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Abstract

Computing the future road traffic intensities in urban and suburban areas is considered in

this paper. The statistical properties of the traffic flow advocate the use of a low-order lin-

ear autoregressive models, in which the previous intensities determine the following ones.

To achieve adaptivity, the Bayesian modelling framework was chosen. The regression

coefficients are considered random, hence they are modelled using a suitable distribution.

The incoming data then recursively correct this distribution. A significant improvement of

the overall modelling performance is further reached with techniques allowing the parame-

ters vary by modification of their distribution. We present the partial forgetting method,

allowing to individually track the parameters even in the case of their different variability

rate. Division of the reality into several hypotheses leads to different statistical distribu-

tions of the respective parameters. The obtained mixture of distributions is then projected

back into a single distribution of the same type.
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1 Introduction

Statistical modelling of traffic intensities in the urban areas becomes a significant task

[6]. Increasing road traffic is accompanied by a wide range of negative factors, influencing

the environment (air pollution), local economy (“opportunity costs”, fuel costs, wear of

vehicles and roads), health and other domains, see, e.g. [7, 13, 14]. Obviously, there

appear yet many other externalities.

Figure 1: Example of daily traffic intensities

Modelling of traffic intensities may be evaluated with the autoregressive models of

low order, but their basic forms can fail, simply due to the short-time variability of the

measurements’ mean value. To solve this non-stationarity, we employ an offset to model

the short-time mean value.

Specific notation: ′ denotes transposition, f(a|b) is a conditional probability density

function in which a random variable (and its realization) a is conditioned by a random

variable b (or its realization). E [·] denotes mean value of the argument. Time t = 1, 2, . . .

is discrete. x∗ denotes a set of x values. Furthermore, let us introduce the notational

convention

f(x = xt|y = yt,d(τ)) ≡ ft|τf(x|y).
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2 Normal regressive model

We employ the n-th order autoregressive model AR(n) in the form

yt =
n∑
i=1

aiyt−i + kt + et, t = 1, 2, . . . , (1)

where yt denotes traffic intensity measured at time instant t, ai are regression coefficients

and kt denotes the offset of the model. Its purpose is to model the mean value of the

signal. The term et stands for the normally distributed white noise with zero mean and

constant variance σ2 [12],

et ∼ N (0, σ2). (2)

Under the assumptions on noise whiteness, the regressive model (1) may be expressed

with a probability density function (pdf) [8]

ft|t−1(y|Θ) ∼ N (ψ′tθt, σ
2) (3)

where m = n + 2,ψt ∈ Rm and θt ∈ Rm denote a column regression vector and a vector

of regression parameters,

ψt = (yt, . . . , yt−n, 1)′ and θt = (a1,t, . . . , an,t, kt)
′.

The term Θt is a set of model parameters, which in the case of the normal model (3) is

Θt = {θt, σ2}. In this work, we focus especially on the regression coefficients aggregated

in θt. Under general conditions, it is possible to avoid using the offset kt, however, it will

play a fundamental role in the further reading.

2.1 Estimation

Suppose that the model (3) is known up to a set of parameters Θt, whose elements are to

be estimated. The Bayesian paradigm, considering the parameters to be random variables,

allows us to represent their distribution with a pdf

ft|t−1(Θ) ≡ f(Θt|d(t− 1)). (4)

Apparently, their distribution is conditionally dependent on the previous measurements,

which are besides a potential expert information the only source of information available

to the model. The estimation steps are:
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2.1 Estimation

Data update: incorporating new measurements into the distribution of parameters

through the Bayes’ theorem [8]:

ft|t(Θ) =
ft|t−1(y|Θ)ft|t−1(Θ)∫

Θ∗
ft|t−1(y|Θ)ft|t−1(Θt)dΘ

(5)

Time update: reflecting the (potential) time-variability of parameters in Θt+1 [8]:

ft+1|t(Θ) =

∫
Θ∗
f(Θt+1|Θt,d(t))ft|t−1(Θ)dΘ. (6)

Let us first analyse the time update procedure. If the parameters are constant, then the

normal model f(Θt+1|Θt,d(t)) is identical with the Dirac distribution. In this case, the

integral in (6) represents an identity functional and

ft+1|t(Θ) = ft|t(Θ).

The consequences are obvious: (i) the time update may be omitted if the parameters are

constant, and (ii) under the normality of the model and under the quadratic criterion,

the constant parameters’ point estimates are identical to the frequentists’ ones obtained

from the static linear regression.

The recursive Bayesian estimation exploits the fact, that given a conjugate prior dis-

tribution, the posterior is of the same type. The normal distribution, describing the

model (3) is a member of the exponential family; it can be proved, that any member of

this family, meeting certain conditions, possesses a conjugate counterpart. One of these

conditions is the existence of a sufficient statistics [3], allowing to avoid working with a

large set of data by their transformation into a set of smaller non-increasing dimension

f(a|d(t)) = f(a|St). (7)

The single-output normal model (3) is conjugated with the Normal inverse-gammaN iG(V , ν)

prior. Its sufficient statistics are the number of degrees of freedom ν ∈ R, sometimes re-

ferred to as the counter, and the extended information matrix V ∈ Rm×m. The data

update rules (5) for these two statistics are [12]

Vt|t = Vt|t−1 +

yt

ψt

yt

ψt

′ (8)

νt|t = νt|t−1 + 1 (9)
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2.2 Prediction

The direct use of statistics V can lead to numerical difficulties due to the inversion

operation. Therefore, we prefer to use its factorized representation, characterizing alter-

native definition of the N iG pdf. The N iG pdf with the decomposition V = L′DL,

where L is a unit lower triangular matrix and D is a diagonal matrix, has the form [8]

GiW(L,D, ν) ≡ σ−(ν+n+2)

I(L,D, ν)
× exp

{
−1

2σ2

[
(θ − θ̂)′C−1(θ − θ̂) +Dy

]}
.

With the generalization of L and D to block matrices of corresponding dimensions (Dy

scalar)

L =

 1

Lyψ Lψ

 , D =

 Dy

Dψ


θ̂ ≡ L−1ψ Lyψ is the least-squares estimate of θ,

C ≡ L−1ψ D
−1
ψ (L−1ψ )′ ∈ Rn×n is the covariance of θ̂,

Dy ∈ R+ is the least squares remainder,

I stands for the normalization integral

I(L,D, ν) ≡ Γ(0.5ν)

√
2ν(2π)n

Dν
y |Dψ|

. (10)

More on properties of the distribution can be found in related literature, e.g., [8].

2.2 Prediction

Bayesian prediction with a parametric model follows from the rule

ft+1|t(y) =

∫
Θ∗
ft+1|t(y|Θ)ft|t(Θ)dΘ =

It+1

It
. (11)

Under the assumption of model normality and under the quadratic criterion∑
t∈t∗

(yt −ψ′tθ̂t)2 → min

we may use the point estimates of a1;t, . . . , an;t and kt to obtain the prediction of yt+1.

Generally, the knowledge of regression vector for any t allows us to evaluate the predictions

relevant to this index. This is equivalent to multiple steps-ahead prediction, or smoothing

if we regress some intermittent value.
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3 Estimation with forgetting

It has already been mentioned in Section 2.1 that the potential parameters time vari-

ability often has to be taken into account. If we deal with traffic intensities, the time

update becomes very important. The intensities vary during day and week, which can be

expressed as the time variation of the mean value. Recall the model (1) and remind, that

the mean value is modelled with the offset k. Hence the goal is to release the offset and

let it vary with the true intensities.

If we further analyse the situation, the lack of knowledge of parameters’ time evolution

becomes evident. The only known data are the past intensity measurements and there is

no other clue. In this case, we employ forgetting in place of the time update (6). Instead

of explicit modelling of parameters’ evolution in time, or finite data window modelling, we

release the parameters by gradual discarding the old and potentially outdated information.

There exist several forgetting methods, e.g., directional forgetting [10] or linear forgetting

[11], however, the most popular yet the most basic one is the exponential forgetting [5, 12].

For the Bayesian models, it is defined as follows

ft+1|t(Θ) =
[
ft|t(Θ)

]α
; α ∈ (0, 1).

The term α stands for the forgetting factor; it is usually greater than 0.95. In the normal

model (3), whose prior pdf is of normal inverse-gamma type, the forgetting demonstrates

itself in the form

Vt+1|t = αVt|t = αL′t|tDt|tLt|t (12)

νt+1|t = ανt|t. (13)

3.1 Hypotheses of partial forgetting

The exponential forgetting is doomed to fail if used for modelling of dynamic systems with

different variability of parameters, which becomes evident if we summarize the properties

of traffic intensities:

1. In certain time intervals, e.g., during nights, probably no parameter varies.

2. In other time intervals all parameters vary slowly.

3. Generally, during the daytime, the mean value varies significantly.
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3.2 Determination of probabilities

Let these three cases label as hypotheses H0, H1 and H2 and suppose, that at each time

instant, the regression coefficients obey some true distribution gt+1|t(θ). Now, we formalize

the hypotheses as follows:

H0 : E
[
gt+1|t(θ)|θ,d(t), H0

]
= ft|t(θ)

H1 : E
[
gt+1|t(θ)|θ,d(t), H1

]
=
[
ft|t(θ)

]α
(14)

H2 : E
[
gt+1|t(θ)|θ,d(t), H2

]
= ft|t(a1, . . . , an|, k)

[
ft|t(k)

]α
where again α ∈ (0, 1) and where E

[
gt+1|t(θ)|θ,d(t), Hi

]
has the meaning of a point

estimate of the true but unknown pdf. It expresses our presumption of the true pdf under

the knowledge of data d(t), parameters θt+1 and the true hypothesis Hi at time t. The

meaning of H2 is simple – we decompose the pdf ft|t(θ) using the chain rule and forget

only the marginal pdf related to the offset. Each of the three hypotheses characterizes

one specific case, but any of them can appear during the modelling. The conceptually

correct solution is to use the mixture in which each pdf is weighted by its non-negative

probability pi,t|t ≤ 1

E
[
gt+1|t(θ)|θ,d(t)

]
=

2∑
i=0

pi,t+1|tE
[
gt+1|t(θ)|θ,d(t), Hi

]
,

2∑
i=0

= 1. (15)

3.2 Determination of probabilities

The probabilities pi;t|t express the probability of each hypothesis at the particular time

instant. Their evaluation is as follows:

Data update reflecting the modelling abilities of the hypotheses

pi;t|t ∝ pi;t|t−1

∫
Θ∗
ft|t−1(y|Θ)E

[
ft|t−1(Θ)

∣∣∣Θ, Hi,d(t)
]

dΘ. (16)

Time update allowing the weights to vary

pi;t+1|t ∝ pαi;t|t, (17)

Another approach represents the use of Monte Carlo methodology, e.g., the particle

filter and the Rao-Blackwellized particle filtering in particular.
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3.3 Approximation

3.3 Approximation

The mixture-based modelling requires a complex treatment, which discards its use for our

purpose. To avoid it, we prefer to approximate the mixture (15) by a single pdf, using

the Kullback-Leibler divergence [9] as a minimization criterion.

The Kullback-Leibler divergence of two pdfs f, g of a random variable X, acting on a

common set X∗, holds the following form:

KL(f ||g) =

∫
X∗
f(x) ln

f(x)

g(x)
dx. (18)

It can be shown, that the Kullback-Leibler divergence is a non-negative functional with

equality for f = g almost everywhere [1].

We search the argument minimizing the expectation on the Kullback-Leibler diver-

gence,

g̃t+1|t(Θ) = arg min
g∈g?

t+1|t

E
[
KL
(
gt+1|t||g̃t+1|t

) ∣∣∣Θ,d(t)
]
.

The pdf g̃t+1|t represents the best approximation of the mixture (15) and may be used for

further modelling.

For two N iG distributions the Kullback-Leibler divergence has the following form [8]:

KL(g||g̃) = ln
Γ(0.5ν̃)

Γ(0.5ν)
− 0.5 ln |CC̃−1|+ 0.5ν̃ ln

Dy

D̃y

+ 0.5(ν − ν̃)Υ(0.5ν)− 0.5n− 0.5ν + 0.5Tr
(
CC̃−1

)
+ 0.5

ν

Dy

[(
θ̂ − ˆ̃θ

)′
C̃−1

(
θ̂ − ˆ̃θ

)
+ D̃y

]
, (19)

where Υ(·) denotes the digamma function.

Let us substitute the mixture obtained in (15) for gt+1|t and search for its best ap-

proximation g̃t+1|t by minimization of (19) with respect to the parameters of the N iG

distribution. The resulting parameters are as follows:

ˆ̃θt+1|t=

(
2∑
i=0

λi;t+1|t
νi;t|t
Dyi;t|t

)−1( 2∑
i=0

λi;t+1|t
νi;t|t
Dyi;t|t

θ̂i;t|t

)

D̃y;t+1|t = ν̃i;t|t

(
2∑
i=0

λi;t+1|t
νi;t|t
Dyi;t|t

)−1

C̃t+t|t =
2∑
i=0

λi;t+1|t
νi;t|t
Dyi;t|t

×
[(
θ̂i;t|t − ˆ̃θi;t|t

)(
θ̂i;t|t − ˆ̃θi;t|t

)′]
+

2∑
i=0

λi;t+1|tCi;t|t
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ν̃t+1|t =
1 +

√
1 + 4

3
(A− ln 2)

2(A− ln 2)

A = ln

(
2∑
i=0

λi;t+1|t
νi;t|t
Dyi;t|t

)
+

2∑
i=0

λi;t+1|t lnDyi;t|t −
2∑
i=0

λi;t+1|t Υ(0.5νi;t|t).

The proof can be found in [2]. A normal inverse-gamma distribution with these parameters

may be used as the best approximation of the true parameters pdf in (3).

4 Example

We use the Mixtools library developed at the Institute of Information Theory and Au-

tomation, Academy of Sciences of the Czech Republic and the python Bayesian modelling

library pybamo. In this example, we demonstrate the modelling of traffic intensities

depicted in the Fig. 1 using an autoregressive model of first order. The preset non-

informative prior has parameters diagV0 = (0.1, 0.01, 0.01) and ν0 = 10. The forgetting

factor α for H1 is 0.95, for H2 it is 0.9. The probabilities of hypotheses are flattened

with α = 0.99. The course of parameter estimates is depicted in the Figure 2. Evidently,

the offset follows quite well the variations of the traffic intensity mean value. The Fig.

3 shows the course when the estimation was evaluated without forgetting. The one-step

ahead prediction errors (partial forgetting) have mean -0.017, median 0.002 and standard

deviation 3.673.

5 Conclusions

The paper described the Bayesian modelling of traffic intensities with low-order normal

autoregressive models. As the parameters (regression coefficients) are supposed to vary

with different rates, the use of partial forgetting method was proposed. The method was

briefly described and the results were demonstrated in an example.
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