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Abstract

This report contains brief notes on estimation of beta-distributed weight of a Gaussian
mixture. The results are directly applied in paper [Kárný, M.: On approximate Bayesian
recursive estimation]. First, we develop a method to update the beta distribution of
weights by new data (evidences) and show, that a projection is needed to preserve the
low modelling complexity. Then, we show how forgetting may be applied to improve
adaptivity. The results can be immediately applied to multicomponent mixtures.

Table 1: Notation
Symbol Meaning

B(x, y) beta function with arguments x, y
c ≥ 0 value of the Kullback-Leibler divergence
D(f ||g) ≥ 0 Kullback-Leibler divergence of f from g

f0(Θ) ≡ βα(s
∗

1, s
∗

2) alternative (prior) pdf of Θ conditioned on prior knowledge
(data)

ft(Θ) ≡ βα(s1, s2) true pdf of Θ conditioned on prior knowledge (data)

f̂t(Θ) ≡ βα(s
′

1, s
′

2) approximate posterior pdf of Θ conditioned on piror knowl-
edge (data)

f̃t(Θ) ≡
∑2

i=1wiβα,i(s1, s2) posterior mixture
mt(Θ) model with parameter Θ conditioned on prior knowledge

(data)
wi ∈ [0, 1] weight of a beta mixture component
Ny(µ, r) Gaussian distribution of y with nonnegative parameters

(statistics) µ, r
α ∈ [0, 1] weight of a Gaussian mixture component
βα(s1, s2) beta distribution of α with parameters s1, s2
λ ∈ [0, 1] forgetting factor
ψ(·) digamma function of ·
Θ parameter, possible multivariate

1 Two-component mixture

Let us have a two-component Gaussian mixture model with a multivariate parameter Θ

mt(Θ) ≡ mt(y|α, µ1, µ2, r1, r2) = αNy(µ1, r1) + (1− α)Ny(µ2, r2), (1)

where µ1, µ2, r1, r2 are known parameters and the task is to estimate α on base of a data set
y = {y1, . . . , yn} generated by the mixture (with known α). From this time on, to preserve
the consistence with the paper mentioned in the abstract, whenever a function of Θ (being a
parameter) occurs, only the parameter α is thought. This is possible since we consider µi, ri
to be known and not estimated.

Since α ∼ βα (s1, s2) and it is modelled on base of the data, the task consists in the search
of the mean value of α, formally given by

E[α] =
s1

s1 + s2
. (2)



2 Data update of a conditional beta distribution

The data update reads

f̃t(Θ) ∝ mt(Θ)f̂t−1(Θ) (3)

∝
[
αNy(µ1, r1) + (1− α)Ny(µ2, r2)

]

︸ ︷︷ ︸

mt(Θ)

αs1−1(1− α)s2−1

︸ ︷︷ ︸

f̂t−1(Θ)=βα(s1,s2)

(4)

=
αs1+1−1(1− α)s2−1

B(s1 + 1, s2)

Ny(µ1, r1)

Ny(µ1, r1) +Ny(µ2, r2)
︸ ︷︷ ︸

w1

(5)

+
αs1−1(1− α)s2+1−1

B(s1, s2 + 1)

Ny(µ1, r1)

Ny(µ1, r1) +Ny(µ2, r2)
︸ ︷︷ ︸

w2

(6)

= βα (s1 + 1, s2)w1 + βα (s1, s2 + 1)w2 (7)

=
2∑

i=1

wiβα,i, (8)

where f̂t−1(Θ) is a prior pdf approximating the true but unknown ft−1(Θ). The need for this
approximation arises from the resulting data updated pdf, being a mixture.

The approximation is evaluated w.r.t. the Kullback-Leibler divergence [1] of two β distri-
butions [2], formally

D(β, β′) = ln
B(s′1, s

′

2)

B(s1, s2)
− (s′1 − s1)ψ(s1)− (s′2 − s2)ψ(s2) + (s′1 − s1 + s′2 − s2)ψ(s1 + s2). (9)

where, in our case, β̃ ≡ β and β′ is the mixture (1); B and ψ are the beta and the digamma
functions, respectively.

Differentiation of (9) w.r.t. s′1, s
′

2 and setting equal to zero yields

∂D

∂s′1
= ψ(s′1)− ψ(s′1 + s′2)−

2∑

i=1

wiψ(si,1) +
2∑

i=1

wiψ(si,1 + si,2) = 0 (10)

∂D

∂s′2
= ψ(s′2)− ψ(s′1 + s′2)−

2∑

i=1

wiψ(si,2) +
2∑

i=1

wiψ(si,1 + si,2) = 0 (11)

The resulting system of equations cannot be solved analytically. Therefore, we find an ap-
proximate solution numerically. For instance, in Matlab we can use the following m-function:

function f = kldivmin(x, w, s1, s2)

f = [psi(x(1)) - psi(x(1) + x(2)) - dot(w, psi(s1)) + dot(w, psi(s1+s2));

psi(x(2)) - psi(x(1) + x(2)) - dot(w, psi(s2)) + dot(w, psi(s1+s2))]

and find the solution by calling

>> [x,fval] = fsolve(@kldivmin,x0,options, w, s1, s2)



where x(1), x(2) stand for s′1 and s
′

2; w, s1, s2 are arbitrary-shape 2-vectors of weights and
statistics and x0 are any suitable initial values. options contains user-defined optimization
options, consult optimset for more information.

Following the above steps we have obtained

f̂t(α) = βα(s
′

1, s
′

2). (12)

2.1 Approximation error

The approximation is surely not exact. We can use the Kullback-Leibler divergence to calcu-
late the “approximation error”. However, since this would be analytically not tractable, we
will stick with the upper bound c of D(f̃t||f̂t) found using the Jensen’s inequality [3]:

D(f̃t||f̂t) =

∫

f̃t(α) ln
f̃t(α)

f̂t(α)
dα (13)

=

∫ 2∑

i=1

wiβα,i ln

∑2
i=1wiβα,i

β̂α
dα (14)

=

∫ 2∑

i=1

wiβα,i

︸ ︷︷ ︸

Eβ

ln
2∑

i=1

wiβα,i

︸ ︷︷ ︸

lnEβ

dα−

∫ 2∑

i=1

wiβα,i ln β̂αdα (15)

≤

∫ 2∑

i=1

wiβα,i lnβα,i

︸ ︷︷ ︸

Eβ lnβ

dα−

∫ 2∑

i=1

wiβα,i ln β̂αdα (16)

From which it follows that

c =
2∑

i=1

∫

wiβα,i ln
βα,i

β̂α
dα =

2∑

i=1

wiD(βα,i||β̂α) (17)

Practically, c is obtained using (9).

3 Adaptive forgetting

Forgetting, also known as the time update, is often used to improve the adaptivity of estima-
tion. We develop its idea for the beta pdf. Generally, the (stabilized) exponential forgetting
method flattens the posterior pdf, which in our case has the following form:

ft;λt
∝ f1−λt

0 f̂λt (18)

∝
[

αs∗
1
−1(1− α)s

∗

2
−1

]1−λ [

αs′
1
−1(1− α)s

′

2
−1

]λ

(19)

=
αλ(s′

1
−s∗

1
)+s∗

1
−1(1− α)λ(s

′

2
−s∗

2
)+s∗

2
−1

B
(

λ(s′1 − s∗1) + s∗1, λ(s
′

2 − s∗2) + s∗2

) . (20)



We search for λt such that
D(ft;λt

||f̂t) = c. (21)

Since the special functions in (9) prevent analytical solution, we have to find the value of λt
numerically. A very slight modification of the approach presented in Section 2 can be used.

4 Example

The following simple example briefly demonstrates the effects of forgetting used in Bayesian
parameter estimation. The task is to estimate the parameter α given the set of 200 data
randomly generated from the Gaussian mixture

αNy(µ1, r1) + (1− α)Ny(µ2, r2) (22)

where µ1 = 0, µ2 = 50 are mean values and r1 = 1, r2 = 400 are respective variances; the
weight α = 0.9. The alternative pdf f0 ≡ βα(10

−6, 10−6). The estimation was run in two
scenarios:

Scenario 1: The estimation was initialized with wrong prior pdf f̂0 ≡ βα(10, 90). It was
expected that forgetting will gradually suppress this invalid information by stressing
the available data.

Scenario 2: The estimation was initialized with credible prior pdf f̂0 ≡ βα(90, 10). Forget-
ting was expected to slightly decrease the estimation quality due to the incorporation
of flat alternative pdf.

Three approaches were tested: (i) estimation without forgetting, (ii) exponential forgetting
with constant factor λt = 0.985 and (iii) adaptive exponential forgetting.

Table 2 depicts the estimation results in terms of a root mean square error (RMSE) for
both scenarios. Figures 1 and 2 show the evolution of the absolute estimation error for
estimation without forgetting and with adaptive forgetting. Fig. 3 depicts the evolution of
forgetting factor of adaptive forgetting.

To conclude, the results were consistent with our expectation. If the decision making
(estimation) is run under the proper knowledge, any forgetting leads to slightly worse results.
However, the proper knowledge is rather rare in practice and the user faces uncertainty. Then,
forgetting provides a way to reflect it and to improve estimation quality.

No forgetting EF (0.985) AF

Scenario 1 0.456 0.366 0.320
Scenario 2 0.004 0.011 0.033

Table 2: Example: RMSE for two presented scenarios with no forgetting, exponential forget-
ting (EF) with factor 0.985 and adaptive forgetting (AF).
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Figure 1: Estimation without forgetting – evolution of absolute estimation error.
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Figure 2: Estimation with adaptive forgetting – evolution of absolute estimation error.
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Figure 3: Estimation with adaptive forgetting – evolution of forgetting factor.
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