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SUMMARY

The paper introduces an algorithm for estimation of dynamic mixture models. A new feature of the
proposed algorithm is the ability to consider a dynamic form not only for component models but also for
the pointer model, which describes the activities of the mixture components in time. The pointer model
is represented by a table of transition probabilities that stochastically control the switching between the
active components in dependence on the last active one. This feature brings the mixture model closer to
real multi-modal systems. It can also serve for a prediction of the future behavior of the modeled system.
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1. INTRODUCTION

Non-linear dynamic systems are frequently met in applications. It is well known that their treatment
is difficult. Mixtures as universal approximations of non-linear models [1] are flexible and tractable
means of modeling real systems [2—7]. They are especially convenient for a description of such
systems that switch their behavior among a finite number of working points. Example of such a
situation is a process of supervising a system to check if it operates in a failure-free regime or if
it approaches a non-optimal or even failure state.

In general, mixtures are widely used and intensively developed [8—12]. Majority of results
focuses on an off-line estimation of static mixture models. They are mostly applied to data mining,
i.e. analysis of extensive databases. At the same time, on-line analysis of the data measured on
dynamic systems is supported weakly. Static analysis can be worthless, for instance, for operators
who want to be automatically warned in critical situations and advised how to improve system
performance.

Algorithms based on the so-called variational Bayes method, e.g. [13, 14] represent a significant
exception from this state [15, 16]. They provide feasible solutions, however, at the price of using a
non-optimal variant of the Kullback—Leibler divergence [17]. Consequently, there is a limited space
for their future improvement. A possibility of further development of the mixture estimation theory
with an accent on its usability in applications is undertaken in the presented paper. Moreover, it
offers a theoretical solution that can be furthermore improved.
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766 I. NAGY ET AL.

The presented theory is also closely related to that based on hidden Markov models (HMM). A
nice presentation of this approach is given in [18]. However, it concerns only discrete variables and
the algorithms run in an off-line mode supported by MC computations. An important feature of
the proposed theory is that the algorithms used run in an on-line mode and numerical procedures
are applied only to those parts that cannot be computed analytically. In this way, the amount of
computations as well as the risk of collapsing is minimized. The approach using HMM is also
widely used in solution to applications [19-22].

To characterize the contribution of this paper it is necessary to clarify the meaning of the
adjectives static/dynamic. A mixture model consists of a collection of components and a process,
pointing at each time instant to the active component. The components are typically represented
by static regression models. The first step to make a mixture dynamic is to use dynamic regression
models as components. This step has been made in [23,24]. However, the used pointer model
remains static, i.e. probabilities of the component activation are constant. The mixture model
becomes truly dynamic if the dynamic pointer model is considered, i.e. if the pointer process is
modeled by a Markov chain.

The search for an improved estimation of rich truly dynamic models has been motivated by
a specific application, namely, modeling of a car—driver behavior. It should be applied to data
measured on a driver and his car during driving. The driver can be in a good mode, tired, nervous,
worried, etc. The car can go slowly or quickly, the driving can be responsible or hazardous, etc.
The combination of such driver and car modes can lead to a rich combination of system modes.
Consequently, the system driver—car can be in a safe mode or approaching safety limits of various
character. The research aims to classify the working regimes and to warn the driver against bad or
emerging dangerous states. However, this application is by far not the only one. There is a wide
range of others where the monitored system dynamically switches from one mode to another and
the task is to estimate its current or better to predict its future active modes.

A similar task, which has been solved lately, was that of giving advice to operators supervising
the 20-high rolling mill producing metal tin with very high precision in its thickness. Here, the
operating of individual operators was not of the same quality. The advising system created clusters
in the data space and ex post assigned their evaluation. Then, when an operator worked in a cluster
with low value of evaluation, it warned him or even recommended him how to get to the nearest
cluster which was better evaluated. This task was solved in the framework of the project [23].
Universal tools developed are described in [24].

A bit different situation leading to a mixture description is traffic control. Here, the system itself
has a nature of a mixture of different models. Everybody knows traffic situation in big cities is
drastically different in the morning, during the day, in the evening and in the course of the night.
If the control is to be relevant, it is necessary to react to a proper situation. Control based on a
mixture model can not only distinguish individual mentioned traffic states, but it can also combine
them to find the best possible picture of actual traffic.

A number of other tasks requiring multiple-mode dynamic modeling can be found in a variety
of applications ranging from technology to societal processes.

In summary, this paper presents the first step to estimate fully dynamic mixture models, where
the components and the pointer models are both data dependent. Here, the process of pointer
switching is modeled by the Markov chain model with unknown transition probabilities. This
model can describe situations when the modeled system stays for a while at a specific working
point, described by the active static or dynamic component, and jumps to other working point
only from time to time. Such a model covers rather a wide range of situations met in various
applications.

The relatively straightforward design of the estimator consists of

e constructing the joint probability density function (pdf) of all observed data and unknown
objects and decomposing it into the known or recursively developed pdfs,

e data updating the prior pdfs to posterior ones for recursive estimation of unknown parameters,

e approximating the posterior pdfs, which during each updating step lose their prescribed original
form. Kerridge inaccuracy [25], a part of Kullback-Leibler divergence [26], is adopted as
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BAYESIAN ESTIMATION OF DYNAMIC FINITE MIXTURES 767

a theoretically justified proximity measure. This divergence is known to be an optimal tool
within the Bayesian approach [17].

The paper is organized in the following way. Section 2 introduces the basic elements of dynamic
mixture—component models and a pointer model, all in dynamic forms. They are put together
in Section 3, where the mixture models with known and unknown parameters are described.
The used linear normal model forming a mixture of components is introduced in Section 3.2. In
Section 4, the forms of conjugate priors for estimation of both the component and pointer model
parameters are provided. The main theoretical emphasis of the paper lies in Section 5, which is
devoted to estimation of mixture models. Essentially, the joint pdf is considered. As a by-product,
the estimate of the pointer variable is obtained, i.e. the on-line classification problem is solved.
Section 6 describes the approximation adopted. It ensures recursive feasibility of computations.
The approximation is presented for estimation of both the component and the pointer models. The
overall proposed algorithm of mixture model estimation is summarized in Section 6.3. Section 7
provides illustrative experiments. They demonstrate the clustering and classification abilities of
the proposed algorithm. Both simulated and real traffic data are processed. Appendix A contains
derivations of the proposed formulas.

1.1. Notation

In the following text, these notations will be used:
d; denotes a real vector of measured data on the system at the discrete time

te{0,1,2,...,n)=t*.

The time index O formally denotes the time period, when the prior data as well as expert information
are acquired.
d(t) represents all measured data up to time ¢ also including the prior one dj, i.e.

d(t)z{d()»dl’dZv ...,dt}.

f(al|b) denotes conditional probability (density) function (pf) or (pdf) of the random variable
A with realizations a conditioned by the random variable B, with realizations b. The symbol

e is used for both discrete and continuous random variables A,
e omits the subscript distinguishing different random variables to which it refers. It means that
instead of f4(a) we write only f(a) and the subscript is implied by the name of the argument.

In derivations, the basic rules for operations with conditional pdfs are used [24]. The key ones
are:

Chain rule
fla,ble)y= f(alb,c)f(Dlc). D
Bayes rule
bla,c)f(alc
Falboy— |f(b>|g( )
which, using the sign of proportionality o, can be also expressed in the form
flalb,c)x f(a,blc). 2

2. BASIC ELEMENTS OF A DYNAMIC MIXTURE

There are two types of models connected with the mixtures. They model the components and the
pointer to them.
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2.1. Component model

Let us consider a mixture model describing n. different working modes. The model of the cth
mixture component, c=1,2, ..., n., describes the system behavior in its cth mode. Generally, it
is assumed to have the following ‘regression’ form, which is later on specialized to linear normal
regression model:

f(dt|cv d(t_ 1)9 ®C)=f(d1|cv ¢z—]v ®C)Emc;t’ (3)

where d; =[dy.;,dp:s, ..., dn,.+] is the real vector of data of the length ny, it is measured at the
time instants ¢ € t*, the apostrophe denotes transposition, c€{1, 2, ...,n.}=c™* is the index labeling
particular components, d(t — 1) denotes the collection of data measured up to and including time
t—1, it also includes prior data dy, ®. is the collection of unknown parameters of the model of
the cth component, ¢,_; is the regression vector of a fixed finite length, made of data used for
predicting d;. Here, the regression vector is common to all components.

The model (3) is expressed as the joint pdf of the vector modeled variable d; =[d1.;, da, ...,
dn,:+]'. This joint pdf can be factorized according to the chain rule (1) as follows

fldile, 1, Oc)= fldislc,doy, ... dnysr, §1—1,Oc) -+ fdngsele, ¢y, Oc). 4

The terms on the right-hand side of the previous expression are called model factors. More detailed
information about the factors can be found in Appendix A.1.

2.2. Pointer models

2.2.1. Predictive pointer model. The mixture model is more than only a collection of components.
Its specification needs one more object—a random process 4 ={c; };cs*, whose items ¢, € ¢* point
to the active component at each time instant ¢ € t*. Evolution of this process is assumed

flelei—1,d(t=1), 0, @)= flciler—1,0) =0y, » &)

where the transition probability o, |c,_, is a probability that the system will be in mode ¢, at time
t when its mode at time t —1 was ¢;_1. It holds

aeoc*z{oc,-j20, > oj=1, Vi,jec*}.
kec*

It can be seen in (5) that

e The random variable ¢; is assumed independent on the data d(t—1) and the component
parameters ®.

e The item ¢; of the random process % is supposed to depend only on its previous item ¢;_1,
i.e. the random process is a dynamic Markov one.

e The pointer ¢; has a finite number of possible values so that the transition probabilities o, |c,_,
form a finite-dimensional matrix, which is used as an unknown parameter of the model for
description of the process 6.

2.2.2. Posterior probability of the pointer. The model (5) describes time evolution of the pointer.
To be able to use it, one must have information about the value of the last pointer ¢;_;. This is
what the following model yields:

fleld@t—1)=fC_ ., (©6)

with the condition fft_l;t_120, Ve, €c* and ZCHEC* fft_l;t_l =1. Relation (6) introduces a
vector of probabilities of component activity at time ¢ — 1. This vector, at time r—1, is a prior
pdf for estimation of the pointer model, and it is recursively updated to a posterior pdf, using the
currently measured data.
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3. MODELS OF DYNAMIC MIXTURE
Here, basic elements describing dynamic mixtures are put together.

3.1. Model of dynamic mixture with known parameters

For the given parameters @ =(01,®3,...,0,, ) and « the mixture model describes the data d;
regardless the knowledge of the active component. The mixture has the form

f(dl|d(t_1)5 o, ®) = Z Z f(d[,Ct,thl|d(t—1), o, ®)

crec* ci_1EC*

=2 X flle,dt=1),0)f(ciles—1,00 f(cr—1ld(t—=1)),  (7)
crec* ¢ €c*

where the chain rule (1) has been used. To be able to exploit this mixture, one should have
all three models entering (7). If the pointer parameter o« and the component parameters © =
(01,02, ...,0,, ] are known, the formula (7) can be used directly, as all the pdfs in the decom-
position are known. However, if the parameters o« and ® are unknown, they must be included into
the set of unknown and thus estimated objects. This case, which is of a practical use, is treated
further.

3.2. Model of dynamic mixture with unknown parameters
For the unknown mixture parameters o« and ® the predictive pdf (7) is

ralde=0= £ L [ [ facicmn0ldo-1)dze

crec* ¢y €c*
=2 X // fdiler, ci—1,d(t—1),0) f(crler—1, 0) f(cr—11d(t—1))
crect ci_jec* Jor J OF

x f (e, ©)d(t — 1)) dxd®. (8)

The form of decomposition of the joint pdf f(d;,c;,ci—1,a, Old(t—1)) into the pdfs which
are known or can be recursively evolved is essential for derivation of the mixture estimation
algorithm. The right-hand side of the expression (8) includes the following terms. The first three
pdfs correspond to the component model (3), evolution pointer model (5) and pointer posterior
pdf (6), respectively. The last pdf is a description of the unknown parameters o and ®. These
parameters are assumed to be conditionally independent

f(2,Od(t—1))= f(ald(r — 1)) f(Old(r — 1)). ()]

4. CONJUGATE PRIORS

In the previous section, it has been shown that the mixture model is composed of two types of
models. The components have the form of normal regression models, the pointer model is a discrete
one with multinomial distribution. The conjugate prior for linear normal regression model is the
Gauss-inverse-Wishart (GiW) pdf, for the discrete one it is the Dirichlet pdf [24].

4.1. Conjugate prior pdf for estimation of ®

The conjugate prior f(®|d(t —1)) to normally distributed components is the GiW pdf

g@(VC;t—ls Kc;t—l)

f@ldt—1))=[] Yo(Veir—1,Ke;—1)= [ . (10
cec* cect T(Veir—1,Ke3e—1)
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2011; 25:765-787
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where gg = g¢., denotes the un-normalized GiW pdf
1
80, (V, k)=~ 030Fnot2) exp{—;[—l, 01vI-1, 0’]’} : (1)

The statistic V,.;—1 is called the extended information matrix. It is a symmetric and positive-definite
matrix having the size of the extended regression vector ®@. The statistics x is a positive scalar.
I(V, k) is the normalization integral

I(V,K)= / g0(V,K)d®=T(0.5k)D; "% D 4| ~0320-3% (27)0310 (12)
@*

The integral is expressed in terms of computationally advantageous decomposition of the extended
information matrix V =L'DL with

1 0 D; 0
L= , D= .
Lgy Ly 0 Dy

Here, L is a lower triangular matrix with unit diagonal and D is a diagonal matrix with nonnegative
items.

The component model (3) has its form as a product of factors (4) which are mutually independent.
Similarly, the conjugate prior of individual components can be expressed either in the joint form or
as a product of conjugate priors corresponding to individual factors. For normal component models
the conjugate priors for factors are also of scalar Gauss-inverse-Wishart (GiW) distribution.

More detailed information about the factors or the decomposition of information matrix and its
usage in estimation can be found in Appendix A.2 or in the book [24].

4.2. Conjugate prior pdf for estimation of o

For estimation of parameters of the pointer model (5), the Dirichlet distribution is chosen for the
conjugate prior pdf f(«|d(t—1)), see [24]. It has the form

by (vi—1)

fleld(t—=1D)=Zy(vi-1)= Bor D)’
-

13)

where

V1 is an (n. X n.)-matrix statistics of the distribution.
by(vs—1) is the un-normalized Dirichlet pdf

Velep_p51—1
ba= 11 TT o
n S PN Ak
CtEC* cr—1EC
B(v;_1) is a normalization constant, which has the form of multivariate beta function [24]

B=T] [iee TOilju—1)
jeer T (Xieevitji—1)

(14)

5. ESTIMATION OF THE DYNAMIC MIXTURE

According to the Bayes rule (2), estimation consists in an evolution of the pdfs of unknown
variables from (8), using information from the currently measured data. Expressing the unknown
variables as vector U =[c¢;, ¢;—1, o, ®], one can write the following form of the Bayes rule:

JWld@®) o< f(d;, Uld(r =)= f(di|d(z = 1), U) f(U|d(z = 1)).

The basic step in the use of the above formula is the construction of the joint pdf f(U|d(?)).

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2011; 25:765-787
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5.1. Construction of the joint pdf

According to (8), the joint pdf can be built up with the help of the conditional pdfs in the following
way:

f(cl‘s Cr—1,%, ®|d(t)) o8 f(dl‘s Cty Cr—1, 4, ®|d(t_ ]))
= f(drlcr, b1, Oc) f(crler—1,0) fcr—1ld(t — 1) f (ald(r = 1)) f(Old(t — 1))
ch,;t“c,lc’,_lféil;t_lga(vt—l)g(a(vt—lv Ki—1), (15)

where the following denotations have been used: m.,.; = f(d;|c;, ¢,_1, ®,) is the component model
(3), o¢,je,_y = f(ctlcs—1,a) is the predictive pointer model (5), fc‘;il;tflzf(c,,ﬂd(t—l)) is a
denotation for the prior pdf of the pointer (6), Z,(v;—1) is the conjugate prior pdf for o (13),
Yo(Vi—1, K;—1) is the conjugate prior pdf for ® estimation (A3).

The assumptions accepted in (3), (5) and (6) are respected in the decomposition (15). The
following arrangements can be made for the formula (15).

Update of the statistics for estimation of o. The product oc,|c,_; Z(v¢—1) in (15) can be written in
the form

ac,lc,_l@a(vt—l):&c,lc,_l@a(vgiiq_l]) (16)
with
v =i+ 00 D3(e-1.j) Viiject a7
and
Serle s =Verleyzi=1 [ 22 Vkle_yit—15 (18)
kec*

where 0(i, j) is the Kronecker delta function (i.e. o(i, j) is one for i =j and zero otherwise),
Ve,le,_1:i—1 18 an entry of the statistics v, and the time index ;1 at &,|c,_, has been omitted for
lucidity reasons.

The derivation is available in Appendix A.3.

Update of the statistics for estimation of ®. Similar to (16), the product m,.;9@(V;—1, k;—1) in
(15) can be expressed as

mebo(Viot.ki—1)= [, 9oV 1l (19)
with
£ = f(di|d(—1))
and
VI Ve +8(c OPer P’ and K| =i 1 +6(crie) Vere 7, (20)

where @,,.; is the extended regression vector of the factor c1, see (A2), and J(i, j) is the Kronecker
delta function, i.e. (i, j) is one for i = j and zero otherwise.

Remark

The meaning of the operation producing Vt[ftl] or KEL_’Jl is that the statistics is updated as if known,
that at the present time instant precisely the c,th component is active. In this way, only the parts
of the statistics corresponding to this component are updated. The rest of the statistics remains
unchanged. Similar explanation also holds for the relation (17) and that is why these statistics can
be called partially updated.
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This derivation can be found in Appendix A.4.
After substitution (16) and (19) into (15) the required joint pdf takes the form

flercimt, o ®ld®) & £ b e, fE 1o Zai " NGV i)

= We,jc, 1«@%(‘)[” JCr— l])g (V[CrJ [Ct ) 1)

-1 K

where

_pd 2 c
We,|er-1 _fc,;tfxcr\ct—l fc,_|;t—1 (22)

is a probability that the system at time # is in the mode ¢;, while at time # —1 it was in the mode
c—1 computed for all data up to time instant ¢.

5.2. Estimation of the parameter o,

The construction of the joint pdf (21) gives the instructions for estimation of the parameters of
both the models (3) and (5). The posterior pdf of the parameter o can be derived from the joint
pdf (21) in the following way:

flld@) o 35 X fler, -1, 0, ©d(1))dO

crEc* ci_1€c* J Ox

=2 X fc, Bees I a1 20l DG v k) de

crec* ci_1€c*

=Y Y weie D, (23)

crec* ¢_1€c*

It can be seen that the computation is not feasible because the involved summation destroys
the prescribed Dirichlet form of the posterior pdf f(«|d(¢)). Thus, an approximation restoring this
form is necessary. The approximation is discussed in Section 6.

5.3. Estimation of the parameter ®

The posterior pdf for estimation of the parameter ® can be similarly to (23) evolved with the help
of the joint pdf (21). It reads as

f@ld®) o 3o 3 fler i1, 0, 01d (1)) da

crec* ci_1ec* Jax

= Z Z fC, OCc,|ct lfC, . I‘QZO((V[Q sCr— 1])@®(Vt[ctl’ C’])doc

crec*ci_r1ec* Jax

=Y Y wae YoV = w, Ge(vI) k) (24)

crec* ¢y EC* crec*

with we,|¢,_, defined in (22) and w,, defined by the relation

We, = Y. Weye,- (25)

ci—1€C*

Again, the prescribed GiW form of the posterior pdf f(®|d(z)) is destroyed due to the summa-
tion. Similar to the parameter o case, an approximation restoring the pdf form is necessary. The
approximation is described in Section 6.

The choice of the prior pdf strongly depends on the amount and quality of the information that
is at disposal before the estimation algorithm starts and the data are measured. If no information
is at disposal, the priors are constructed as flat distributions reflecting ignorance.
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5.4. Estimation of the active component

At each step of the mixture estimation, the currently active component must be estimated. It means
that the pdf f(c;|d(¢)) is determined as follows.

fleld@®) = £, // fler ei-1, 0, 0]d(1)) ded®

ci_1€C*

/ / fcht e Ifct . “(V [cts Cz ll)g (Vt[C,l]’ [C’])dcxd@
ci—1€c* Jo*

= fc,, Z &ct\c,q fcctfl;[_1 =W, (26)

i1 €c*

as the integrals over o and ®* are equal to one. The definition of the weights we,|c, , is given in
(25) and (22).

This part of the algorithm coincides with the task of classification. In the adopted approach it
appears naturally as a part of mixture estimation.

Remark

The weights (25) have the meaning of component predictive pdf. It means, they show probabilities
of activities of individual components. These probabilities arise from two sources. One source is
represented by component prediction produced by the last two members of the definition in (25).
The second source is data predictive pdf, given by the first term in (25). The data prediction takes
into account the currently measured data item and computes the probability, that the current data
might have been generated from individual components. The component prediction is based only
on old data, up to time ¢ — 1 and the prediction is computed from the currently estimated dynamic
Markov model giving the stochastic link between two successive values of active components.

Generally, it can be said that the proper choice of the prior pdf for both components and the
pointer is an important and not an easy task. That is why, for a choice of the number components and
their initial setting, an initialization procedure, based on a prior data sample, has been constructed.
Its detailed description can be found in [24]. The estimation algorithms discussed here rely on its
exploitation.

5.5. Structural algorithm of the dynamic mixture estimation

The structure of one step of the mixture estimation algorithm can be presented as follows. In the
(present) time instant # one has to do

for all factors c: do
for each ¢, and ¢;_; do

1. Update the statistics v;_1, V;_1, k;—1 by the measured data on condition that the label of the
active component is ¢;, and the last active component was c;_1. Thus, we obtain the partially

updated statistics v[ nee 1] Ve C‘J K[C’Jl according to (17) and (20).

2. Construct weights wc, accordmg to (25) and (22).
3. Compute updated probabilities of the actual component f =w,, according to (26).
4. Update the pdf for the parameter o according to (23) and appr0x1mate it.
5. Update the pdf describing the parameter ® according to (24) and approximate it.
end of ¢;, ¢,
end of c1
Remark

The previous paragraphs were devoted to the task of estimation of the unknown parameters o and
® of the mixture model (8). This task in terms of ‘data analysis’ can be called clustering (learning).
It is the phase when the clusters are allocated in the data space. The second phase of data analysis
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is classification when the incoming data items are assigned to or distributed among the fixed
positioned clusters. This task is performed by estimating the current value of the pointer variable.
In the area of data mining, both the phases clustering and classification are usually separated. Here,
they are rather mixed. The parameter estimation (clustering) is based on the pointer estimation
and vice versa; during the pointer estimation (classification) the parameter estimates can still be
corrected by the coming data.

6. APPROXIMATION IN THE MIXTURE ESTIMATION

As it has been mentioned, the estimation of the parameters o and ® is not straightforward and
to obtain feasible recursion it needs approximation. The approximation has to restore the original
forms of prior pdfs, i.e. Dirichlet pdf for estimation of o and GiW pdf for estimation of @. It
means that one has to find the Dirichlet pdf f (a|d(?)) and the GiW pdf f (®|d(t)) which are as
close as possible to the posterior pdfs f(a|d(t)) in (23) and f(O|d(¢)) in (24), i.e.

Fd@)— fald®)~Du(v), @7
f(®ld(t) — f(Old(t)~Fo(Vi. k). (28)
To measure the proximity of the pdfs, the Kerridge inaccuracy is used

N 1
p(fIL) [P*f( )nf(P)

where P stands either for P=uo or P =0.
In the next estimation step, the approximations are taken as the prior pdfs.

6.1. Approximation of the pdf of o

For approximation of the pdf of o we require that the approximant f (ald(t))=Z,(v;) has the
Dirichlet pdf and that it minimizes the Kerridge inaccuracy with substituted pdf (23)

Ky= / Fald(t)in - da
Flald ()

Z D Wele 1 Da(v,~ e, Cr l])l 17

* e ec* ¢ ec* «(Vt)

do, (29)

with respect to the statistics v;, with entries v;).;, i ec*, jec*. This task leads to a solution of
the non-linear system of algebraic equations

GE(vjj:)—H;)j=0, i, jec",

where
G= Z Z Werlei—yo
crec* ¢ EC*
[er,ci—1] .o
l|]_ Z Z We, |- l‘_‘(vl|; tt 1 ) l,]GC* (30)
crec* ¢ €C*
with

E(Vi|j)=‘f’(vi|j)—‘f'< > ij>, i,jec*,

kec*
where the W function is
d
Y(z2)=—InI'(z).
dz
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The above-mentioned problem of the solution to the non-linear system of algebraic equations
leads to a numerical minimization. However, the function to be minimized is convex (see [27]),
so the solution, using e.g. the Newton method, is quick and stable.

The derivation of the result presented above is sketched in Appendix A.5.

6.2. Approximation of the pdf of ®

The approximation of the pdf f(®|d(t)) from (24) searches for a pdf f ®ld)=%e(V;, k) with
GiW distribution that minimizes the Kerridge inaccuracy

1
Ko= / FOldE)In—— 40
o* f(O]d(@))
1
= 5 ¢ %ewll i de 31
o L,e;*fc' LFIXE:C*OCCHCFI]CCI_IJ_] ol —1 )ng@(VI,K,) (31)

with respect to the statistics V; and k; for ¢ €¢*.
The previous formula can be written for factors (see (4) and (A3))

Ko=Y ¥ ¥ weK@o(V ! W %o (Verr. k). (32)

cec*ier* c;ec*

where w,, = fc‘f > ¢ ec* Berlery S, cc =1 is the probability that ¢, is the active component at time

t, see (26), g@(VC[f’t 10 Lﬂ 1) s the 1th factor of the cth component partially updated by the data
di, 90(Vert, Keizr) 1s the ith factor of the cth component of the approximating pdf.

The solution to the minimization of (32) can be written explicitly as follows:

Let us denote for each factor c1, V., =V and let the statistics V be factorized V =L’DL so that
L is a lower triangular matrix with unit main diagonal and D is a diagonal one. In addition, let

the matrices L and D be partitioned in the following way:

1 0 D; 0
L= and D= ,
Lgy Ly 0 Dy

where L4 is a column vector with the same dimension as ©, L is a lower triangular matrix with
ones on the main diagonal, Dy is a positive number and Dy is a diagonal matrix with positive
entries on its diagonal.

Then the GiW pdf is equivalently described by the statistics {V, x} as well as the statistics
{9, Dg, C, k}, 29=L¥1L¢ are the point estimates of the factor parameters ¥/, Dy are the estimates

of factor noise variances, C =D are the parts of parameter variances and x are the numbers of
steps of freedom of the factors (counters of the data items).
The statistics of the approximate factors ¥g(V,,.;, k¢;:;;) are denoted by &, Dy, ¥, C, the statistics

[thz] 1’ 511 ,) are denoted by ¢, (Dg)c, Ve, Cc for ¢, =cec*.

of the approximated pdf factors ¥g(V,
The auxiliary computations are

= Z WeTr— B=In(A/2)+ Z we[In((Dg)e) —P(0.5x,)].

cec* (D )c cec*

The statistics of the approximate pdf are calculated as

Dy=
o 0=(Toce welke/ DID) /4,
C= ZCEL‘* we{Ce+ (KC/(Dd)C)[(qS‘C — N, — 19)/]}

A detailed explanation of the approximation result is available in [28].
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6.3. Detailed algorithm of the mixture estimation

The detailed algorithm of the mixture estimation can be presented now. With the known prior pdfs
(or those obtained in the last step of the estimation) fCCH.,_l, vi—1, Vi—1 and k;_; the algorithm

for the step at time ¢ includes the following computations:

1. Partially update the statistics

VI = Vi1 4+0(c, @ @i’ and k) =ker_1+0(c.0) Vere s

cit—1 cr;t—1

according to (20) and (17).
2. Construct data prediction

fcﬂf;t:I(Vz[itl]; Kgi]l)/I(Vt—l; Ki—1),

where the integral [ is defined in (12) and the updated statistics are according to (20).
3. Determine the point estimate of o according to (18)

Verler—15t—1

S SEEE— (33)
> ket VKle,_p5t—1

~ —
"th|Ct—l -

with the v statistics known from the last time ¢ — 1.
4. Compute pointer predictive pdf fft o1

c A c
fc,;tfl = Z %Legles—y fc,,l;tfl

ci—1€Cc*

as given in (26).
5. Construct the transition weights wc,|¢,_, according to (22)

_pd c
Wey|eiq _fc,;tfc,;t—l'

6. Compute the updated pointer estimate fcc,; , that is equal to the weights w,, using (26)

[C— —
fc,;t=w6‘t_ Z Wefcr-1
ci—1€C*

substituting the results of the second and the fourth steps of this algorithm.
7. Update the pdf describing o

fld)= > > th\C,_lgu(VEC_tllC“l])

crec* cp_1 EC*

with computed weights w,|c,_, and the updated statistics according to (17).
8. Approximate the updated pdf of o by the Dirichlet pdf, see (27)

F@ld(@®)— f@ld(t)~Dy(vy)

according to Section 6.1.
9. Update the pdf describing ®

fOld@)= Y we%e(VI] k)

crec*
with computed weights we,|c,_, and the updated statistics according to (20).

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2011; 25:765-787
DOI: 10.1002/acs



BAYESIAN ESTIMATION OF DYNAMIC FINITE MIXTURES 177

10. Approximate the updated pdf of ® by a GiW pdf, see (28)
F®ld(1)— f(Oldt)~Fe(V: k)

according to Section 6.2.

7. EXPERIMENTS

The practical goal the authors aim at is a classification of the behavior of a driver and his car
during driving. The aim is to warn the driver if his driving is bad (e.g. from the viewpoint of
safety, ecology or economy, etc.). It is clear that in some situations the information can come late.
If the driver lies in a ditch with the car turned upside down, it is too late to give him information
that his driving can be dangerous. For this reason, a good prediction of the classified driver state
is highly desirable.

One of the most valuable features of the proposed estimation algorithm is that it is dynamic.
It means a reasonable data prediction can be computed. There are two types of data prediction
connected with fully dynamic mixtures. The first is a prediction of the output for individual
dynamic components. The second is a prediction of the pointer, i.e. prediction of the component
that will be active at the specified time instant. It is clear that if the components are mutually far
enough, the pointer prediction is much more important. On the other side, if the probabilities of
staying in individual components are uniform, the profit from predicting component activities will
be minimal. However, if these probabilities are different, the pointer prediction can be relatively
accurate and the contribution of the dynamic pointer model could be decisive. The aim of the
examples is to demonstrate these facts.

Theoretically it is clear that the dynamic mixtures cannot be worse than the static ones at
anytime. However, the algorithms for dynamic mixture estimation are based on more numeric
computations and the question if the advantage of carrying more information does not get lost in
more approximative computations. The experiments demonstrate that the dynamics of the mixture
model prevails the inaccuracy following from the approximation used.

The experiments have the following general scheme:

1. Initialization: As it has been mentioned, an initialization algorithm for estimation of a proper
number of components and their initial set-up was previously constructed. Its detailed descrip-
tion is given in [24]. It is based on sequential dividing and merging of the existing components.
The actions are evaluated by the likelihood function. Initialization can but need not precede
the estimation. Here, the initialization was used for the example with real data.

2. Estimation: A defined portion of the data sample (mostly the first half of the data) is used for
estimation (training) of the mixture model. In this phase, the pointer prediction (classification)
is mixed with estimation (learning). Here, the parameters of both component and pointer
models are estimated and fixed.

3. Evaluation: In this phase the second portion of data is used. The future output values are
estimated on the basis of combined component and pointer prediction.

4. Illustration: The results obtained in the experiment are illustrated. Graphs demonstrating the
reality and its prediction as well as tables with the numerical results are shown. For numerical
evaluation, the prediction error PE is computed

N
> eler, (34
where N is the data length and ¢, is the point prediction error at time ¢.

7.1. Simulated data

The aim of this experiment is to document the function of the proposed estimation algorithm
in details, i.e. to visualize the results and to compare them with the simulated system. The data
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Figure 1. Pointer prediction for static and dynamic pointer model. The data, denoted as small dots create
three-shaped Gaussian clusters. The static algorithm estimates the centers and the vector of stationary
probabilities assigned to component activities. As the point prediction from a single static component
is its center and the activity probabilities are stationary (fixed), the prediction is the same for all data.
It is denoted by the dark square. The dynamic algorithm estimates the centers as well, and instead of
stationary probabilities of components activities it estimates the dynamic pointer model in the form of
transition table. Thus the current pointer estimate depends on its last value and changes in time. The
pointer prediction is denoted by the light stars.

sample was simulated using a mixture model with three static normal components with centers
(expectations) given in the left-hand side table. The components were shaped by properly chosen
covariances (the shapes are visible in Figure 1). The table of simulated transition probabilities was
chosen in the form presented in the right-hand side table.

Simulated parameters of the mixture

Component centers Simulated transition
label center probabilities a
1 (3; 8] 09 0.05 0.05
2 [3; 10] 0.1 0.1 0.8
3 [4; 9] 0.1 08 0.1

These two tables show the most important parameters of the simulated mixture. The left-hand
table contains coordinates of centers of the three simulated components. The right-hand table
shows the simulated transition probabilities o. The item «; j is the probability of transition
from the component i to j.

These transition probabilities have the highest values: (i) for staying in the first component or
(i1) switching between the second and third components. Such a regime is suitable for dynamic
mixture and it can best show its properties.

For estimation the same model structure as for simulation has been selected. Thus, a correct
estimation should produce practically the same parameters as those used for simulation. The
simulated data set of the length 1500 was used. Estimation used 500 data items, the prediction
and evaluation were based on 1000 data items.
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Table I. Prediction errors for experiment with
simulated data.

Static pointer 1.243
Dynamic pointer 1.025

The results of estimation are as follows. Point estimates of the component regression coefficients
and the estimated transition probabilities « for both the static and dynamic pointer were equal and
they are shown in the following tables:

Estimated parameters of the mixture

Component centers Estimated transition
label center probabilities «

1 [2.995; 8.986] 0.856 0.071 0.073
2 [3.021; 9.991] 0.145 0.191 0.664
3 [3.998; 8.968] 0.122  0.728 0.150

These tables correspond to the above tables with the simulated parameters. Here, the estimates
of the simulated parameters are demonstrated. It can be seen, that the estimates are practically
the same as the parameters in the simulation.

The tables with simulated parameters and their estimates show a good agreement. It testifies
that the problem of current estimation of the component activities will be solved approximately
equally well by both the static and the dynamic algorithms. However, in the prediction ability, the
situation with the static and the dynamic pointer differs. Figure 1 shows the difference.

Numerical comparison of the overall prediction error (34) is shown in Table I. Owing to the
precise estimation and the relatively small number of components, the difference in the prediction
quality is not big.

7.2. Real data

7.2.1. Two-dimensional data sample. The simulated data sample can only verify correctness of
programming and it cannot testify much to the validity and robustness of the ideas behind the
program. To do this, it is necessary to test a real data sample. For that reason, a two-dimensional
data sample containing intensity (number of cars per time unit) and density (number of cars per
length unit) of the traffic flow in a chosen point of traffic communications in Prague has been
considered. These data, plotted in the density—intensity plane, form a concave parabolic noise
curve which is well interpretable. Its ideal course starts in the point [0, 0] which corresponds to
no traffic. Then it continues with increasing density of traffic flow but still sufficiently low so that
there are no interactions between cars in the traffic flow. The interactions begin around the apex
of the curve, where the density still grows but the intensity stagnates. Its downfall represents the
over-saturation ending in the traffic jam near the density axis. Thus the individual parts of the data
curve correspond to the traffic demand and can be used for traffic load classification. However,
the data sample used was measured in a tunnel, where standing queues are not allowed. Thus it
forms the parabola only in its first half.

The aim of the experiment is to perform a clustering of the data sample that could be potentially
used e.g. for estimation of the level of service.

The structure of the experiment is the same as for the case with simulated data. However, for
the real data where the optimal number of components is not known, the initialization procedure
(see [24,29]) was used with the first 1000 data. Then, 5000 data items (including those used for
initialization) were used for estimation of the mixture model with four components. The following
data sample with the length of 1000 items was used for prediction and verification.

Figure 2 shows the data sample in a 3D-view and the estimated centers of components.
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Data 5 Estimated centers of components
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Figure 2. Data (left) and estimated component centers (right). The picture on the left-hand side gives an
approximate 3D-view of the data sample used for the example. The graph plots the frequencies of the
data, interpreted as points in the horizontal plane. It is evident that there are big differences between the
frequencies. The area of the highest data density is the left lower part of the graph. It corresponds to
the fact that the tunnel where the data have been measured is mostly empty. The shape of the concave
parabola is noticeable, however, it goes only to its apex where it disappears. It is given by the fact that
in the tunnel the cars are not allowed to stay for a long time. The right-hand side of the figure shows the
data from above. Here, also the centers of the estimated components are visible.

Table II. Prediction errors for experiment with real data.

Static pointer 1.697
Dynamic pointer 1.056

Table III. Variables measured on a driven car.

Variable Meaning Variable Meaning

1 Car position X 7 Speed of car rotation

2 Car position Y 8 Cross acceleration

3 Car position Z 9 Speed of the left front wheel
4 Angle of driving wheel 10 Speed of the right front wheel
5 Position of accelerator 11 Engine revs

6 Power of braking 12 Engine moment

Comparison of the prediction errors for both the static and the dynamic pointer models is shown
in Table II. The static error is by 60% higher than the dynamic one.

7.2.2. Multi-dimensional data sample. To be able to make a good classification e.g. of a monitored
car behavior, naturally, it is necessary to include as many of the relevant variables as possible
into the data sample. To verify whether the proposed estimation algorithm would manage such a
situation, an experiment with 12-dimensional data sample of variables, measured on a moving car,
was considered. Specifically the variables are listed in Table III.

For estimation, a mixture model with dynamic components of the first order was used. The
data length for estimation was 9000 samples from which the first 1000 data was used for the
model initialization. Five-hundred successive samples were used for the prediction and results
verification.

Figure 3 shows the pointer predictions for the static and the dynamic pointer models.

The resulting comparison of the prediction error is shown in Table IV. Here, the difference is
much more significant.
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Figure 3. Dynamic and static pointer prediction for 12 variables measured on a moving car. Similar to

the example with densities and intensities of the traffic flow, the static prediction is independent on the

current data and thus it is constant during the whole time interval in which future data item is compared

to its prediction. The dynamic prediction is, due to the estimated transition table, data dependent and thus
more close to the predicted data item.

Table IV. Prediction errors for experiment with
multi-dimensional data.

5.848
1.458

Static pointer
Dynamic pointer

8. CONCLUSION

The paper proposes a new method of estimation of a mixture model. The main contribution of
the proposed method is the use of the dynamic pointer model. In the previously published works
[30, 31], the description of the pointer was assumed to be static. Practically, the use of a static
pointer model means that each mixture component is assigned a constant probability of its activity.
No model of the pointer evolution exists.

In this paper, the pointer is described dynamically via a table of transition probabilities (condi-
tional probability function) in dependence on the last active component. This dynamic pointer
description makes possible much more realistic modeling of multi-modal system, where the
switching among activities of individual components is realized only from time to time. For such
systems, a meaningful prediction of both future data and future active components is possible.

APPENDIX A

A.l. System model in a factorized form

The component model (3) forms the joint pdf for the data vector d; =[di.;, da.;, ..., dy ). It can

be expressed as a product of factors according to the chain rule (1)

nq
f(dllc’ d(t_ 1)7 ®C)= 1_[ f(dl§f|c’ dl-‘rl;l’ ey dnd;t’ ¢t—19 ®Cl)’ (Al)
1=1
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where for 1=n4 the symbol d;;,1:;...dy,; denotes an empty set and

d,;.; is the 1th entry of the data sample d,
1€{l,2,...,ng}=1* is the index, denoting factors within a specified component,
®,, are the parameters of the ith factor within the cth component of the model (3).

The factors are labeled by double indices c1€ %, where # =c* x 1* is a set of all double indices
of the mixture model, where ¢ denotes a component, 1 is a factor within the component c.

Formal factorization into the factors helps in designing the resulting algorithms as all the factors
are scalar pdfs.

Generally, the mixture estimation requires no specific form of factor models. Further devel-
opment relies on the existence of conjugate prior pdfs specified by fixed-dimensional sufficient
statistics. Consequently, they have to be chosen from exponential family [32], otherwise, an extra
approximation would be needed.

For specificity and wide applicability, factors (4) in the form of linear normal regression models
are considered further on

B 1
Fdiile,diprse, oo dngr, d(t —1),O) = (21re;) °-5exp{ -3

ciyt

[_1702‘1]@()1;[@/ [_17921]/}'

Cl

The model is parameterized by ®, =(0,, r.;) =(vector of regression coefficients, noise variance).
The involved data are collected into the extended regression vector

(I)Cl;l‘z[dl;tv -'-:dn,{;tv (b;_]]/, (AZ)

with ¢ being the regression vector, see (3).

A.2. Conjugate prior to normal regression model

For estimation of the component models (3) and even the factors within components, the parameters

are assumed to be a priori independent. This property is preserved during estimation of respective

component models even when made within mixture estimation [24]. Thus, the used conjugate

prior pdf f(®|d(¢t —1)) of the collection of all component parameters—® =(0®y, ..., ®,_), where

O =(Oc1, ..., Ocp,), where O, = (0., r¢;)—is the product of GiW pdfs for individual factors.
The decomposition up to the factor level (4)

e increases flexibility of the component model as regression vectors of individual factors even
in a single component are allowed to differ,

e simplifies evaluation, as for factors the GiW pdf is scalar and thus it reduces to simpler
Gauss-inverse-Gamma pdf,

e simplifies presentation as it can be done without a loss of generality for scalar d; (ng=1):
the general case is obtained by using double indices ., pointing to the ith factor in the cth
component.

From now on, we use the formal simplification implied by the last item. Thus, the conjugate prior
has the form

f(®|d(t_1))=g®(vtfl, Ki—1)= 1_[ g®c(Vc;t—1, Kc;t—l)z l_[ g®m(VCl;l—17 Kcz;t—l) (A3)

cec* cleF

where Yo, Y@, or Y, denote the Gauss-inverse-Wishart distribution of the whole posterior pdf
that of the cth component or that of the factor c1; and (V;—1, x;—1), (Ve:r—1, Keir—1) of (Veri—1,
Kei:1—1) are corresponding statistics of the distributions. That is why the GiW distribution can be
uniquely denoted by 9@ and its meaning is distinguished only by the argument.

The components for the case ny =1 coincide with factors.
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A.3. Estimate of the parameter o

The product o, |¢,_, Zu(v,—1) entering the formula for the joint pdf (15) is

Viljs—1+0(c,i)0(cr—1, 1)

Vi|jit—1
[Ticer l_Ijec* % [Ticer Hjec* %
B(v;—1) B(vi-1)

Oeslei—q Do(Vi—1) = Oeslei—q

ler,ei-1]
Bv;_i" ) lerci—1] lc ]
— — 9.(v 1,Cr—1 :& 9 .(v Ct,Cr—1 ,
B(Vt—l) “( t—1 ) crler—1 0‘( t—1 )

where

[er er-1]

Viljir1 =vj|ji—1+0(cs,1)0(ci—1,j) Vi, jec”

and

B/ B =

T e, pzi—1+1) [Ticienen T Gijsi—1)
U (X kees Velerisi—1+1) jeteven | T (Xkee Veljse—1)

= |:F(Vctc,_|;t—l+1)/ F( > Vklc,_l;t—1+1>i|/B(Vt—l)

kec*

= |:Vc,|c,1;t—1 Z Vi|e,—1;t—1 ] B(vt—l)/B(Vt—l)

kec*

= |:v0t|Ct—1lf—1 Z Vile,—y5t—1 :| =0eyle;—1o

kec*

where {c*\c;} denotes the set of all components but the ¢;th one.
The previous derivation is based on the definition of the Dirichlet pdf (13) and its normalization
constant (14), and on the basic formula for the gamma function (for z scalar)

I'z+1)=zI'(2).

A.4. Data prediction
The product m,.;%@(V;—1, k;—1) can be found in the formula (15). It can be further modified

mc,;tgG)(Vt—l JKi—1) = Mt l_[ g@(vc;tflv Kc;tfl)

cec*

Veir—1,Kep—
l—[ go(Vei—1,Ke;i—1) (Ad)
ceer T(Veyr—1,Kejr—1)

=Mc,;t

according to (A3) and (10). The function gg is a product of component (factor) model pdfs for
time instants t=1,2,...,¢#—1. It is the likelihood multiplied by the prior pdf. With respect to the
Gaussian pdf of the component model and the conjugate form of the prior pdf for time ¢ —1, the
update of the statistics V,.,—1 and k.;—1, c=1,2,...,n. in the function gg when multiplied by
the model m,.; is as follows:

ylel 1 =Veri—1+0(cr, )@y P, and ket =Kei—1+0(cr,¢) Yeec™, 1er”

clyt— ci;t—1

where d(i, j) is the Kronecker delta function (i.e. d(i, j) is one for i = j and zero otherwise).
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After substitution into the numerator of (A4), we obtain

[er] [cr] [er] [C]
l_[ gG(Vc t[ I ctt 1) I(VC tI I c[t l)g (V [er] [Ct] )
cec* I(Vc;t—h’cc;t—l) cec* I(Vc;t—lskc;t—l) =1 K

:I(Vct;tfl"f'q)c;tq)c;t’ Kc,;tfl‘f'l) 1—[ @ (V[c, [c, )
I(Vegi—1, Kepio—1) e 20 et et

d terd el
=f(,‘t;l‘ 1_[ g (Vctt 1° C[l 1)

cec*

where fd =1V C’t] . Ef’l D/I(Veysi—1,Kepi—1) is the data prediction from the component ¢;

with the 1ntegral defined in (12), and @, the extended regression vector.

A.5. Approximation of posterior pdf for o

After updating the Dirichlet prior pdf f(a|d(t —1))— f(a|d(?)), its form is destroyed in (23), and
must be approximately restored. According to (29) the task is to minimize the Kerridge inaccuracy
K, with respect to the statistic v;

Ko=| ¥ % w202 Hn

o ¢ ec* ¢ ec* Joc(vt)

Substituting for &,(v;) from the definition of the Dirichlet pdf (13) and changing summation
and integration, we obtain

B
Ko= 3 2 Wele 1/ @a("[ct . 1] () do

Vz|]1 1
crec* ci_1ec* || ||
t =1 iec* 1 ljec* l|]

=Y Y Wy lf Dy, Ler, o thy |:lnB(vt)— 3 Z(v,-j;,—l)lnac,-|j:| dot.

crec* ¢ ec* iec* jec*

Let us define the function Z(v;;) as

E(Vi|j)=‘P(Vi|j)—‘1’( > ij) , i, ject,

kec*

where W(v;;)=d/dv; ;InT'(v; ;) and I'() is the gamma function. Then it holds

/1H(Oﬂi\j)@a(v)d0€=5(vi|j), i,jec* (A5)
u*

as well as

lnB(v)=E(v,-|j), i,jEC*. (A6)
Vilj

Taking into account (AS) the expression K, takes the form

Ky=InB(v) 2. X Weley— 2 22 Weleo D (Vi|j;t—1)5(vl[|c}’;ifll])~

ceC* cp_1 EC* crec* c_1€c* i,jec*

Minimum of K, can be found as zero point of its derivative. As the minimized function is
convex (see [27]) the result, even using numerical minimization, is unambiguous and easy to find.
It is given by the solution of the system of equations

GE(V,’|j;,)—Hi|j=0, i,jEC*,
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where

G= Y Y Wl

ciec* c;_1€C*

_ solenely
Hijj= 3 X Welo E0y;50), i jec

crec* ci_1€C*

and the second property (A6) has been used.

A.6. Approximation of posterior pdf for ©

Similar to the parameter ¢, the update of the pdf describing ® (24) destroys its GiW form and
must be approximately restored. The task is to minimize the Kerridge inaccuracy

1
Ko= we, %oV il Hin————de
G)*c,eig* “ =1 YGo(Vi, 1)

with respect to the statistics V; and ;. The expression for the updated pdf for ®, i.e. the expression
under the integral and before the logarithm, is taken from (24) with the denotation for the weights
We, = ¢, ecr Werle,y from (22) and (25).

It is advantageous to express the components into the factors (4) and their conjugate priors (A3)
in the correspondence to these factors (10), (11). Then the formula for Kg is

1
Ko=| X we [1 1%V «kld in de
O* ¢ ec* tkee*lez* k=1 Tkl l_lcec*H,e,*g(a(vcz;z»’ca;t)

=— /@ Y we, [T 1 %0Vt Din TT TT 9o (Verr. Ker)dO®

* crec* kec*ler* cec* 1er*

=— f@ Y we, [T T1 %oV ki) Y 3 nYe(Vers. ko) dO

*creck kec*ler* cec*1er*

==Y Y Y ow, [ T %L« DinGe(Veus. ko) dO

cec* 1€1* crec* O* kec*ler*

=Xy X w oVl |kl In%e(Vers. Ker)dO®

cec* 1€1* crEC* o

=Y Y ¥ woK@o(VE ki DIGe (Ve ke,

cec* 1€1* cec*

It means that the minimization of Kg can be done by minimization of weighted sums of Kerridge
inaccuracies of individual factors, i.e. by minimization of

K=Y we KGoVi! | k) DIGe(Vers. kert) Veec™, 1er™.

cit—1° ctt 1
crec*

Now the task is to find the minimum of each K., for ci€ % . From [24] we have the Kullback—
Leibler divergence of two GiW ‘factors’, which is

D(%(9, Da, C,1)|1%(®, Da, C, %))

(F(O.Sfc)
=In
I'(0.5x)

Alq . Dy
—0.5In(CC™)+0.5k1In | —

>+0.5(K—;%)1P(0.5K)
Dy

—0.51y =0.5k+0.50(CC™H)+0.52-[(0=9)E~ W=D+ Dal
d
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where % denotes the same GiW distributions but one is with the statistics ¥, Dy, C, k and the other
with the statistics 19 Dd, C, k. The GiW distribution is defined in Section 6.2. As the Kerridge
inaccuracy and Kullback—Leibler divergence differ only in a constant, their points of minimum are
equal. Thus the Kullback—Leibler divergence, for which the necessary results are already derived
in [24], can be used for our purpose.

After differentiation according to individual factor statistics 1901, (Dd)m, ¢1» K¢, and using an
approximative expression for the function I" we obtain the results listed in the end of Section 6.2.
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