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a b s t r a c t

This text provides background of fully probabilistic design (FPD) of decision-making strat-
egies and shows that it is a proper extension of the standard Bayesian decision making. FPD
essentially minimises Kullback–Leibler divergence of closed-loop model on its ideal coun-
terpart. The inspection of the background is important as the current motivation for FPD is
mostly heuristic one, while the technical development of FPD confirms its far reaching pos-
sibilities. FPD unifies and simplifies subtasks and elements of decision making under
uncertainty. For instance, (i) both system model and decision preferences are expressed
in common probabilistic language; (ii) optimisation is simplified due to existence of expli-
cit minimiser in stochastic dynamic programming; (iii) DM methodology for single and
multiple aims is unified; (iv) a way is open to completion and sharing non-probabilistic
and probabilistic knowledge and preferences met in knowledge and preference elicitation
as well as unsupervised cooperation of decision makers.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

There is a whole range of axiomatic formulations of decision making (DM) under uncertainty and incomplete knowledge,
e.g. [23]. It seems, however, that none of them fits satisfactorily to closed decision loops in which the selected actions influ-
ence distributions describing them—cf. [8]. This paper attempts to fill the gap. The text serves primarily as a formalised jus-
tification of the fully probabilistic design (FPD) of decision-making strategies—see [10,11,14]. The relationship of the FPD to
the standard Bayesian DM is established too.

We consider a DM unit, called participant, that selects a T-tuple of actions aT = (a1, . . . ,aT), where T is a positive integer and
each at belongs to a nonempty set aH

t . The actions are chosen with the aim to influence participant’s environment, a thought
of a part of the real world. In connection with the faced DM task, the participant considers observations of the environment
DT = (D1, . . . ,DT), where Dt 2 DH

t – ;, together with others unobserved variables xT ¼ ðx1; . . . ; xTÞ; xt 2 xH

t . The triple of these
vectors

Q ¼ ðDT ; aT ; xTÞ ð1Þ

forms one possible behaviour of the closed loop consisting of the participant and its environment. By QH we denote the set of
all possible behaviours. For majority of applications, it suffices to identify QH with a subset of finite-dimensional Euclidean
space. For the purposes of this paper, it is enough to assume that QH is a topological space. In the sequel we denote

dT ¼ ðDT ; aTÞ:

The inspected theory should help in selecting the optimal strategy among available DM strategies ST, where each ST is a
T-tuple of DM rules
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St : dt�1
# at; t ¼ 1; . . . ; T: ð2Þ

The choice of d0 is governed by available prior knowledge. Throughout the remainder we write S instead of ST if there is no
ambiguity. The optimal strategy should ‘‘push’’ the closed-loop behaviour as much as possible towards a desired closed-loop
behaviour. Of course, the assumption is that the participant has at least partial preferences among possible behaviours. The
paper is organised as follows (Sections 2–6).

1. The strict partial preferential ordering /QH on the set of all behaviours QH is characterised and quantified by a loss func-
tion Z : QH ! R. The inevitable assumptions are only made. Consequently, the loss function Z that orders possible behav-
iours a posteriori is non-unique.

2. Let Sw be the set of all strategies. For a given strategy S 2 Sw, the possible behaviours Q 2 QH are expressed as images of
external unobserved influences N called uncertainties. We assume that the set N⁄ of all uncertainties is a locally compact
Hausdorff space. Finite-dimensional Euclidean space or its nonempty subset is a typical example of Nw. Uncertainties
include anything what a priori prevents unambiguous determination of the closed-loop behaviour Q for a given S. For
each S 2 Sw, the considered mapping

WS : NH ! QH ð3Þ

is assumed to be bijective and Borel measurable.
3. A complete a priori ordering /SH is defined on Sw in order to select the optimal DM strategy as the most preferred one in

terms of this ordering. The ordering /SH is quantified via a local functional T acting on functions ZS = Z(WS(N)). In order to
respect participant’s preferences, the resulting ordering of losses (taken as functions of the uncertainty) must not prefer
strictly dominated losses, i.e., the losses being strictly larger than another loss induced by an admissible strategy.

4. The integral representation of the local functional T developed in [22] is given by a kernel U and a finite nonnegative
regular Borel measure l on Nw. The measure is recognised as a universal model of uncertainties N 2 Nw common to all
DM tasks sharing them. The non-dominance requirement is respected by using local functionals strictly isotonic with
the dominance ordering of losses. The kernel U strictly increasing in the loss values guarantees the isotonicity.

5. The mappings Z and U, resulting from the quantitative characterisation of the a priori ordering of strategies /SH , are
restricted by widely acceptable conditions that make FPD the only acceptable alternative in selecting the best strategy.
The essence of FPD consists in the minimisation of the Kullback–Leibler divergence (KLD) of closed loop model on its ideal
counter-part. While FPD was proposed in [11] and extended into a general form in [14], the current paper tries to make
the original heuristic approach more exact and to relate FPD to standard Bayesian DM.

6. A certain ‘‘closure’’ of the standard Bayesian DM tasks is shown to be a proper subset of FPD tasks and conclusions
summarise general properties of the proposed FPD.

In this paper we build a solid mathematical background for FPD. Our approach is axiomatic, starting with the order-
theoretic description of the problem, which is usual in decision theory and Bayesian DM [8,23,9]. We refrain from including
examples of applications since this would substantially increase the length of the paper. Nonetheless, the original FPD has
been motivated heuristically and already led to solutions of important practical problems, such as advising to human beings
handling complex situations [13], non-standard knowledge sharing [12], and preference elicitation [15]. A special version of
FPD (the so-called KL control) was discovered independently in [28] and FPD was re-discovered also in connection with a
brain-oriented research [27]. These developments induce the demand for a rigorous framework, which will determine the
boundaries of applicability and the real potential of FPD.

2. Ordering of behaviours

In this section we recall the basic notions related to strict preference orderings—see [8] for details. The participant is sup-
posed to have a strict preferential ordering /QH among behaviours Q 2 QH, which is an irreflexive and a transitive binary rela-
tion /QH on QH: We write:

aQ/QH
bQ ð4Þ

with the interpretation ‘‘aQ is preferred against bQ’’. The irreflexivity of /QH means that Q/QHQ holds true not for every
Q 2 QH. Transitivity of /QH says that for every aQ; bQ; cQ 2 QH the implication

ðaQ/QH
bQ ^ bQ/QH

cQÞ ) aQ/QH
cQ

is satisfied.
The preferential ordering /QH is in general only partial as the participants are often unable or unwilling to compare all

pairs of possible behaviours. This is a key yet a realistic obstacle of the preference modelling. The incomparable pairs can
be perceived as indistinguishable:

aQ � bQ () def ðaQ/QH
bQÞ _ ðbQ/QH

aQÞ
� �

:
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In general, the relation � is not necessarily transitive and therefore may not be an equivalence. The absence of transitivity is
easily demonstrated when considering the ordering of two-dimensional integer-valued vectors Q ¼ ½Q1;Q2� with aQ/QH

bQ
defined by aQi <

bQi; i ¼ 1;2. It suffices to take aQ ¼ ½0;0�; bQ ¼ ½1;1� and cQ ¼ ½2;�1�, since:

aQ � cQ ^ cQ � bQ ^ aQ/QH
bQ:

However, a binary relation � on QH defined as:

aQ � bQ () defðaQ � cQ () bQ � cQÞ; for every cQ 2 QH;

turns out to be transitive. Moreover, it is an equivalence relation on QH [8, Theorem 2.3]. By QH

� we denote the set of all
equivalence classes of QH under �.

For a systematic design of DM strategies, the inspected ordering /QH is represented numerically. There is a variety of con-
ditions under which such representation exists. The next assertion is Theorem 2.5 from [8]—see [7] for an alternative
formulation.

Theorem 2.1 (Numerical representation of orderings). If /QH is a strict preferential ordering on QH and QH

� is countable, then
there is a real-valued function Z on QH such that, for every aQ; bQ 2 QH:

aQ/QH
bQ ) ZðaQÞ < ZðbQÞ;

aQ � bQ ) ZðaQÞ ¼ ZðbQÞ:
The function Z described in the above proposition is usually called loss function. In general, it is not determined uniquely.

3. Ordering of decision strategies

For design purposes, we have to specify a complete strict preferential ordering of strategies. The design then reduces to the
selection of the optimal strategy, which is the ‘‘most preferred’’ one with respect to this ordering.

Let us consider the set of behaviours QH with a strict preferential ordering /QH meeting the assumptions of Proposition
2.1, and let Z be a loss function representing it according to this proposition. Every behaviour Q 2 QH is the image of a con-
sidered strategy S 2 Sw and the uncertainty N 2 Nw—see (3). Thus, the loss function Z can be expressed as a real function of
uncertainties ZS : NH ! R defined by:

ZSðNÞ ¼ ZðWSðNÞÞ; for every N 2 NH and every strategy S 2 SH:

Considering all possible strategies S 2 Sw together with the fixed loss function Z, we denote:

ZSH ¼ fZSjS 2 SHg:

In the sequel we assume that a participant has adopted a strict complete preferential ordering /SH on the set Sw. This
ordering /SH induces a strict complete preferential ordering /Z

SH
on ZSH given by:

ZaS/Z
SH

ZbS () def
aS/SH

bS ð5Þ

for every ZaS; ZbS 2 ZSH :

The specification of the complete ordering /SH can be too complex to be used directly in selection of the optimal strategy.
If this is the case, then [8, Theorem 2.5] can be applied to the ordering /Z

SH
, which, in turn, represents the ordering /SH . Pro-

vided ðZSH Þ� is countable (note that this necessarily implies the countability of ZSH since ZSH

� �
� is the set of singletons), the

proposition guarantees existence of a functional

TZ : ZSH ! R; ð6Þ

such that

ZaS/Z
SH

ZbS ) TZðZaSÞ < TZðZbSÞ:

4. Basis of the FPD

In order to get operational tool for the choice of the best strategy, we represent the functional TZ from (6), whose purpose
is to completely order strategies, by exploiting integral representation of local functionals [22].

In accordance with our aims, we want to make the result weakly dependent on a loss function Z chosen. Let us consider
functions of the same uncertainty N 2 Nw, which arise by both varying possible strategies S 2 Sw and loss functions:

Z 2 ZH ¼ losses representing quantifiable orderings /QH ð4Þ: ð7Þ

M. Kárný, T. Kroupa / Information Sciences 186 (2012) 105–113 107
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This means that we consider the set of functions:

ZH

SH ¼
[

Z2ZH

ZSH ¼
[

Z2ZH

fZ �WSjS 2 SHg:

For each Z 2 Zw there exists a numerical representation TZ of ZSH given by (6). We assume that there exists a real func-
tional T on ZH

SH such that its restriction to every ZSH coincides with TZ. It is reasonable to require the functional T to be con-
tinuous on the space of ‘‘nice’’ loss functions.

The ‘‘nice’’ loss functions in ZH

SH are assumed to form the linear space Cc of real-valued continuous functions with a com-
pact support in Nw. From now on we assume that ZH

SH ¼ Cc. The supremum norm k�kmakes Cc into a normed linear space. The
following representation of a rich collection of functionals on ZH

SH is described in [22, p. 479, Theorem 5], where the highly
technical proof can be found.

Theorem 4.1 (Representation of local functionals). Let T : ZH

SH ! R be a mapping such that the following three conditions are
fulfilled:

1. (Sequential continuity) If ðZnÞ1n¼1 is a bounded point-wise convergent sequence in ZH

SH , then the sequence ðTðZnÞÞ1n¼1 is Cauchy.
2. (Local additivity)

TðaZþ bZÞ ¼ TðaZÞ þ TðbZÞ whenever aZbZ ¼ 0 for aZ; bZ 2 ZH

SH : ð8Þ

3. (Bounded uniform continuity) For each e > 0, c > 0, there is a d > 0 such that if kaZk < c; kbZk < c; aZ; bZ 2 ZH

SH and
kaZ � bZk < d, then jT(aZ) � T(bZ)j < e. Then

TðZÞ ¼
Z

NH

UðZðNÞ;NÞdl; for every Z 2 ZH

SH ; ð9Þ

where l is a finite non-negative regular Borel measure on Nw and the kernel U : R� NH ! R satisfies the following conditions:
4. U(0, �) = 0 and U(�,N) is continuous for l-almost all N 2 Nw.
5. U(x, �) is Borel measurable for every x 2 R:

6. For every Z 2 ZH

SH , the function U(Z(N),N) is bounded for l-almost all N 2 Nw and for any bounded point-wise convergent
sequence ðZnÞ1n¼1 in ZH

SH , the sequence ðUðZn; �ÞÞ1n¼1 is Cauchy in the space L1(Nw,l) of functions NH ! R that are absolutely inte-
grable w.r.t. l. Conversely, if the pair (U,l) satisfies the last three conditions and the functional T is defined by (9), then it meets
the initial three conditions.

The kernel U is determined by l uniquely only outside a l-null set. The only interpretation-sensitive assumption of the
above theorem is local additivity (8) of T on the pair of loss functions with disjoint supports. It is, however, much weaker
than usually required additivity.

The restriction of T on any ZSH (from now on also denoted by T) represents the ordering /Z
SH

and thus via (5) it represents
the complete preferential ordering /SH :

aS/SH
bS() TðZaSÞ < TðZbSÞ and aS ¼ bS() TðZaSÞ ¼ TðZbSÞ: ð10Þ

The definition (5) induces the complete ordering /Z
SH

of loss functions from ZSH . At the same time, the ordering of behav-
iours induces strict partial ‘‘dominance’’ ordering /d

Z
SH

on the same set ZSH :

ZaS/
d
Z

SH
ZbS () def

ZaS 6 ZbS and
there is a Borel set B # NH with lðBÞ > 0;
such that ZaSðNÞ < ZbSðNÞ for every N 2 B:

8><
>: ð11Þ

The strategy bS in (11) is dominated by the strategy aS and any reasonable ordering introduced on Sw must not take it as the
optimal one: its consequences are worse than those of aS irrespectively of the inaccessible uncertainties. This motivates the
key requirement on the constructed ordering of strategies.

Requirement 4.1 (Inadmissibility of dominated strategies). If aS/SH
bS, then ðZbS/

d
Z

SH
ZaSÞ for every aS, bS 2 Sw. Every such

ordering /SH is called admissible.

The following proposition is a straightforward consequence of the representation of T by the Lebesgue integral (9).

Theorem 4.2 (Representation of admissible strategy ordering). For each loss function Z 2 Zw, the functional T leads, due to (10),
to an admissible ordering on Sw whenever the kernel U(�,N) is an increasing function of the first argument for l-almost all N 2 Nw.

The complete ordering /SH is invariant with respect to the multiplication of T by any positive real number. Thus, without a
loss of generality, we can assume that l is a regular Borel probability measure on Nw.

108 M. Kárný, T. Kroupa / Information Sciences 186 (2012) 105–113
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Let ZS 2 ZH

SH . Using the change of variable formula, the integral in (9) gets transformed into:

TðZSÞ ¼ TðZ �WSÞ ¼
Z
QH

UðZðQÞ;W�1
S ðQÞÞdlS; ð12Þ

where lSðAÞ ¼ l W�1
S ðAÞ

� �
, for every Borel subset A ofQH. Let us suppose that there exists a probability measure m onQH such

that, for every S 2 Sw, the probability measure lS is absolutely continuous w.r.t. m. This means that there is a probability den-
sity function (pdf) fS ¼ dlS

dm so that the last integral in (12) becomes:Z
QH

U ZðQÞ;W�1
S ðQÞ

� �
fSðQÞdm: ð13Þ

We assume that the kernel U does not discern between ‘‘equiprobable’’ elements of Nw causing the same loss.

Requirement 4.2 (Risk attitude). If fSðQ1Þ ¼ fSðQ2Þ, for a fixed strategy S and a pair Q1; Q2 2 QH, then U z;W�1
S ðQ1Þ

� �
¼

U z;W�1
S ðQ2Þ

� �
for every z 2 R.

It is thus correct to define a function X : R� RangeðfSÞ to R by:

Xðz; fSðQÞÞ ¼ U z;W�1
S ðQÞ

� �
:

The formula (13) then reads as:

TðZSÞ ¼
Z
QH

XðZðQÞ; fSðQÞÞfSðQÞdm¼def ElS
½XðZ; fSÞ�: ð14Þ

The representation (14) of the strict complete preferential ordering /SH of the DM strategies S 2 Sw has the following impor-
tant methodological consequences:

1. The representation by the functional T separates description of the uncertainty l in (9) and its influence on a posterior
ordering of behaviours Q 2 QH expressed by values of the specific loss function ZðQÞ. Thus, the probability density func-
tion fS can be interpreted as the objective description of the uncertainty entering the closed loop formed by the consid-
ered environment and a DM strategy S. The function fS describes distribution of behaviour realisations for a given
strategy: it is thus an objective model of the closed loop.

2. The kernel X reflects interaction between the uncertainty, projected into QH and a posteriori observable loss ZðQÞ. It
models attitude of the participant to risk (neutral, risk prone, risk aware) or more generally, a non-trivial interactions
between a posteriori consequences and their distribution. There are strong indications, that such a possibility is badly
needed at least in risk-facing DM (cf. [26]).

The preceding construction thus amounts to finding the optimal strategy minimising the expected value in (14). The opti-
mised strategy influences just the pdf fS, which enters both the function X and—linearly—the expectation operator ElS

. Let us
stress that the occurrence of fSðQÞ in X is non-standard and represents the key generalisation brought by the proposed prob-
lem formulation.

The presented results indicate that neither the kernel X nor the loss function Z are unique. For every pair P = (X,Z), let fSP

be the closed-loop model with P-optimal strategy SP such that

SP 2 arg min
S2SH

Z
QH

XðZðQÞ; fSðQÞÞfSðQÞdm: ð15Þ

Let Pw be the set of all possible pairs P = (X,Z), where X is a kernel R� Rþ ! R and Z 2 Zw (7). All designs of the optimal
strategies that start from different pairs P1, P2 2 Pw and lead to the same closed-loop description are equivalent: precisely,
P1, P2 2 Pw are equivalent when fSP1 ðQÞ ¼ fSP2 ðQÞ for m-almost all Q 2 QH.

Traditionally, the design starts with the choice of the pair P. It determines the optimal strategy through (15) and conse-
quently the optimally tuned closed loop. The fully probabilistic design changes the specification order and formulates the
problem as follows: the participant specifies first some strictly positive ideal pdf If on QH describing the ideally tuned closed
loop. Then the participant selects a proximity measure D(fkg) on pdfs f, g overQH and takes the strategy minimising the prox-
imity D(fSkIf) on Sw as the optimal one.

In order to select a reasonable proximity measure for a given ideal If, we want to recover a pair IP = (IX, IZ) such that

f
S

I P ðQÞ ¼ If ðQÞ; for m-almost all Q 2 QH: ð16Þ

Among all equivalent pairs IP = (IX, IZ) satisfying (16), we search for a representative pair IP meeting the following require-
ment, which was inspired by a related problem inspected in [2].

Requirement 4.3 (Representative Pair IP = (IX, IZ)). For a given strictly positive ideal pdf If, there exists a pair IP satisfying (16)
such that:

1. IX IZðQÞ; f
S

I P ðQÞ
� �

¼ constant for m-almost all Q 2 QH.
2. IX(z, �) is continuously differentiable for every z 2 R.
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The following proposition shows that under this requirement there is a little freedom in choosing the representative pair
IP = (IX, IZ).

Theorem 4.3 (Form of the Pair IP = (IX, IZ)). Let If be an arbitrary, strictly positive, ideal pdf and suppose that Requirement 4.3
holds true. Then for every S 2 Sw and m-almost all Q 2 QH,

IXðIZðQÞ; fSðQÞÞ ¼ ðIA� IBÞ ln fSðQÞ
If ðQÞ

� �
þ IB; IA P IB; and thus;

ElS
½IXðIZ; fSÞ� ¼ ðIA� IBÞ

Z
QH

ln
fSðQÞ
I f ðQÞ

� �
fSðQÞdmþ IB: ð17Þ

Proof. By taking Gâteaux derivative [1] of the minimised functional ElS
½IXðIZ; fSÞ� at fS = If, we get the necessary condition for

minimum for almost all Q 2 QH:

x
@

@x
IXðIZðQÞ; xÞ þ IXðIZðQÞ; xÞ ¼ IA; for x ¼ If ðQÞ ¼ f

S
I P ðQÞ; ð18Þ

and some constant IA. Due to the Requirement 4.3, we get

IXðIZðQÞ; If ðQÞÞ ¼ constant ¼ IB: ð19Þ

This implies that:

@

@x
IXðIZðQÞ; xÞ ¼

IA� IB
x

;

which has the solution

IXðIZðQÞ; xÞ ¼ ðIA� IBÞ lnðxÞ þ ICðQÞ:

The condition (19) determines ICðQÞ uniquely so that we obtain

IXðIZðQÞ; xÞ ¼ ðIA� IBÞ ln x
If ðQÞ þ

IB:

The expression IA � IB must be nonnegative since the constructed functional is to be minimised. The case IA � IB = 0 is not
considered in the sequel since it renders all strategies equivalent. h

Remarks 4.1. [On Proposition 4.3 and its conditions]

1. The expectation (17) is an increasing affine transformation of Kullback–Leibler divergence

DðfkI f Þ ¼
Z
QH

f ðQÞ ln f ðQÞ
If ðQÞ

� �
dQ;

which is studied in [18] as the widely used proximity measure of pdfs with a range of applications in DM, statistics and
information theory. It has an exceptional position within a class of so called f-divergences [29].

2. The closed-loop description fS enters into the optimised functional in a non-linear way. This is a source of strength as well
as weakness of the FPD discussed in subsequent sections. Related considerations of conditional expectation as a possibly
non-linear mapping can be found in [21].

3. It is worth stressing that the multi-modal ideal pdf allows a straightforward quantification of multiple-aims, which other-
wise is taken as a hard extension of the standard single-aim Bayesian paradigm.

5. Relation of standard Bayesian DM and FPD

The standard Bayesian DM assumes that every pdf fS enters the minimised functional only linearly. This results in con-
sidering the optimal strategy:

SP 2 arg min
S2SH

Z
QH

XðZðQÞ;QÞfSðQÞdm; ð20Þ

where XðZðQÞ;QÞ ¼ U ZðQÞ;W�1
S ðQÞ

� �
is assumed to be independent of the chosen strategy S 2 Sw—cf. (15), (12). In order to

relate the task (20) to FPD, we recall well-known properties of the standard Bayesian DM.
Below, we exploit structure of the behaviour introduced in (1). From now on, we assume that the dominating probability

measure m has the product form on the three individual constituents (1) of behaviour. Integrals of the type
R
aH �dm mean that
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factor of m corresponding to the considered a is used only. From now on, we also assume that the set of all behaviours QH is
Rm for some positive integer m.

With the considered m, the pdf fSðQÞ ¼ fSðdT
; xTÞ describing closed decision loop factorises as follows:

fSðdT
; xTÞ ¼

YT

t¼1

f ðDt ; xtjat ;Dt�1; xt�1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
local environment model Mt

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
env ironment model

M ¼ MðdT
; xTÞ

�
YT

t¼1

f ðat jdt�1
; xt�1Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

rule St of the strategy S

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
strategy

S ¼ SðdT
; xTÞ

:

ð21Þ

This form is correct when identifying f(a1d0,x0j) with f(a1). The first factor in (21) is fixed as the participant is assumed to
select the optimal strategy with a fixed environment model M. The second factor describes the optimised strategy S. By def-
inition, the participant never observes xT directly observed. Thus, natural conditions of DM [20] have to be met:

f ðat jdt�1
; xt�1Þ ¼ f ðat jdt�1Þ: ð22Þ

The condition above complies with domains of decision rules St in (2). The optimal strategy SP within the standard Bayesian
DM is found via well-known stochastic dynamic programming [3]. The following proposition was essentially proven in [13].

Theorem 5.1 (Stochastic dynamic programming). Decision rules of the optimal strategy (21) are deterministic strategies
described by

f Pðatjdt�1Þ ¼ dðat � aPðdt�1ÞÞ ¼ formal pdf concentrated on aPðdt�1Þ:
The values aP(dt�1) are minimising arguments in

Vðdt�1Þ ¼min
at2aH

t

Z
dH

t

VðdtÞf ðDtjat ;d
t�1Þdm:

The construction is made recursively for t = T,T � 1, . . . , 1 starting from

VðdTÞ ¼
Z

xT H

XðZðdT
; xTÞ;dT

; xTÞf ðxT jdTÞdm:

Under natural conditions of control (22), the predictive pdf f(Dtjat,d
t�1) and the ‘‘filtering’’ pdf f(xTjdT) of unobserved xT result from

the Bayesian filtering described by the recursive formulas:

f ðDtjat ;d
t�1Þ ¼

Z
xt�1H

f ðDt jat; d
t�1
; xt�1Þf ðxt�1jdt�1Þdxt�1; ðpredictionÞ

f ðxtjdtÞ / f ðDt; xtjat ;Dt�1; xt�1Þf ðxt�1jdt�1Þ; ðfilteringÞ:
This proposition implies that fSP resulting from the standard Bayesian design (20) cannot serve directly as the ideal pdf If

in FPD as it violates the positivity of If enforced by Requirement 4.3. The following simple proposition provides a technical
tool for coping with this problem.

Theorem 5.2 (Lower bound on entropy of deterministic rules). Any deterministic rule f(a) = d(a � aP) reaches the lower bound
H of the entropy Hðf Þ ¼ �

R
aH f ðaÞ lnðf ðaÞÞdm; where

H ¼
0; for discrete-valued action a;
�1; continuous-valued action a:

	

Proof. Direct inspection solves discrete-valued case. In continuous-valued case, the formal pdf is Dirac delta function. This
generalised function can be obtained as limit of positive pdfs [30], say normal ones with the expectation aP and diagonal
covariance matrix cI, where I is unit matrix and c > 0 approaches zero. For them, entropy equals lnðj2pcIjÞ

2 ! �1 for c ? 0. h

Consequently, if we select H < �H and optimise (20) over the strategies meeting the constraintZ
QH

MS lnðSÞdm 6 H < �H; ð23Þ

the constraint (23) is always active. Moreover, when the constraint becomes less severe, i.e., H! �H, then the optimal
Bayesian strategy is recovered.

Kuhn–Tucker theorem [17] implies that the minimisation (20) under the constraint (23) reduces to minimisation of

SP
H 2 arg min

S2SH

Z
QH

XðZðQÞ;QÞ þ kðHÞ lnðSÞ

 �

fSðQÞdm

¼ arg min
S2SH

DðfSkIHf Þ with

IHf ðQÞ ¼
MðQÞ exp � 1

kðHÞ
XðZðQÞ;QÞ

h i
R
QH MðQÞ exp � 1

kðHÞ
XðZðQÞ;QÞ

h i
dm

: ð24Þ
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The positive Kuhn–Tucker multiplier kðHÞ converges to zero for H ! �H and the optimal strategy SP
H converges to the opti-

mal strategy of the standard Bayesian DM. The ideal pdf IHf ðQÞ (24) is positive.
When noticing that generically the optimal strategies obtained by FPD are randomised, we can summarise the achieved

results in the following expressive way.

Theorem 5.3 (FPD vs. standard Bayesian DM)

1. Any standard Bayesian DM problem (20) can be approximated to an arbitrary precision by the FPD problem given by the ideal
pdf (24) by selecting sufficiently small positive kðHÞ.

2. There are FPD’s having no standard Bayesian DM counterpart.

6. Conclusions

The paper provides an axiomatisation of DM under uncertainty that suits to closed decision loop. It advocates that fully
probabilistic design of decision strategies is the proper way to address problems of this type. The following comments add
observations related to FPD.

6.1. Advantages of the FPD

	 Dynamic programming shows that stochastic optimisation can be based on iterative operations such as conditional
expectation and minimisation (see Proposition 5.1 or [3]). The FPD has an explicit minimiser [14], so that the (almost)
inevitable approximation task [24] is substantially simplified. The evaluation complexity of the optimal strategy can
be simply seen on so called data-driven FPD when no internal quantities are present and Q ¼ dT . The following proposi-
tion is proved in [13].

Theorem 6.1 (Solution of the data-driven FPD). The optimal strategy minimising the KLD of

f ðQÞ ¼ f ðdTÞ ¼
YT

t¼1

f ðDt jat; d
t�1Þf ðat jdt�1Þ

on the ideal pdf If ðQÞ ¼ If ðdTÞ ¼
QT

t¼1
If ðDt jat ; d

t�1ÞIf ðat jdt�1Þ has the form

f ðatjdt�1Þ ¼ If ðatjdt�1Þ
exp �xðat; d

t�1Þ
h i
cðdt�1Þ

;

cðdt�1Þ ¼
Z

aH

t

I f ðatjdt�1Þ exp �xðat ;d
t�1Þ

h i
dm; for t < T;

xðat; d
t�1Þ ¼

Z
DH

t

f ðDtat; d
t�1jÞ ln f ðDt jat;d

t�1Þ
cðdtÞIf ðDt jat ;d

t�1Þ

 !
dm:

The solution runs for t = T, T � 1, . . . , 1 starting with c(dT) = 1.
Notice that the restricted support of the ideal pdf on actions implies restricted support of the chosen strategy. Thus, the

ideal pdf quantifies both decision aims and constraints.

	 Multi-modal ideal pdf expresses ‘‘naturally’’ multiple decision aims [4]. There is no conceptual jump between single and
multiple aim optimisation.
	 In the multiple-participant context, the well-developed art of combining pdfs [19,6,5,12], can be extended to combination

of preferences expressed by ideal pdfs [16]. The similar problem is much harder in the classical setting.
	 Unlike in the standard Bayesian DM, the optimal strategies are randomised. It is much more realistic as any channel

implementing the designed DM strategy has a finite capacity (cf. [25]), i.e., it is unable to implement non-randomised
strategy.

6.2. Drawbacks of the FPD

General limitations of the FPD follow predominantly from the fact that preferences are quantified in a non-standard way:

	 Expression of the real aims by If is non-trivial and easily it may happen that the option made does not reflect them
properly.
	 The usual complete separation of the a posteriori loss and description of the uncertainty is broken. This argument is, how-

ever, valid only when the neutral risk attitude is (implicitly) assumed.
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