
Instruction Set Extensions for Multi-Threading in
LEON3

M. Danek, L. Kafka, L. Kohout, J. Sykora
Department of Signal Processing, UTIA AV CR

Pod vodarenskou vezi 4

Praha 8, 182 08, Czech Republic

Email: danek@utia.cas.cz

Abstract— This paper describes instruction set extensions for a
variant of multi-threading called micro-threading for the LEON3
SPARCv8 processor. We show an architecture of the developed
processor and its key blocks - cache controller, register file,
thread scheduler. The processor has been implemented in a Xilinx
Virtex2Pro FPGA. The extensions are evaluated in terms of extra
resources needed, and the overall performance of the developed
processor is evaluated on a simple DSP computation typical for
embedded systems.

I. INTRODUCTION

Current processors have reached their maximum operating

frequency, and performance improvements must be sought in

better organization of the computation. One area for improve-

ments is the tolerance of latency of data caused e.g. by a

memory or I/O access, which is usually handled by context

switching and executing computation threads that have data

available in processors that support multithreading.

As the silicon area becomes cheaper as a consequence of

the Moore’s law, it has become viable to extend processors

to support in hardware execution of multiple threads on

one processor or in a multiprocessor cluster. Two significant

examples are the SUN Microsystems OpenSPARC T1/T2 and

the MIPS MT processors. OpenSPARC T1/T2 is an open-

source version of the UltraSPARC T1/T2 [1], [2]; T1 has

been ported to the Xilinx FPGAs, while MIPS MT [3] is a

commercial processor available as an ASIC. The architecture

complexity of the open-source OpenSPARC T1/T2 is too high

for embedded applications, which is due to their primary

domain in server and desktop computing. Also the context

switch time for T1/T2 is high, about 1000 clock cycles. We

do not know of any other multithreaded processor available in

source code to the design community.

To overcome this we have designed and implemented in-

struction set extensions for the simpler LEON3 SPARCv8

processor suitable for embedded applications. This paper de-

scribes the architecture of the modified LEON3 [4] processor

(which we call UTLEON3) and the impact of the architec-

tural improvements on the processor performance. The goal

has been twofold: First, we wanted to implement in silicon

machine-level instructions that were identified as necessary

for efficient micro-threading (a variant of multi-threading

with fast context switching) [5] to have a true picture how

these extensions are expensive in terms of silicon. Second,

we wanted to achieve an efficient implementation of these

extensions, that is outperform the original LEON3 processor

by better handling memory and execution latencies.

The paper is structured as follows: Section II describes

the extra machine instructions that implement micro-threading

in SPARC. Section III describes the architecture of the key

blocks that implement the micro-threaded extensions. Section

IV compares FPGA implementations of the classical LEON3

and the new UTLEON3 in terms of resource requirements.

Section V evaluates the speedup of a simple assembly program

in a legacy version executed on the classical LEON3 as well

as the UTLEON3 processor, and a micro-threaded version

executed on the UTLEON3 processor. Section VI compares

UTLEON3 with the OpenSPARC T1/T2 processor. Section

VII concludes the paper.

II. MICRO-THREADING

Micro-threading is a multi-threading variant that decreases

the complexity of context management. The goal of micro-

threading is to tolerate long-latency operations (LD/ST and

multi-cycle operations such as floating-point) and to synchro-

nize computation on register access. For an overview of multi-

threading see [6].

In a simple case the context can be represented by the

program counter and by window pointers to the register file.

Micro-threading has been developed both on the assembly and

C levels. The basic conceptual unit is a family of threads that

share data and implement one piece of a computation. In a

simple view one family corresponds to one for-loop in the

classical C; in micro-threading each iteration (each thread) of

a hypothetical for-loop (represented by a family of threads)

is executed independently according to data dependencies. A

family is synchronized on termination of all its threads. For

more details on micro-threading see [5], [7], [8].

A possible speedup generated by micro-threading comes

from the assumption that while one thread is waiting for its

input data, another thread has its input data ready and can

be scheduled in a few clock cycles and executed. Another

assumption is that load and store operations themselves need

not be blocking since the real problem arises just when an

operation accesses a register that does not contain a valid

data value. Finally, the thread management logic is considered

978-1-4244-6610-8/10/$26.00 ©2010 IEEE 237



simple enough to fit in the processor hardware reasonably well

in the current technologies.

The hardware requirements of microthreading are: use of a

self-synchronizing register file (i-structures, [9]), register states

to be managed autonomously in the register file, pipeline stalls

prevented by context switch in hardware, and thread status and

context switch managed autonomously in a hardware thread

scheduler.

The micro-threading support on the machine level is repre-

sented by the following instructions:

• launch - switches the processor from the legacy mode

(user or protected) to the microthreaded mode.

• allocate - allocates a family table entry, needed to create

a family of threads.

• setxxxxx - fills in the allocated family table entry with

parameters required by the create instruction.

• create - creates (a family of) threads based on a family

table entry.

• .registers - a pseudoinstruction that specifies the number

of registers needed by a thread.

Furthermore, each 32-bit instruction word is extended by an-

other two bits that act as an instruction for thread scheduling.

Valid combinations are:

• cont - continue thread execution,

• swch - switch the context to another thread, e.g. on

memory load to prevent possible pipeline stall,

• end - end thread execution, i.e. the thread ends at this

instruction.

The format of assembly instructions has been extended by a

field delimited by a semicolon that may contain an explicit

instruction for the scheduler. If the field is missing, cont is

assumed by default.

clr %r2
ld [%r1 + %g0], %r3 ; swch
add %r3, %g0, %r4 ; end

To keep the 32-bit organization of the memory system in

SPARCv8 2-bit extensions for groups of 15 instructions are

grouped in one 32-bit instruction word that is located at the

beginning of each cache line. One cache line is formed by

16 words. The first word of each cacheline is skipped in

the micro-threaded mode (explained later in the text). The

organization of one instruction cache line is shown in Figure

1.

Micro-threading relies on the use of a self-synchronizing

register file based on i-structures [9]. To implement the i-

structures each register has to be extended to contain the state

of its value. A register can be

• empty - on power-on reset,

• pending - a memory load operation has been requested

and no thread has accessed the register since,

• waiting - a memory load operation has been requested

and a thread has accessed the register since,

• full - the register contains valid data.

05 410 916 15 1421 2026 2531 30

32
 b

16
:1

in
st

ru
ct

io
n

in
st

ru
ct

io
n

in
st

ru
ct

io
n

2b
 e

xt

.re
gi

st
er

s

Fig. 1. Organization of the instruction cache. 16 words = 1 cache line

��������
���	
����
�	��





�������

��������	�
��
����

�������
��
�����
��
�
���������
����

������
���

�������
	��������

�

�

�������
������
���������
�����

�


������
�����	�	���
�����

�


��������
�������	���
�����



� ������
� �	��
� ��
�
� �������

����

���

��������

�������


��	�� ���

!�

"! ����

#��	���
�� ��

$������
�� ��

������������	��

��������
�	���	��

%�

"!

�����&������
�

"�
 	
��
�

�
�

Fig. 2. Architecture of UTLEON3. RUC - register update controller, RAU
- register allocation unit, AU - allocation unit.

In the micro-threading model a pending register can be ac-

cessed by at most one thread - either by the thread that

initiated the pending data update, or by its direct sibling

(only unidirectional data dependencies between direct sibling

threads are allowed in micro-threading).

A sample program execution is shown in Figure 3. The

processor starts in the legacy mode on power-on reset, then it

switches to the microthreaded mode. The parent thread gets

synchronized with the children threads by reading the register

%l2. On completion of all microthreads the processor switches

back to the legacy mode.

III. UTLEON3 ARCHITECTURE

Figure 2 shows the architecture of UTLEON3, an extended

LEON3 with ISE for micro-threading. We have maintained

full backward compatibility with LEON3. The core is a 32-bit

integer pipeline that executes all legacy instructions. Thread

management is implemented in a thread scheduler, which can

be seen as a simple 2-bit processor. The instruction word of

UTLEON3 is 34 bits wide. All registers have been extended

by 2 bits that capture register states, each register is 34 bits

long.

238



��������������

�������'�(''

����	���
��������

�����������������

���������)*+


���������)*+&�'�+''

�������)*+

�������
����

��,�)*+&�)'

���

�������
����

�����������

����	�� 

�$�����


������)*+&��

'�+''

'�(''

'�'--

'�'-.

�$�����

Fig. 3. Program flow.

A. Cache Controllers

Load and store requests do not block the integer pipeline.

Requests are queued and executed when the corresponding

cache line fetch completes.

Memory accesses are decoupled from the integer pipeline.

The cache controllers are divided in two parts connected

through cache line fetch request FIFOs. The pipeline side

cache controllers store fetch requests in the FIFOs. The

memory side cache controllers process the queued requests.

On completion of an instruction cache line fetch all threads

waiting for the cache line are marked as ready for execution

in the scheduler (put in the active queue). Cache lines that

are used by threads are locked to prevent their eviction and

guarantee forward progress.

On completion of a data cache line fetch all registers that

have been waiting for the data in the cache line are updated

by the register update controller (RUC). Cache line fetch

scenarios are shown in Figures 4, 5, 6, 7.

B. Thread Scheduler

The thread scheduler manages the family and thread tables,

creates threads, switches context and cleans up the tables on

thread completion (see Figure 2). Dynamic register allocation

is performed on thread creation by the register allocation

unit (RAU). Family table and thread table store information

on threads being processed in the processor. Context switch

can be the result of an explicit swch or end instruction, an

instruction cache miss or it can occur on reading a register

not marked full. Threads can be in one of six states; the state

transition diagram is shown in Figure 8. Thread creation and

context switch is shown in Figures 9 and 10.

1b

1b

IU3 D-Cache MEMCTL Memory 

RUCRegister file

FIFO

1a
2b 3b 4b

5b

6b

2a

3a

6b

DCRAM
1a

4b

2b

Cache miss
1b

2b

3b

4b

5b

Cache miss – cache line fetch request, update RUC structures
Load request

Process the cache line fetch request
Load the data from the memory and write them to the DCRAM
Indicate cache line fetch completion to the RUC

6b Update pending/waiting registers, mark threads active

Scheduler

6b

6b

Cache hit
1a

3a

2a
Load request
Cache hit – load the data from the DCRAM and 
write them to the integer pipeline

Write the data to the register file

Fig. 4. Data cache hit/miss.

1a

1a

2a 2b

1b

1b

IU3 I-Cache IMEMCTL Memory

Scheduler

FIFO
2b 3b 4b

ICRAM

4b

Cache hit
1a Cache request from the integer pipeline

- fetch instruction
Cache hit - load the data from the ICRAM and 
write them to the integer pipeline

Cache miss
1b

3b

4b

5b

Cache miss - cache line fetch request 
Process the cache line fetch request
Load the data from the memory and write them to the ICRAM
Update the scheduler state

Cache request from the integer pipeline - fetch instruction

2a
2b

5b

Fig. 5. Instruction cache hit/miss. Requests originated in the fetch stage.

IV. IMPLEMENTATION RESULTS

We have implemented and tested the designed architecture in

the Xilinx XUP-V2Pro development board with the XC2VP30

FPGA. The initial unoptimized design operates at 25MHz (the

register file runs at 75MHz to implement 6 access ports while

using dual-port BRAMs). Implementation results are shown

in Table I. The columns LEON3 and UTLEON3 compare

complete systems with a processor, 1kB ROM, 4kB RAM and

UART. The remaining columns show resource requirements

of both legacy blocks (e.g. CACHE) and the micro-threaded

blocks (e.g. UTCACHE). IU3 - integer pipeline, RF - register

file, FTT - family thread table, TT - thread table, SCHED -

thread scheduler.

LEON3 was configured with 8 register windows, cache as-

sociativity 1, cache set size 1kB, cache line size 8W (maximal

allowable value for LEON3).

UTLEON3 was configured with 8 register windows, cache

associativity 1, cache set size 1kB, cache line size 16W, family

table size 8 items, thread table size 32 items.

It can be seen that UTLEON requires about 50% more

slices and 200% more BRAMs than LEON3; the BRAM

consumption is mainly driven by the extra information stored

239



1a

1a

2a

5b

1b

1b

IU3 I-Cache IMEMCTL Memory

Scheduler

FIFO
2b 3b 4b

5b

ICRAM

4b

Cache hit
1a Cache request from the integer pipeline

- execute setthread
Cache hit – load the .registers value from 
ICRAM and write it to the scheduler

Cache miss
1b

3b

4b

5b

Cache miss - cache line fetch request 
Process the cache line fetch request
Load the data from the memory and write them to the ICRAM
Load the .registers value from ICRAM and write it to the 
scheduler

Cache request from the integer pipeline - execute setthread

2a
2b

Fig. 6. Instruction cache hit/miss. Requests originated in the execute stage.

1a
2a

1a

2b

1b

1b

IU3 I-Cache IMEMCTL Memory

Scheduler

FIFO
2b 3b 4b

5b

ICRAM

4b

Cache hit
1a

Cache hit - load the data from the ICRAM and 
write them to the scheduler

Cache miss
1b

3b

4b

5b

Cache miss - cache line fetch request 
Process the cache line fetch request
Load the data from the memory and write them to the ICRAM
Send the data from ICRAM to the scheduler

2a
Cache request from the scheduler

2b

5b

Cache request from the scheduler

Fig. 7. Instruction cache hit/miss. Requests originated in the scheduler.

in cache tags and requirements on simultaneous cache tag

access.

A. Running Programs in Hardware

The design is downloaded in the board using IMPACT and

operated using the Aeroflex-Gaisler GRMON tool. Classical

or microthreaded programs are compiled with an extended

version of the GNU binutils tools, and either put in the

ahbrom.vhd file and synthesized in a ROM, or downloaded

as ELF files with GRMON.

As the current version of GRMON does not support UT-

LEON3 debugging, programs cannot be stepped or stopped

once their execution starts, but the instruction and bus trace

history shows a (limited) execution history of the user mi-

crothreaded program. Program results can be inspected in the

memory. Performance data can be read from performance

counters that measure specific events in the system (e.g. overall

clock cycles, cache miss count, pipeline idle time).

V. SIMPLE BENCHMARK PROGRAM

The envisioned target application area of the processor is

embedded digital signal processing systems. To evaluate this

we implemented a simple vector scaling operation:

zi = Axi + Y ; i ∈ {0..N − 1} (1)

Fig. 8. Transitions between thread states.

5 4

IU3

Regfile

Scheduler

Family table Thread table

RAU

1

3

2

3 543

5 4 3

4 5

Thread 1
    Store thread index in the local register %L0
    Set all shared registers to pending
    Update the family and thread tables

Thread 2
    Store thread index in the local register %L0
    Set all shared registers to pending
    Update the family and thread tables

Thread 3
    Store thread index in the local register %L0
    Set all shared registers to pending
    Update the family and thread tables

Create
1

2

3

Create request

Allocate registers

3 Update the inner state and active queue

4

5

4 Update the inner state and active queue

5 Update the inner state and active queue

Fig. 9. Thread creation in scheduler.

where x and z represent the input and output arrays, respec-

tively. A and Y are integer scalar variables unknown during

the compilation, and the parameter N specifies the length of

the vector operation. We have tested N ∈ {64, 96, 128}, the

tables show values for N = 128.

Figure 11 depicts an actual implementation of the program;

the left part shows the legacy version using a for-loop,

while the right side shows the microthreaded version. The

microthreaded version creates one family of threads (marked

F1 in the picture) that correspons to the classical for-loop.

The create-family pseudo-command from the code example

is further decomposed into a sequence of assembly-level in-

structions: allocate, setstart, setlimit, setstep, setthread, and

create. These instructions will be assigned their parameters

from the arguments of the create-family pseudo-command.

Besides the obvious parameters (index, start, limit, step),

which directly correspond to a classical for-loop construct,

there are some other that need an explanation: global, shared,

and blocksize.

The global and shared parameters specify lists of variables

(registers) that will be made visible to the family being created.

The difference between these two is that the global ones stay

240



TABLE I

DEVICE UTILIZATION SUMMARY

Resource type LEON3 UTLEON3 CACHE UTCACHE IU3 UTIU3 RF UTRF FTT TT SCHED

Slices 5844 9686 1402 3277 2108 2723 0 250 53 6 1134

Slice Flip Flops 2730 5307 243 1402 895 1314 0 282 30 0 540

Total 4 input LUTs 10333 16957 2505 5845 3763 4694 0 434 75 10 1884

used as logic 10296 16563 2505 5843 3717 4618 0 344 57 10 1776

used as shift registers 37 64 0 2 46 76 0 0 0 0 0

used as RAMs 0 330 0 0 0 0 0 90 18 0 108

BRAMs 16 44 0 7 0 0 2 1 5 10 0

Parameters of the current thread

Switch request

The first active thread

Get parameters of the active thread

Update the inner state 

IU3

Scheduler

Family table Thread table

1

4

3

2
0

3 3

Context switch

1

4

3

2

0

3

Update the active queue

Fig. 10. Context switch in scheduler.

�������	
����	
��
��

�������������������������
�����	����������	����
�

�������	
����	
��
��

������� ��!� "�#$����%���������
�������������������&� ������#�"����'��
�������������������(#�) #���
����
�����	����������	����
�

Fig. 11. The benchmark program; legacy code and microthreaded code.

fixed during the course of execution of the family, while the

shared ones are assumed to be passed–and possibly modified–

from one thread to another. This sharing of data is strictly

unidirectional and always only between two adjacent threads

in the family, i.e. from a thread indexed i to a thread indexed

i + 1. Global and shared variables are directly supported

by the machine architecture by the means of thread global

and shared registers. The quantity of these registers can be

individually customized for each family using the .registers
assembly directive.

In the benchmark example the global parameter is used to

specify that variables A and Y will be passed to the thread

family.

The final family parameter to be described is the blocksize.

This parameter is optional for it does not affect the semantics
of the computation, but it affects its pace. The blocksize
specifies the maximal number of threads of a given family

TABLE III

PERFORMANCE RESULTS - force-nop COUNT

setblock UTLEON3 - micro-threading

unroll=1 unroll=2 unroll=4

1 8375 81% 4079 75% 1991 66%

4 856 30% 335 20% 88 8%

8 171 8% 84 6% 88 8%

16 147 7% 84 6% 88 8%

that are allowed to co-exist at any moment. This enables a

compiler or assembly-level programmer to artificially throtle

the rate of thread creation so as not to congest the memory

subsystem or the underlaying large register file from which the

registers are dynamically allocated. Also, as the processor does

not implement virtualization of some internal data structures

yet (notably the Family Table and Thread Table), we are bound

to use the blocksize parameter to prevent certain families from

consuming all available internal resources.

The benchmark algorithm from Figure 11 was manually

compiled and optimized. We have performed basic instruction

scheduling to prevent pipeline interlock stalls, and unrolled the

loops 2X and 4X. The results of program execution are shown

in Table II. Each line shows cycle counts and performance

change in % for a specific setblock value (i.e. the maximum

number of co-existing threads from one family = the maximum

number of threads from one family that can coexist in the

thread table at once). The performance improvement between

the original LEON3 and UTLEON3 in the legacy mode is

given by different cache fetch policy - UTLEON3 fetches

whole cachelines of 16 words on a cache miss whereas LEON3

fetches just one word.

The performance values for UTLEON3 in the micro-

threaded mode reflect the efficiency of context switch mech-

anism. For setblock=1 the cycle counts reflect the overhead

due to filling in the thread table; this situation does not make

use of fast context switching. The remaining lines show more

realistic situations. The column unroll=1 indicates that the

executed threads were too short (in relation to the context

switch time) to mask the memory access latencies. In the

remaining cases the UTLEON3 in the micro-threaded mode

solved the benchmark program faster than the original LEON3

processor.

241



TABLE II

PERFORMANCE RESULTS - EXECUTION CYCLE COUNT

setblock LEON3 UTLEON3

legacy micro-threading

unroll=1 unroll=2 unroll=4

1 1831 100% 1698 93% 10329 564% 5457 298% 3019 165%

4 1831 100% 1698 93% 2810 153% 1705 93% 1078 59%

8 1831 100% 1698 93% 2017 110% 1399 76% 1078 59%

16 1831 100% 1698 93% 1985 108% 1399 76% 1078 59%

Table III shows the number of force-nop operations in the

pipeline; this operation is issued when the scheduler cannot

issue immediately any thread to the integer pipeline (the

active queue is empty). The values in the table indicate the

performance results can be still improved. For example, at

present one force-nop is issued during each context switch,

which can be avoided. More such situations can be discovered

after a further analysis.

VI. UTLEON3 VS. OPENSPARC T1/T2

The OpenSPARC T1 and T2 processors are open-source im-

plementations of the UltraSPARC 2005 and 2007 architectures

[1]. OpenSPARC T1 has been ported to Xilinx FPGAs; in

the Xilinx XUPV5-LX110T Evaluation Platform T1 has been

reported to operate at 62.5MHz in a 125MHz MicroBlaze

system [10]. As the UTLEON3 processor is based on the

SPARC v8 ISA it is only natural to compare it against the

OpenSPARC processors.

UltraSPARC 2005, 2007 [1] architectures include support

for Chip-Level Multithreading (CMT). The purpose of the

CMT is to define multi-processing interface between the

software and hardware. In CMT a processor (physical module

which plugs into a system interconnect fabric) is a collection

of physical cores. Physical core is a pipeline with caches and

other associated hardware. One or more software threads -

called strands - may be scheduled on one physical core. A

strand is the software-visible state (PC, NPC, GP and FP

registers, ASRs etc.) that the hardware must maintain in order

to execute a software thread. From the ISA point of view

the strand behaves like a virtual processor including its own

MMU context. Therefore, the recommended programming

model for CMT processors is either Posix Threads (pthreads)

or OpenMP, which are both well-known industry standards.

The incentive is to offer coarse-grained parallelism for task-

level multitasking.

Contrary to that, the micro-threaded concurrency model

employed in UTLEON3 is fine-grained. The goal of micro-

threading is to extract instruction-level parallelism from exist-

ing sequential algorithms [11].

VII. CONCLUSIONS

This paper has described an initial implementation of in-

struction set extensions for micro-threading in SPARC. The

architecture of key functional blocks of the UTLEON3 pro-

cessor have been presented together with implementation data
for Xilinx XC2VP30 FPGA. The speedup of micro-threading

in UTLEON3 over identical programs in LEON3 has been

shown and discussed.

This is an on-going work; the final development of UT-

LEON3 will be made available to the research community at

[12].

ACKNOWLEDGMENT

This work was supported and funded by the European Com-

mission under Project Apple-CORE No. FP7-ICT-215215,

and by the Czech Ministry of Education under Project

No. 7E08013. The paper reflects only the authors’ view;

neither the European Commission nor the Czech Ministry

of Education are liable for any use that may be made of

the information contained herein. For information about the

Apple-CORE project see [12].

REFERENCES

[1] T. Takayanagi, J. L. Shin, B. Petrick, J. Su, and A. S. Leon, “A dual-core
64b ultrasparc microprocessor for dense server applications,” in DAC,
S. Malik, L. Fix, and A. B. Kahng, Eds. ACM, 2004, pp. 673–677.

[2] P. Kongentira, K. Aingaran, and K. Olukotum, “Niagara: a 32-way
multithreaded SPARC processor,” IEEE Micro, vol. 25, no. 2, pp. 21–29,
2005.

[3] K. D. Kissell, “MIPS MT: A multithreaded RISC architecture for
embedded real-time processing,” in HiPEAC, ser. Lecture Notes in
Computer Science, P. Stenström, M. Dubois, M. Katevenis, R. Gupta,
and T. Ungerer, Eds., vol. 4917. Springer, 2008, pp. 9–21.

[4] J. Gaisler, E. Catovic, and S. Habinc, GRLIB IP Library User’s Manual.
Gaisler Research, 2007.

[5] C. R. Jesshope and B. Luo, “Micro-threading: A new approach to future
RISC.” in Proceedings of the 5th Australasian Computer Architecture
Conference. IEEE Computer Society press, 2000, pp. 34–41.

[6] T. Ungerer, B. Robič, and J. Šilc, “A survey of processors with explicit
multithreading,” ACM Comput. Surv., vol. 35, no. 1, pp. 29–63, 2003.

[7] C. Jesshope, “Scalable instruction-level parallelism,” in Computer Sys-
tems: Architectures, Modeling, and Simulation. Springer Berlin /
Heidelberg, 2004, pp. 383–392.

[8] C. R. Jesshope, “muTC - an intermediate language for programming
chip multiprocessors,” in Asia-Pacific Computer Systems Architecture
Conference, 2006, pp. 147–160.

[9] Arvind and R. S. Nikhil, “Executing a program on the MIT tagged-token
dataflow architecture,” IEEE Transaction on Computers, vol. 39, no. 6,
pp. 300–318, 1990.

[10] Sun Microsystems. RAMP retreat August, 2008 update.
http://www.opensparc.net/publications/presentations/ramp-retreat-
august-2008-update.html.

[11] C. R. Jesshope, J.-M. Philippe, and M. van Tol, “An architecture and
protocol for the management of resources in ubiquitous and heteroge-
neous systems based on the svp model of concurrency,” in SAMOS, ser.
Lecture Notes in Computer Science, M. Berekovic, N. J. Dimopoulos,
and S. Wong, Eds., vol. 5114. Springer, 2008, pp. 218–228.

[12] The Apple-CORE Consortium. Architecture Paradigms and Program-
ming Languages for Efficient programming of multiple COREs.
http://www.apple-core.info.

242




