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Abstract: Industrial model-based control often relies on parametricmodels. However, for certain operational conditions
either the precise underlying physical model is not available or the lack of relevant or reliable data prevents its
use. A popular approach is to employ the black box or grey box models, releasing the theoretical rigor. This
leads to several candidate models being at disposal, from which the (often subjectively) prominent one is se-
lected. However, in the presence of model uncertainty, we propose to benefit from a subset of credible models.
The idea behind the multimodelling approach is closely related to hierarchical modelling methodology. By
using several modelling levels, it is possible to achieve relatively high quality and robust solution, providing a
way around typical constraints in industrial applications.

1 INTRODUCTION

Industrial model-based control or prediction is con-
nected with several practical but often contradictory
requirements:

– The model should respect physical relations of the
process yet be simple enough;

– The model should approximate process behaviour
in all possible working conditions;

– Imperfection of measured data feeding the model
should not deteriorate control or prediction qual-
ity.

Possible solution of the first two above-mentioned is-
sues consists in switching among several proven mod-
els according to actual working conditions. The third
problem is much more difficult to be solved in princi-
ple. The data driven (black box) models could seem
to be most appropriate but they almost always con-
tradict the first two requirements. See, e.g., (Bohlin,
1991) for remarks on black and grey box modelling.

On-line mixing of several proven process mod-
els – which can be considered as continuous decision
making – turns out to be a solid compromise solution
of all three requirements, at least for the process of

cold strip rolling from which comes the motivation
for this research (Ettler and Andrýsek, 2007).

The presented method of model mixing is closely
related to dynamic model averaging (Raftery et al.,
2010). However, two additional requirements stimu-
lated the need for a specific solution:

– Sum of weights corresponding to particular mod-
els is required to be always equal to one;

– An offset term should be continuously estimated
to eliminate any residual discrepancy, whatever it
comes from.

While the first restriction can be easily justified
from the probabilistic point of view, insistence on the
second requirement comes purely from practical ex-
perience, although the existence of the offset might
theoretically be superfluous. Presented solution at-
tempts to reconcile both requirements.

The method is developed in the Bayesian frame-
work, treating the unknown parameters as random
variables. Each model is represented by a condi-
tional probability density function (pdf) of the mod-
elled variable, given a set of features and parameters.

The layout of the paper is as follows: Section 2 de-
scribes the structure of the multimodel and its levels;
in Section 3 we derive a particular case of the model.
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Section 4 contains an example of application. Finally,
Section 5 concludes the achievements.

2 HIERARCHICAL MODELLING
CONCEPT

Assume, that there is a stochastic system observed at
discrete time instantsk= 1,2, . . . , which is to be mod-
elled. The statistical framework employs, among oth-
ers, parametric models, expressing the dependence of
the output variable of interestyk on a nonempty or-
dered set of observed data

D (k) = {dκ}κ=0,...,k , dκ ∈ R
n
.

d0 is the prior knowledge represented, for instance,
by an expert information or a noninformative distri-
bution. The task is to predict the future outputyk+1,
e.g., for control.

Often there is a whole set of available models,
mainly those based on underlying physical principles
of the process. However, since in many applications
either the precise physical model is not available or
the lack of reliable data prevents its use, the user em-
ploys black box or grey box models. Then, either the
(subjectively) best model or models are selected and
switched or, alternatively, a rich-structure model be-
ing a union of several candidate models is built. De-
spite the potential applicability of the latter case, the
over-parametrization in combination with unreliable
measurements and their traffic delays is expected to
be fatal.

Our method provides a way around most of disad-
vantages of the mentioned approaches. We propose a
hierarchical model composed of three levels:
Low-level Models comprise arbitrary count of plau-

sible parametric models like the regressive and the
space-state ones. They are independent of each
other, but their aims are identical – modelling of
the same quantity of interest.

Averaging Model is intended for merging the infor-
mation from the low-level models. The resulting
mixture of predictive pdfs of low-level models,
weighted by their evidences, is used to evaluate
the predictions.

High-level Model – since industry has several spe-
cific requirements related, e.g., to stable control,
we add a high-level model. It provides stabiliza-
tion of the prediction process. However, the goal
of this level can differ from case to case according
to specific needs of the field of application being
addressed.

The ensuing sections describe these levels in some de-
tail.

2.1 Low-level Models

The low-level models express the relation between the
actual system outputyk and the given dataD (k) by a
pdf

f (yk|D (k−1),Θ), (1)

whereΘ denotes a multivariate finite model parame-
ter which, under the Bayesian treatment, is considered
to be a random variable obeying pdf

g(Θ|D (k−1)). (2)

If this pdf is properly chosen from a class conjugate
to the model (1), the Bayes’ theorem yields a poste-
rior pdf of the same type (Bernardo and Smith, 2001).
Then, the rule for recursive incorporation of new mea-
surements into the parameter pdf reads

g(Θ|D (k)) =
f (yk|D (k−1),Θ)g(Θ|D (k−1))

Ik
,

(3)
where

Ik =
∫

f (yk|D (k−1),Θ)g(Θ|D (k−1))dΘ (4)

= f (yk|D (k−1)) (5)

is a normalizing term. It assures unity of the resulting
pdf and it is a suitable measure of model’s fit, often
calledevidence. The equality of (4) and (5) follows
from the Chapman-Kolmogorov equation (Karush,
1961). Furthermore, this equation also yields the pre-
dictive pdf f (yk+1|D (k)) providing the Bayesian pre-
diction, formally

f (yk+1|D (k)) =
∫

f (yk+1|D (k),Θ)g(Θ|D (k))dΘ

=
Ik+1

Ik
. (6)

The last equality follows from the recursive property
of the Bayesian updating (3).

Although the described methodology is important
per se, it strongly relies on invariance ofΘ. However,
this assumption is often violated in practical situations
and the evolution ofΘmust be appropriately reflected
by an additional time update according to model

g(Θk+1|Θk,D (k)). (7)

Generally, we can distinguish two significant cases:

(i) The evolution model (7) is knowna priori. Then,
Θ is called the state variable and, under certain
conditions, the modelling turns into the famous
Kalman filter (Peterka, 1981).
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(ii) The model (7) is unknown, but slow variability
of Θ is assumed. This case is usually solved ei-
ther by finite window methods or by forgetting.
The latter heuristically circumvents the model ig-
norance by discounting of potentially outdated in-
formation from the parameter pdf. Formally, it
introduces a forgetting operatorF modifying the
posterior pdf,

g(Θk+1|D (k)) = F [g(Θk|D (k))] .

The class of available forgetting methods com-
prises, e.g., exponential forgetting (Peterka,
1981), directional forgetting (Kulhavý and Kárný,
1984), partial forgetting (Dedecius, 2010) and
others.

Since the issue of parameter variability is behind the
scope of the paper, we can stick with unsubscriptedΘ

without a loss of generality.

2.2 Averaging Model

Assume that there is a nonempty finite set of differ-
ent low-level modelsM = {M(1)

, . . . ,M(S)}, S∈ N,
which are considered as candidates to represent the
system under study. Formally, we have

M(s) : f (yk|D (k−1),Θ(s)
,M(s)), s= 1, . . . ,S, (8)

which directly coincide with (1). These models are
independently evaluated in accordance with Section
2.1. Their probabilities are expressed by a distribution

h(M |D (k)) ≡ h(M(1)
, . . . ,M(S)|D (k)). (9)

The averaging model evaluates this distribution with
respect to evidences (5) of low-level models (8) on
base of marginal pdfs, namely

h(M(s)|D (k)) ∝ h(M(s)|D (k−1)) I (s)k , (10)

where∝ denotes equality up to a normalizing factor.
The prior distributionh(M(s)|D (0)) can be chosen ei-
ther on base of expert information or as noninforma-
tive pdf with equal marginals.

The predictive pdf of the system output given the
set of dataD (k) and the set of modelsM is repre-
sented by a mixture

f (yk+1|D (k),M )

=
K

∑
k=1

f (yk+1|D (k),M
(s))h(M(s)|D (k)). (11)

The point estimate ofyk+1 provides the mixture (11)
in the form of a convex combination of weighted point

estimatesE
[

yk+1|D (k),M(s)
]

. It coincides with the

method of Dynamic model averaging (Raftery et al.,
2010).

2.3 High-level Model

The purpose of the high-level model is stabilization of
the prediction, particularly for its further use in con-
trol. Inclusion of the third modelling level is justified
by practical experience with averaging models which,
in contrast to theoretical assumptions, may provide
biased results. The most basic high-level model can
be represented by a pdf

f (ỹk+1|D (k), ŷk+1,Θ̃), (12)

whereỹk+1 is recursively modelled given the features
– point estimates of ˆyk+1 obtained from the averag-
ing model. The high-level model is parametrized by
a multivariate parameter̃Θ. The point estimate ˜yk+1
is the output of the hierarchical model. This provides
the solution to the task stated in Section 2.

3 ELABORATION FOR
INDUSTRIAL APPLICATION

This section elaborates the method for a particular but
important case of normal regressive models at the low
level. The generalization for another cases, e.g., the
state-space models like the Kalman filter and its vari-
ants is straightforward and the averaging model re-
mains unchanged. For the sake of convenience, the
evolution of parameters will not be discussed.

3.1 Low-level Models

We consider a normal linear regressive model with a
regressorψk ∈ R

n and a vector of regression coeffi-
cientsθ of the same dimension, i.e.

yk =ψ
′
kθ+ek, (13)

where ek ∼ N (0,σ2) is the additive normal white
noise. The Bayesian framework relates it with (1)
through pdf

f (yk|D (k−1),Θ)∼ N (ψ′
kθ,σ

2), (14)

where
Θ≡ {θ,σ2}.

An appropriate distribution conjugate to the model
(14) is of the normal inverse-gamma type (Murphy,
2007),

g(Θ|D (k)) ∼ N iΓ(Vk,νk), (15)

whereVk ∈ R
N×N is an extended information matrix,

i.e., a symmetric positive definite square matrix of di-
mensionN = n+1, andνk ∈ R

+ is a number of de-
grees of freedom. The Bayes’ theorem (3) updates
these two statistics by new data as follows:
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Vk = Vk−1+

(

yk
ψk

)(

yk
ψk

)′

νk = νk−1+1.

It may be proved (Peterka, 1981) that the estimator
of θ = (θ1, . . . ,θn)

′ is

θ̂ =







θ̂1
...

θ̂n






=







V21
...

VN1







′ 





V22 . . . V2N
...

. . .
...

VN2 . . . VNN







−1

.

This relation is equivalent to the recursive least
squares (Peterka, 1981) and it provides the estimates
for prediction with (13). The normalizing integralIk
is nontrivial, it can be found, e.g., in (Peterka, 1981;
Kárný, 2006).

Since the information matrices are often ill-
conditioned and their inversions can lead to signif-
icant numerical issues, it is reasonable to evaluate
calculations on factorized forms, e.g., the Cholesky,
UDU’ or SVD ones.

3.2 Averaging Model

The averaging model introduced in Section 2.2 is re-
sponsible for merging the information from the under-
laying low-level models. For the sake of better read-
ability, let us denote

α(s)
k ≡ h(M(s)|D (k)).

The point prediction of the output at this modelling
level follows from (11), hence it reads

ŷk+1 =
K

∑
k=1

E

[

yt+1|D (k),M
(s)
]

α(s)
k . (16)

From the statistical viewpoint, two cases can occur.
The latter one is a generalization of the former one;
both are described below.

3.2.1 Two Low-level Models

Assume that we have two modelsM(1) andM(2) with
real nonnegative scalar statisticsa(1) and a(2). We
want these models to have probabilitiesα for M(1)

and 1−α for M(2). Then, the distribution of mod-
els can be viewed as the beta distribution (Gupta and
Nadarajah, 2004) with pdf

f (α|a(1),a(2)) =
Γ(a(1)+a(2))

Γ(a(1))Γ(a(2))
αa−1(1−α)a(2)−1

whereΓ stands for the gamma function. The point
estimate of the mean value and the variance are

α̂ = E

[

α|a(1),a(2)
]

=
a(1)

a(1)+a(2)
, (17)

var(α) =
a(1)a(2)

(a(1)+a(2))2(a(1)+a(2)+1)
.

The rule for update of statisticsa(1) anda(2) is as
follows:

a(1)k = αk−1I
(1)
k

a(2)k = (1−αk−1)I
(2)
k (18)

3.2.2 Multiple Low-level Models

The distribution of probabilities of multiple models
M(1)

, . . . ,M(S) can be derived as a generalization of
the beta pdf. Leta = (a(1), . . . ,a(S)) be a vector of
nonnegative real statistics. Furthermore, let us intro-
duce independent identically distributed (i.i.d.) ran-
dom variablesW(s) ∼ Γ(a(s),1),s= 1, . . . ,Sand set

W = (W(1)
, . . . ,W(S)), T =

S

∑
s=1

W(s)
,

α = (α(1)
, . . . ,α(S)) where α(s) =

W(s)

T
. (19)

Obviously, (19) imposes constraintsα(s) ∈ [0,1] and
∑α(s) = 1. Since the pdf of a gamma distribution for
W(s) is

f (W(s)|a(s),1) =
1

Γ(a(s)
[

W(s)
]a(s)−1

e−W(s)
,

the pdf for the multivariateW with i.i.d. elements has
the form

f (W |a,1) =
S

∏
s=1

1

Γ(a(s))

[

W(s)
]a(s)−1

e−W(s)
.

Sinceα’s should sum to unity, we need only(S−
1)-variate vectorα = (α(1)

, . . . ,α(S−1)). The change
of variables theorem (Rudin, 2006) provides a way to
interchange ofW(s) andα(s),

f (α|·) = fW (α|·)detJW→α.

Here,JW→α denotes the Jacobian matrix contain-
ing partial derivatives of the projection andfW (α|·)
is originally a function f (W |a,1) with α substi-
tuted forW . SinceW(s) = Tα(s) is bijective for
s= 1, . . . ,S−1 andW(S) = T(1−α(1)− . . .−α(S−1)),
the necessary condition is fulfilled and the theorem
may be used. The determinant of the Jacobian

JW→α = det
( ∂W

∂α ,

∂W
∂T

)

= TS−1

provides

f (α,T) = TA−1e−T
S

∏
s=1

1

Γ(a(s))

[

α(s)
]a(s)−1

,
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whereA= ∑k a(s). IntegratingT out with the rule
∫

TA−1e−TdT = Γ(A)

leads to the pdf ofα as follows:

f (α|a) =
Γ(A)

∏S
s=1 Γ(a(s))

S

∏
s=1

[

α(s)
]a(s)−1

This pdf is a variant of the Dirichlet distribution
(Geiger and Heckerman, 1997), with nonnegative real
statisticsa(s). Since the marginal distributions are of
beta typeB(a(s),A−a(s)), the estimator ofkth element
of α is

E

[

α(s)
]

= α̂(s) =
a(s)

A
=

a(s)

∑S
s=1a(s)

and its variance is

var(α(s)) = α(s) A−α(s)

A2(A+1)
.

The rule updating statisticsa(s) is a straightfor-
ward generalization of (18)

a(s)k = α(s)
k−1I

(s)
k .

3.3 High-level model

The high-level model discussed in Section 2.3 stabi-
lizes the prediction according to specific needs of the
application field of interest. In our case, we use a nor-
mal regressive model equivalent to (14) with a regres-
sor being composed of the averaging model output
ŷk+1 (16) and an offset term,

ψk = (ŷk+1,1)
′

∣

∣D (k),M .

Its evaluation, i.e., parameter estimation and output
prediction, follows from Section 3.1.

4 REAL DATA EXAMPLE

Let us demonstrate the presented method on a simpli-
fied example. Used data come from a four-high cold
rolling mill and the aim consists in reliable instanta-
neous prediction of the output strip thickness devia-
tion (denotedh2), measurable only with a significant
time delay. The true evolution of the modelled out-
put strip thickness deviation (h2) is depicted in Fig. 1.
Apparently, we can experience modelling difficulties
aroundk≈ 800, where the data abruptly changed.

Three simple low-level models were chosen to

Figure 1: Evolution of the output strip thickness deviation
h2 [µm].

Table 1: Statistics of the prediction error.

Statistics\ Model averaging high-level
mean error 0.20 0.04
standard deviation 6.42 5.78
median 0.27 -0.06

approximate relations among selected process vari-
ables. They are characterized by the following regres-
sor structures:

M(1) : ψ = (vr ,h1vr ,1)′ ,

M(2) : ψ = (h1,z,1)′ ,

M(3) : ψ = (h1,z,vr ,1)
′
,

wherevr denotes the ratio of the input and output strip
speeds,h1 is the deviation of the input strip thick-
ness from its nominal value andz stands for the so
called uncompensated rolling gap. See (Ettler and
Andrýsek, 2007) for details.

The initial setting was as follows: the low-
level models started with noninformative prior normal
inverse-gamma distributions (15). Forgetting factor
of the applied exponential forgetting (Peterka, 1981)
was set to 0.99. The averaging model started with

uniformly distributed prior statisticsa(s)0 ,s= {1,2,3}.
The high-level model with the structure given in Sec-
tion 3.3 started with a noninformative prior pdf with
similar initial statistics as the low-level models. For-
getting factor was set to 0.98 in this case.

The evolution of probabilities of the averaged
modelsM(s)

,s= {1,2,3} is depicted in Fig. 3. The
evolution of prediction error forh2 is depicted in Fig.
2. Obviously, the announced abrupt change in the data
course led to higher prediction errors. Statistics of the
prediction error stated in Tab. 1 demonstrate the role
of the high-level modelling.

5 CONCLUSIONS

A method of multilevel modelling was proposed to
improve instantaneous prediction of a key variable in
the process of cold strip rolling. The resulting hier-
archical model consist of three modelling levels – the
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Figure 2: Absolute prediction error [µm]: dashed and solid
line denote the distance of one and two standard deviations,
respectively.

Figure 3: Evolution of probabilities of models:M(1) (blue),
M(2) (orange) andM(3) (yellow).

low-level models, i.e., from the statistical viewpoint
usual parametric models, the averaging model merg-
ing their results and the high-level model, reflecting
specific needs of the application field. Each mod-
elling level is treated in the Bayesian framework, i.e.,
both the models and their parameters are represented
by conditional distributions. Current state of the re-
search was demonstrated on a simple example utiliz-
ing real industrial data. Extensive tests will be accom-
plished to refine the method and prepare algorithms
for a true on-line industrial application.
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