. The right image
shows PSF’s computed within white squares on the left using the algo-
rithm described in Section 1.5.2. Short focal length (36mm equivalent)
accents spatial variance of the PSF.

does not have any mask, provides information about the pixels in the
region of the waving hand. Comparison of estimating the high-resolution
frame with and without masking together with simple interpolation is in
the bottom row. Ignoring masks results in heavy artifacts in the region
of local motion. On the contrary, masking produces smooth results with
the masked-out regions properly interpolated. Remaining artifacts are
the result of imprecise masking. Small intensity differences between the
images, which set the mask to one, do not always imply that the corre-
sponding areas in the image are properly registered. Such situation may
occur for example in regions with a small variance or periodic texture.

1.5.2 Smoothly changing blur

This section demonstrates space-variant restoration in situations where
the PSF changes gradually without sharp discontinuities, which means
that the blur can be locally approximated by convolution. A typical
case is the blur caused by camera shake, when taking photos of a static
scene without too close objects from hand. Under these conditions, the
rotational component of camera motion is dominant and, as was shown
in Sec. 1.3.1, the blur caused by camera rotation does not depend on the
depth map.

In principle, in this case, the super-resolution methods that use con-
volution could be applied locally and the results of deconvolution/super-
resolution could be fused together. Unfortunately, it is not easy to sew
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FIGURE 1.7
If the blur changes gradually, we can estimate convolution kernels on
a grid of positions and approximate the PSF in the rest of the image
(bottom kernel) by interpolation from four adjacent kernels.

the patches together without artifacts on the seams. An alternative way
is first to use the estimated PSF’s to approximate the spatially varying
PSF by interpolation of adjacent kernels (see Fig. 1.7) and then compute
the image of improved resolution by minimization of the functional (1.5).
The main problem of these naive procedures is that they are relatively
slow, especially if applied on too many positions. A partial speed up
of the latter can be achieved at the expense of precision by estimating
the PSF based solely on blind deconvolution and then upscaling to the
desired resolution. This algorithm has not been tested yet.

To see, whether the interpolation of the PSF can work in practice
and what is the necessary density of the PSF’s, we applied this approach
for the purpose of image stabilization in [33].

We worked with a special setup that simplifies the involved compu-
tations and makes them more stable. It considers the possibility to set
the exposure time of the involved camera, which is an acceptable as-
sumption as we can alway balance noise with motion blur by setting a
suitable shutter speed. In particular, we set the exposure time of one
of the images to be so short, that the image is sharp, of course at the
expense of noise amplification. The whole idea was explored relatively
recently [27, 17, 37].

In Fig. 1.6, we can see a night photo of a historical building taken at
ISO 100 with shutter speed 1.3s. The same photo was taken once more
at ISO 1600 with 2 stops under-exposure to achieve a hand-holdable
shutter time 1/50s. The following algorithm fuses them to get one sharp
photo.

The algorithm works in three phases:

1. Robust image registration
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FIGURE 1.8
Details of restoration. From left to right – the blurred image, noisy
image and the result of the algorithm combining them to get a low-noise
sharp photo.

2. Estimation of convolution kernels (Fig. 1.6 right) on a grid of win-
dows (white squares in Fig. 1.6 left) followed by an adjustment at
places where the estimation failed

3. Restoration of the sharp image by minimizing the functional (1.5).
The PSF described by the operator H for the blurred image is
approximated by interpolation from the kernels estimated in the
previous step.

We do not describe in detail the image registration here. Just note
that the ambiguous registration discussed in Section 1.1.3 does not harm
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the procedure because the registration error is compensated by the shift
of the corresponding part of the PSF.

The second step is a critical part of the algorithm and we describe it
here in more detail. In the example in Fig. 1.6, we took 49 square sub-
windows (white squares), in which we estimated kernels hi,j (i, j = 1..7).
The estimated kernels are assigned to centers of the windows where they
were computed. In the rest of the image, the PSF h is approximated by
bilinear interpolation from blur kernels in the four adjacent sub-windows.

The blur kernel corresponding to each white square is calculated as

hi,j = arg min
c
‖di,j ∗ c− zi,j‖2 + α‖∇c‖2, c(x) ≥ 0, (1.29)

where hi,j(s, t) is an estimate of h(x0, y0; s, t), x0, y0 being the center of
the current window zi,j , di,j the corresponding part of the noisy image,
and c the locally valid convolution kernel.

The kernel estimation procedure (1.29) can naturally fail. In a ro-
bust system, such kernels must be identified, removed and replaced by
for example an average of adjacent (valid) kernels. There are basically
two reasons why kernel estimation fails – a lack of texture and pixel sat-
uration. Two simple measures, sum of the kernel values and its entropy
turned out to be sufficient to identify such failures.

For minimization of the functional (1.5), we used a variant of the
half-quadratic iterative approach, solving iteratively a sequence of linear
subproblems, as described for example in [32]. In this case, the decima-
tion operator D and masking operator M are identities for both images.
Blurring operator H is identity for the noisy image. The geometric de-
formation is removed in the registration step. Note that the blurring
operator can be speeded up by Fourier transform computed separately
on each square corresponding to the neighborhood of four adjacent PSF’s
[18].

To help reader recognize differences in quite a large photograph
(1154× 1736 pixels), we show details of the result in Fig. 1.8. Details of
the algorithm can be found in [33].

1.5.3 Depth-dependent blur

In this section, we demonstrate algorithms working for PSF’s that de-
pend on the depth, which implies that besides the restored image we
must estimate also an unknown depth map. This includes the blur
caused by a camera motion and defocus. Similarly to the previous sec-
tion, there are no published algorithms that actually increase the physi-
cal resolution. On the other hand, a considerable work has been devoted
to deblurring.
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(a) Two motion blurred images with small depth of focus

(b) Result of the algorithm (left) and ground truth (right)

FIGURE 1.9
Removing motion blur from images degraded simultaneously by motion
blur and defocus by the algorithm described in Sec. 1.5.3.

FIGURE 1.10
Depth map corresponding to images in Fig. 1.9 and the PSF estimated
locally around the flowers close to the center of the left input image.

In the case of scenes with significant depth variations, the methods
requiring PSF’s without discontinuities are not suitable. Artifacts would
appear especially at the edges of objects. For this case, so far, the only
approach that seems to give relatively precise results is based on the
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MAP approach, which estimates simultaneously an unknown image and
depth map by minimization of a functional in the form (1.10). The
main assumption of these algorithms is that the relation between the
PSF and the depth is known. One exception is [32], where this relation
is estimated for a camera motion constrained to movement in one plane
and without rotation. This result is described later in this section.

First this approach appeared in the context of out-of-focus images in
[20] proposing to use simulated annealing to minimize the corresponding
cost functional. This guarantees global convergence, but in practice,
it is prohibitively slow. Later, this approach was adopted by Favaro
et al. [8] who modeled the camera motion blur by a Gaussian PSF,
locally deformed according to the direction and extent of blur. To make
the minimization feasible, they take advantage of special properties of
Gaussian PSF’s as to view the corresponding blur as an anisotropical
diffusion. This model can be appropriate for small blurs corresponding
to short locally linear translations. An extension of [8] proposed in [9]
segments moving objects but it keeps the limitations of the original paper
concerning the shape of the PSF. Other papers related to this type of
variational problems can be found also in the context of optical flow
estimation, such as [30].

We start our discussion with a difficult case of the blur caused by an
unconstrained camera motion. If the cameras’ motion and parameters
(focal length, resolution of the sensor, initial relative position of cameras)
are known, we can, at least in theory, compute the PSF as a function
of depth map and solve the MAP problem (1.10) for an unknown image
u and a parameter set {θk} corresponding now to a depth map for
one of observed images gk. An issue arises from the fact that the PSF
is a function of not only depth but also of coordinates (x, y). In other
words, different points of the scene draw different apparent curves during
the motion even if they are of the same depth. In addition, the depth
map is no longer common for all the images and must be transformed
to a common coordinate system before computing Hk using (1.24) and
(1.25). The numerical integration of the velocity field is unfortunately
quite time-consuming. A solution could be to precompute the PSF for
every possible combination of coordinates (x, y) and depth values. As it
is hardly possible, a reasonable solution seems to store them at least on
a grid of positions and compute the rest by interpolation. The density
of this grid would depend on application.

In [32] we show that obstacles of the general case described above
can be avoided by constraining camera motion to only one plane without
rotations. This corresponds to vibrations of a camera fixed for example
to an engine or machine tool.

A nice property of this case is that the PSF actually changes only its
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(a) Two out-of-focus images taken with aperture F/5.0 and F/6.3

(b) Results of the algorithm (left) and ground truth (right).

FIGURE 1.11
Removing out-of-focus blur by the algorithm described in Sec. 1.5.3. The
extent of blur increases from front to back.

scale proportionally to inverse depth (see Sec. 1.3.2). As a consequence,
if we estimate the PSF for one depth, we know the whole relation between
the PSF and depth (1.27). In addition, the depth map is common for
all images.

The algorithm works in three steps:

1. PSF estimation at a fixed depth using the blind deconvolution
algorithm [24]. A region where the PSF is estimated is specified
by user (depth variations must be negligible). This region must be
in focus, otherwise we would not be able to separate motion and
out-of-focus blur.

2. Rough depth map estimation using a simpler method assuming
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that the blur is space-invariant in a neighborhood of each pixel
(also described in [32])

3. Minimization of the functional (1.10) to get a sharp image and a
more precise depth map.

What concerns the degradation operators Gk in the functional (1.10),
the operators Dk and Mk are identities and we work only with a blur-
ring. The minimization proceeds alternately by conjugate gradients in
the image subspace and steepest descent in the depth map subspace. We
chose total variation for image regularization and Tikhonov regulariza-
tion for the depth map. Note that the depth map we estimate is relative
to the distance of the object on which we estimated the PSF in the first
step.

An example in Fig. 1.9 illustrates the performance of the algorithm
compared to ground truth. Besides the motion blur the photographs
contain also defocus but the defocus is common for both images and is
not to be removed. Figure 1.10 shows the convolution kernel estimated
in the first step of the algorithm (right) and the recovered depth map
(left).

Figure 1.11 shows a result of the above described algorithm [32] mod-
ified to remove defocus (there is no motion blur in the images). It as-
sumes that the PSF of the lens can be model by a pillbox function as a
function of depth according to relation (1.13). For minimization of the
corresponding functional, we use the same method as in [32]. Details
are given in [31].

1.6 Conclusion

Bringing this all together, for the present, the restoration of images
blurred by spatially varying blur is not resolved satisfactorily for most
cases. In this chapter, we went through the special cases where at least a
partial solution is known and we explained the basic principles published
algorithms are based on. We showed that from Bayesian perspective it
is usefull to consider deblurring and super-resolution in one framework.

Many open questions and unresolved problems remain. A large num-
ber of blur parameters we need to estimate brings significant errors to the
solution and for the present there is no analysis of super-resolution lim-
its for these cases. It may turn out that in many cases super-resolution
does not bring much more that mere deblurring. We have shown sev-
eral algorithms that estimated space-variant blur considering only the
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deblurring problem. It will be interesting to see if the extension to true
super-resolution really works. Especially difficult is the situation when
the changes in the PSF are not continuous, e.g. several independently
moving objects (motion blur) or even worse, if the PSF depends on the
depth of scene (defocus, camera motion).
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ECCV 2004, LNCS 3021, Springer Verlag, Berlin Heidelberg, pages
257–269, 2004.

[9] Paolo Favaro and Stefano Soatto. A variational approach to scene
reconstruction and image segmentation from motion-blur cues. In
Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol-
ume 1, pages 631–637, 2004.

[10] Rob Fergus, Barun Singh, Aaron Hertzmann, Sam T. Roweis, and
William T. Freeman. Removing camera shake from a single photo-
graph. ACM Trans. Graph., 25(3):787–794, 2006.

35



36 Book title goes here

[11] William T. Freeman, Thouis R. Jones, and Egon C Pasztor.
Example-based super-resolution. IEEE Comput. Graph. Appl.,
22(2):56–65, 2002.

[12] D. J. Heeger and A. D. Jepson. Subspace methods for recovering
rigid motion. International Journal of Computer Vision, 7(2):95–
117, 1992.

[13] Kwang In Kim and Younghee Kwon. Example-based learning for
single-image super-resolution. In Proceedings of the 30th DAGM
symposium on Pattern Recognition, pages 456–465, Berlin, Heidel-
berg, 2008. Springer-Verlag.

[14] A. Levin. Blind motion deblurring using image statistics. In NIPS,
pages 841–848, 2006.

[15] Anat Levin, Robert Fergus, Frédo Durand, and William T. Free-
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