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BAYESIAN ESTIMATION OF MIXTURES
WITH DYNAMIC TRANSITIONS
AND KNOWN COMPONENT PARAMETERS

Ivan Nagy, Evgenia Suzdaleva and Miroslav Kárný

Probabilistic mixtures provide flexible “universal” approximation of probability density
functions. Their wide use is enabled by the availability of a range of efficient estimation
algorithms. Among them, quasi-Bayesian estimation plays a prominent role as it runs
“naturally” in one-pass mode. This is important in on-line applications and/or exten-
sive databases. It even copes with dynamic nature of components forming the mixture.
However, the quasi-Bayesian estimation relies on mixing via constant component weights.
Thus, mixtures with dynamic components and dynamic transitions between them are not
supported. The present paper fills this gap. For the sake of simplicity and to give a better
insight into the task, the paper considers mixtures with known components. A general case
with unknown components will be presented soon.

Keywords: mixture model, Bayesian estimation, approximation, clustering, classification

Classification: 93E12, 68T05

1. INTRODUCTION

When dealing with practical applications, one can often meet a situation, when a
system to be monitored exists in several different modes of behavior, see e. g. [16].
Transitions between individual modes need not be sharp and they really are rather
diffused in practice. The model of such a system is composed of individual com-
ponents (local models) corresponding to the particular modes. A special “pointer
variable” distinguishes the mode (or combination of modes), in which the system
actually works. The described model is called a mixture model [22]. The ability
of the mixture model to approximate the probability density functions (pdfs) “uni-
versally” [7] enhances its importance far beyond modeling of systems with several
modes. It found application in a wide variety of areas.

The application width has motivated development of a range of sophisticated
algorithms for estimation of mixture parameters, e. g. [12], especially those used in
the area of data mining, e. g. [8, 21, 23, 24]. Majority of approaches, represented
by expectation-maximization algorithm [5], are oriented towards point estimation.
Other well known algorithms are Variational Bayes [19] and Regime Switching Mod-
els [6]. However, these approaches are not fully on-line, rely on completely numerical
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solutions and consequently they are not ready for large industrial applications.
Quasi-Bayesian estimation for static systems generating independently distributed

data was proposed in [22]. It was generalized to mixtures with dynamic components
allowing dependence among the modeled data [11]. The generalization even allows
recursive implementation of the quasi-Bayesian estimation for components in a dy-
namic exponential family [10]. The proposed approximate estimation replaces the
unobserved pointer to the active component by its expectation conditioned on all
data measured up to the current time instant. However, it relies on a static model
of generating the pointer values. This significantly restricts the expressive power of
such semi-dynamic mixtures. The present paper removes this drawback. It considers
estimation of a mixture model with several components and a dynamic pointer to the
active component. It means that the value of the pointer depends on its realization
at the previous time instant. The estimation of this dynamic mixture essentially
uses the same basis as the discussed quasi-Bayesian estimation. It also preserves
its key features: the evolved posterior pdfs are approximately self-reproducing and
determined by a finite-dimensional statistics. The computational complexity is fixed
during this one-pass Bayesian estimation. This is important in on-line applications
as well as in handling extensive databases. Unlike the quasi-Bayes algorithm, the
approximation used here follows a universal approach, as it is based on the Kullback–
Leibler divergence [13]. This fact is crucial for further development of the presented
algorithms.

In order to stress the methodological nature of the paper, the presentation is
made as straightforward as possible (Problem formulation, Solution, Algorithmic
Summary, Illustrative Example and Concluding Remarks). The inevitable technical
details are to be found in the Appendix.

2. PROBLEM FORMULATION

The considered system operates in n different modes, which can change gradually
and randomly one into other. The system modes are supposed so different that each
of them has to have its special model. These models are called components. In real
time, the modes of the system vary so that at each time instant t ∈ {1, 2, . . . , N} = t∗

the system works in single, so called actual, working point.
For this system we consider a set of all data from time t = 0 to t = N denoted

by d (0 : N) = {d0, d1, d2, . . . , dN} = d(N), where d(0) = d0 is prior information
(preliminary measured data or expert knowledge) supposed to be known. The data
samples d (1 : N) = {d1, d2, . . . , dN}, i. e., for t > 0, are measured on the system,
i.e., d(N) = {d(0), d(1 : N)}.

At each time instant, the overall system can be described by one component
properly chosen from the set of all components. This component is called the actual
one and its label (order number) at time instant t is indicated by the value of the
random variable ct ∈ {1, 2, . . . , n} = c∗. The random variables ct form a stochastic
process c (1 : N) = {c1, c2, . . . , cN} which is called a pointer. Similarly, its prior
value c0 is available and formally denoted by c(0). Description of the pointer uses
a parameter α. Both, the pointer c (1 : N) and the parameter α are unknown and
have to be estimated.
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We suppose that a global model of such system can be expressed as a joint
probability density function (pdf) of all measured or estimated variables: d (1 : N)
(all measured data), c (1 : N) (all estimated pointer entries) and α (parameter of the
pointer model)

f (d (1 : N) , c (1 : N) , α|d(0), c(0)) , (1)

where f(·|·) denotes a conditional pdf. The subscript at f denoting the random
variable is omitted from brevity reasons and the random variable is given by its
realization in the argument of the pdf.

Our goal is to derive on-line estimation algorithms. That is why we need models
working in real time. They can be obtained by applying the well known chain rule
to the global model (1) and taking some assumptions. We obtain

f (d (1 : N) , c (1 : N) , α|d(0), c(0)) =
N∏

t=1

f (dt, ct|d (t− 1) , c (t− 1) , α)

=
N∏

t=1

f (dt|ct, d (t− 1) , c (t− 1) , α) f (ct|d (t− 1) , c (t− 1) , α) . (2)

Generally, the pdfs in the factorization (2) represent models in real time. The first
pdfs after the product sign are descriptions of components, the second ones are
descriptions of the pointer. To obtain the final form of the models, we accept the
following assumptions

• components depend only on the actual entry ct of the pointer and they do not
depend on the pointer parameter α, so it holds

f (dt|ct, d (t− 1) , c (t− 1) , α) = f (dt|ct, d (t− 1)) ,

• pointer model does not depend on data and it depends only on the last pointer,
not the older ones (Markov property). The pointer model thus takes the form

f (ct|d (t− 1) , c (t− 1) , α) = f (ct|ct−1, α) .

Under these assumptions, the global model (1) reads

f (d (1 : N) , c (1 : N) , α|d(0), c(0)) =
N∏

t=1

f (dt|ct, d (t− 1)) f (ct|ct−1, α) .

From the above factorization of the global model (1) the needed real time models
(component and pointer ones) naturally follow.

Component model

For any pointer value, the operating mode of the system is described by a component
model specified by the conditional probability density function

f (dt|c, d (t− 1)) . (3)
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These component models are supposed fully known. They have a specific form (for
instance, normal pdf of scalar dt with known expectation and variance). In general,
they can be described by any known time and data dependent pdf.

Pointer model

Thus, the pointer model is assumed dynamic, data independent and parameterized
by the unknown parameter α in the following form

f (ct|ct−1, d (t− 1) , α) = f (ct|ct−1, α) = αct|ct−1 , (4)

where α is an unknown matrix parameter, whose entry αi|j denotes a probability of
the ith currently active component, when the jth one was active previously. For α
it holds:

α ∈ α∗ =

{
αi|j ≥ 0, ∀i, j ∈ c∗;

∑
i∈c∗

αi|j = 1, ∀j ∈ c∗

}
.

The addressed task

The paper proposes an approximate recursive Bayesian estimation of the pointer ct

to the active component at each time t ∈ t∗ generally described by its posterior pdf

f (ct|d (t)) , (5)

which is represented by a vector of probabilities for each component to be active at
time t. It holds f (ct|d (t)) ≥ 0, ∀ct ∈ c∗, and

∑
ct∈c∗ f (ct|d (t)) = 1, for all t ∈ t∗.

Its computation is bound to the recursive evolution of the posterior pdf of α
for which exact evaluations are not feasible. Thus, the paper proposes its on-line
implementable approximation.

3. PROBLEM SOLUTION

The main task, as written in the previous paragraph, is to estimate the currently
active component(s), i. e., to provide the pdf (5) at each time t of the time interval
t∗. Due to the form of the models (3) and (4), the mentioned pointer pdf (5) cannot
be derived separately. It is closely connected to the parameter α that has to be
recursively estimated together with the pointer variable ct. Thus, the basic task
is to find a recursion for the evolution of the posterior pdf of unknown variables
[ct, α], conditioned on the past data d (t− 1) for t ∈ t∗. Nevertheless, a problem
is encountered. The computations during the evolution of the posterior pdf are
not feasible. The form of the posterior pdf changes during the estimation and its
complexity grows with running time. It means that an approximation of the posterior
pdf is necessary at each step of the estimation. This approximation restores the
original form of the prior pdf (posterior from the last estimation step). The desired
pointer pdf (5) is then derived from the evolved posterior pdf.
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Joint pdf

The estimation is based on the joint pdf of dt, ct, ct−1, α, conditioned on observed
data d (t− 1). With the help of decomposition of the joint pdf into a product of the
conditional ones, and according to (3) and (4), this pdf can be expressed as follows

f (dt, ct, ct−1, α|d (t− 1))

= f (dt|ct, ct−1, α, d (t− 1)) f (ct|ct−1, α, d (t− 1)) f (ct−1, α|d (t− 1))

= f (dt|ct, d (t− 1))αct|ct−1f (ct−1, α|d (t− 1)) , (6)

where

• f (dt|ct, ct−1, α, d (t− 1)) = f (dt|ct, d (t− 1)) is the model of the ctth com-
ponent (3) , which is supposed to be known and to meet the conditional of
independency on α and ct−1

• f (ct|ct−1, α, d (t− 1)) = αct|ct−1 is the model of the pointer (4) that is inde-
pendent of data d (t− 1) and whose form is known but the specific values of α
are unknown.

A new object appears in (6)

f (ct−1, α|d (t− 1)) ,

which is a prior pdf for time t of the estimated pointer ct−1 and parameter α. The
variables ct−1 and α are assumed to be conditionally independent

f (ct−1, α|d (t− 1)) = f (ct−1|d (t− 1)) f (α|d (t− 1)) . (7)

The intuitively plausible property, that this joint pdf is given as a product of marginal
pdfs, can be assumed a priori. In each step of the estimation the form of the prior
pdf is lost and must be restored using an approximation. The form of the prior pdf
is important for feasibility of computations.

Prior pdf for estimation of ct

In the relation (7), the pdf
f (ct−1|d (t− 1))

is a vector of probabilities similarly as in (5) for f (ct|d (t)), but with the time index
t replaced by t − 1. For the time instant t it is the prior pdf for estimation of the
pointer variable ct.

Prior pdf for estimation of α

The second pdf in (7) f (α|d (t− 1)) describes the unknown transition probabilities
αi|j . It is chosen as Dirichlet pdf of α with the matrix statistic νt−1, νi|j;t−1 > 0,

Dα (νt−1) =
1

B (νt−1)

∏
i∈c∗

∏
j∈c∗

α
νi|j;t−1−1

i|j , (8)
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which is, in more detail, defined in Appendix 7.1. This pdf is conjugated (self-
reproducing) to the model (4), see [10].

The prior pdfs are evolved in time. This evolution starts with prior pdfs from the
beginning of estimation, i. e., from the (prior) time instant t = 0. The prior pdfs can
be constructed from two sources; (i) from a priori measured data, (ii) from expert
information. The prior data that are measured on the system before the estimation
can be elaborated by the same algorithm which is used in the subsequent estimation,
thus producing the prior pdf. The incorporation of the expert knowledge into the
prior statistics is not an easy task. However, some general recommendations exist
[2]. E.g., the prior statistics for the pointer can be set according to the prior belief
in the probability of individual transitions. The normalized values in the rows of
the prior statistics ν0 express the probabilities of transitions; the absolute values of
these statistics express the belief in the prior guess.

Modification of the joint pdf

After substituting the introduced pdf forms, notation and independency assumption
(7), the joint pdf (6) gets the form

f (dt, ct, ct−1, α|d (t−1)) = f (dt|ct, d (t−1))αct|ct−1f (ct−1|d (t−1))Dα (νt−1) . (9)

Nevertheless, this form of the joint pdf is not final. Using the basic equality

αct|ct−1Dα (νt−1) = α̂ct|ct−1;t−1Dα

(
ν

ct|ct−1
t−1

)
, (10)

which is proved in Appendix 7.1, it can be given the form

f (dt, ct, ct−1, α|d (t−1)) = f (dt|ct, d (t−1)) α̂ct|ct−1;t−1f (ct−1|d (t−1))Dα

(
ν

ct|ct−1
t−1

)
,

(11)
where

• α̂ct|ct−1;t−1 is quadratically optimal point estimate of αct|ct−1 given by the
relation

α̂ct|ct−1;t−1 =
νct|ct−1;t−1∑
i∈c∗ νi|ct−1;t−1

, (12)

derivation of which can be found in Appendix 7.1

• and
ν

ct|ct−1
t−1 = νt−1 + δct|ct−1 , (13)

where δct|ct−1 is a zero matrix of compatible dimensions with the number one
on the position ct|ct−1 (matrix of products of the Kronecker delta functions
δ (j, ct) δ (i, ct−1)), see Appendix 7.1.

Expression (11) is the final form of the joint pdf. However, this result is just prepara-
tory and it forms a basis for further derivations.
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Time evolution of the posterior pdf

The crucial point of the whole estimation algorithm is the time evolution of the
pdf f (ct−1, α|d (t− 1)), describing the prior pdf for the unknown variables ct and
α to the posterior one f (ct, α|d (t)). As this evolution is recursive using the Bayes
rule, an important question is, if these pdfs are self-reproducing, i. e., whether the
complexity of the algorithm does not grow in time.

Using the Bayes rule saying that f (A|B,C) ∝ f (A,B|C), the posterior pdf
f (ct, α|d (t)) becomes

f (ct, α|d (t)) ∝ f (dt, ct, α|d (t− 1)) ,

where A = {ct, α}, B = dt and C = d (t− 1)
Now, adding and immediately marginalizing the past pointer variable ct−1, the

posterior pdf takes the form

f (ct, α|d (t)) ∝
∑

ct−1∈c∗

f (dt, ct, ct−1, α|d (t− 1))

Substituting the joint pdf from (11), the posterior pdf takes its final form

f (ct, α|d (t)) ∝ f (dt|ct, d (t−1))
∑

ct−1∈c∗

f (ct−1|d (t− 1)) α̂ct|ct−1;t−1Dα

(
ν

ct|ct−1
t−1

)
.

(14)
The above relation (14) shows that the exact evolution from the prior to the

posterior pdf is not feasible. Recursive use of (14) gives the posterior pdf as a product
of sums. This destroys the form of the prior pdfs. The demands for memory and
computing time necessary for their exact evaluation grow unacceptably. Thus, an
approximation restoring the form of the posterior pdf is necessary.

Estimation of the pointer ct

A recursion for the pointer ct, i. e. the recomputation of the prior f (ct|d (t− 1)) to
the posterior f (ct|d (t)) can be obtained from the joint posterior (14) by integration
over α

f (ct|d (t)) ∝
∫

α∗
f (ct, α|d (t)) dα

=
∫

α∗
f (dt|ct, d (t− 1))

∑
ct−1∈c∗

f (ct−1|d (t− 1)) α̂ct|ct−1;t−1Dα

(
ν

ct|ct−1
t−1

)
dα

= f (dt|ct, d (t− 1))
∑

ct−1∈c∗

f (ct−1|d (t− 1)) α̂ct|ct−1;t−1. (15)

As the posterior f (ct|d (t)) is a mere vector, its summation form does not matter
and its form is preserved. Thus, the recursive formula for estimation of ct is ready.
However, it needs the term α̂ct|ct−1;t−1, which follows from estimation of α.
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Estimation of the parameter α

Similarly as for ct, the recursion for estimating of α can be obtained from the joint
posterior pdf (14) by marginalization over ct. We obtain

f̃ (α|d (t)) ∝
∑

ct∈c∗

f (dt|ct, d (t−1))
∑

ct−1∈c∗

f (ct−1|d (t−1)) α̂ct|ct−1;t−1Dα

(
ν

ct|ct−1
t−1

)
(16)

where Dα

(
ν

ct|ct−1
t−1

)
is the prior pdf for α updated for a specific combination of val-

ues of ct and ct−1.

Remark. The resulting “updated posterior pdf” is denoted by f̃ (α|d (t)) to stress,
that it has not the final form. It is a mixture of Dirichlet pdfs and must be further
approximated to a single Dirichlet pdf. This one will be denoted by f (α|d (t)) and
will be called the “approximated posterior pdf”.

Here, the situation is more complicated. The resulting posterior is constructed as
a weighted sum of updated priors (with Dirichlet distributions) and thus the result
does not have the Dirichlet distribution. To preserve feasibility of the resulting
algorithm, its form must be approximately restored.

Approximation

As mentioned, the posterior pdf f̃ (α|d (t)) is a mixture of Dirichlet prior pdfs and
must be approximated to a single Dirichlet pdf which we denote f (α|d (t)) = Dα (νt).
The pdf f is computed so that it minimizes the Kullback–Leibler divergence KL
defined as

KL =
∫

α∗
f (α|d (t)) ln

f (α|d (t))
f̃ (α|d (t))

dα. (17)

The Kullback–Leibler divergence in this form is shown [1] to be best compatible
with the Bayesian approach to estimation.

Solution to the approximation task

The solution is leads to a solution of the following system of equations with the
n× n-matrix statistics νt

Gt−1 Ξ
(
νi|j;t

)
−Hi|j;t−1 = 0, i, j ∈ c∗, (18)

where

Gt−1 ≡
∑

ct∈c∗

f (dt|ct, d (t−1))
∑

ct−1∈c∗

f (ct−1|d (t− 1)) α̂ct|ct−1;t−1, (19)

Hi|j;t−1 ≡
∑

ct∈c∗

f (dt|ct, d (t−1))
∑

ct−1∈c∗

f (ct−1|d (t−1)) α̂ct|ct−1;t−1Ξ
(
ν

ct|ct−1

i|j;t−1

)
,(20)
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for i, j ∈ c∗, with

Ξ
(
νi|j;t

)
= Ψ

(
νi|j
)
−Ψ

(∑
i∈c∗

νi|j

)
, i, j ∈ c∗, (21)

and Ψ function is
Ψ (z) =

d
dz

ln Γ (z) .

The matrix elements ν
ct|ct−1

i|j;t−1 are introduced in (13). The full derivation can be found
in Appendix 7.2. The numerical solution to the equation (18) must be performed at
each step of the estimation. However, it is quick and without problems due to the
fact, that the minimized function KL is a convex function of ν. Thus, the search for
the extreme is straightforward and the extreme found is always the global minimum.
For a proof of this assertion, see Appendix 7.3.

The resulting approximated posterior pdf

f (α|d (t)) = Dα (νt)

with the statistics νt determined by the solution of (18).

4. ALGORITHM

The obtained results can now be summarized in the form of an algorithm.

Initial part (start of the algorithm)

• Specify the number of components n and their pdfs f (dt|c, d (t− 1)) , c ∈ c∗.

• Choose the initial values of the statistics for α-estimation, i. e., the numbers
ν0;i|j > 0, i, j ∈ c∗.

• Set t = 0 and evaluate α̂t according to (12).

• Set the initial values of the statistics for estimation of ct as a vector of proba-
bilities f (c0|d (0)) , ct ∈ c∗.

On-line part (time run of the algorithm) for t = 1 up to N do

1. Acquire the current data item dt.

2. Compute values of the component pdfs for the measured dt and all c ∈ c∗

f (dt|c, d (t− 1)) .

3. Update the statistics for estimation of ct, ∀ct ∈ c∗,

f (ct|d (t)) = f (dt|ct, d (t− 1))
∑

ct−1∈c∗

f (ct−1|d (t− 1)) α̂ct|ct−1;t−1 ,

where α̂ct|ct−1;t−1 = νct|ct−1;t−1/
∑

ct∈c∗ νct|ct−1;t−1.
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4. Compute the matrix

Ξ
(
νi|j;t−1

)
= Ψ

(
νi|j;t−1

)
−Ψ

(∑
i∈c∗

νi|j;t−1

)
, i, j ∈ c∗,

where Ψ is the psi function, see (21).

5. Construct G and H from (18)

Gt−1 =
∑

ct∈c∗

f (dt|ct, d (t− 1))
∑

ct−1∈c∗

f (ct−1|d (t− 1)) α̂ct|ct−1;t−1

Hi|j;t−1 =
∑

ct∈c∗

f (dt|ct, d (t− 1))

×
∑

ct−1∈c∗

f (ct−1|d (t− 1)) α̂ct|ct−1;t−1Ξ
(
ν

ct|ct−1

i|j;t−1

)
,

for i, j ∈ c∗ with

ν
ct|ct−1

i|j;t−1 = νi|j;t−1 + δct|ct−1

according to (19) and (20).

6. Use a numerical method to solve the equation

Gt−1 Ξ
(
νi|j;t

)
−Hi|j;t−1 = 0, i, j ∈ c∗

to obtain the optimal statistics νi|j;t, i, j ∈ c∗.

7. Compute the approximated posterior pdf for α

f (α|d (t)) = Dα (νt)

with the optimal statistics νt, i. e., such one that possesses the Dirichlet form
and approximates the updated posterior f̃ (α|d (t)).

8. Guess the active component(s), e. g., on the basis of the point estimate, for
instance, as the most probable component.

End of the loop for t

5. ILLUSTRATIVE EXPERIMENTS

The presented experiments demonstrate a contribution of the proposed mixture es-
timation with the dynamic pointer. For comparison, a simple, heuristic, mixture
estimator is taken. The reason of the experiments is to demonstrate the main prin-
ciples of the proposed estimation algorithm.
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Simple mixture estimator

The simple mixture estimator uses a heuristic way of computation the weights of in-
dividual components for the current data item (i. e., the probabilities f (ct|d (t))). It
is done via substituting the data in the component models (3), computing the model
pdf values and normalizing them so that their sum equals to one. No information
is used about the evolution of the pointer ct. The simple estimator is obtained by
enforcing a uniform prior pdf f (ct|d (t− 1)) into the Bayes rule

f (ct|d (t)) ∝ f (dt, ct|d (t− 1)) = f (dt|ct, d (t− 1)) f (ct|d (t− 1))

∝ f (dt|ct, d (t− 1)) , ct ∈ c∗, t ∈ t∗ (22)

for f (ct|d (t− 1)) uniform.

Remark. Comparing the relations (22) and (15), one can see, that the introduced
simple estimator is just one part of the dynamic-pointer estimator, namely it is
given by the factor f (dt|ct, d (t− 1)). This factor deduces the probability of the
active component only from the location of the respective component models. The
neglected factor in (15) is

∑
ct−1∈c∗ f (ct−1|d (t− 1)) α̂ct|ct−1;t−1. It reflects the prob-

ability that a component labeled ct−1 was active at previous time instant t− 1 and
the probabilities of its transition to the component ct. Both probabilities defining
this factor have been estimated on the basis of the past data, up to time t − 1. In
the considered simple case with known components, this term often does not play
a significant role. For overlapping component models and strong, almost determin-
istic, switching, this prior pdf, exploiting the model of the pointer evolution, can
be decisive. It indicates its importance in general case with recursively estimated
components.

Simulated data

A data sample generated for the experiments contains 300 items of realizations from
two-dimensional random vector. The generating mixture model has three normal
components with fixed expectations µc and variances Σc shown in Table 1 for c ∈
c∗ = {1, 2, 3}.

c 1 2 3
µc [1, 1]′ [1, 5]′ [5, 3]′

Σc

[
0.64 ,−0.77
−0.77 , 6.68

] [
16 ,−6.08

−6.08 , 2.95

] [
0.64 , 3.2
3.2 , 21.76

]
Tab. 1. Components of mixture model.

The explicit form of the component model, labeled by c, is

f (dt|ct, d (t− 1)) =
(
2π
√
|Σc|

)−1

exp
{
−1

2
(dt − µc)

′ Σ−1
c (dt − µc)

}
, (23)
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where dt = [d1;t, d2;t]
′ and µc, Σc are from Table 1.

Table 2 provides the parameterized transition probabilities for generating values
of the pointer.

f (ct|ct−1, α) ct = 1 ct = 2 ct = 3
ct−1 = 1 p 1− 2p p
ct−1 = 2 p p 1− 2p
ct−1 = 3 1− 2p p p

Tab. 2. Generating of pointer values.

The parameter p is respectively set to p = 0, 0.1, 0.2, 0.3, 0.4, 0.5. One can note
that the parameter p influences the degree of “randomness” of the pointer generating.
For the value p = 0 the pointer model becomes a deterministic one and generates
the active components in the fixed order

1 → 2 → 3 → 1 → 2 etc.

The greater the value of p, the more uncertain the model outcome. For p about
0.3 and 0.4 in Table 2, one obtains a rather random but correlated behavior of the
pointer. For p = 0.5, the dependence on the past disappears and the simulation
simply jumps among various components with a fixed common probability. By
(perhaps not very correct) name “predictions” are denoted the data generated by
the estimated models.

Experiments

The layout of the experiments is following. First, we simulate the data sample of
the described mixture. Then the estimation is performed for both the models; (i)
the static one for the simple estimator and (ii) the dynamic one for the proposed
estimation algorithm. Afterwards, new data samples are generated, first with the
static model and second with the dynamic one. The generated clusters are compared
to the simulation.

Figure 1 provides an insight into the simulation and predictions. It shows the
simulated data for the case p = 0. The predictions obtained with the described
simple estimator are in the middle figure. The right figure shows the predictions
with the proposed dynamic-pointer algorithm.

The middle and right picture in Figure 1 demonstrate a good correspondence of
the predictions to the original data for both the algorithms.

For each of the considered values p = 0, 0.1, 0.2, 0.3, 0.4, 0.5 300 data was sim-
ulated and the number of wrongly classified active components was evaluated. The
results of these numerical evaluations are plotted in Figure 2 and summarized in the
table attached to it.
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Fig. 1. Left figure shows simulated data. The membership to the

components is distinguished by symbols • × + and bound by ellipses,

which form the contours of the static Gaussian models used. Data

predictions are computed by generating data from all three

components and making their average weighted by the estimated

probabilities of the component labels. The predictions based on the

simple static-pointer estimator are in the middle and those resulting

from the proposed dynamic-pointer estimator are on the right.

Discussion

For higher values of p, corresponding to weak dependence of the subsequent pointer
values, the simple static-model-based estimator behaves similarly to the proposed
mixture estimation based on dynamic model of the pointer evolution. The difference
becomes much more pronounced for small values of p, when the transition proba-
bilities are near zero or one. In such truly dynamic cases, the proposed estimator is
visibly better than the simple one. Of course, demands on precision and reliability
of the estimates strongly depend on the purpose for which the estimation is used.
For instance, in safety-sensitive applications any wrong classification is very expen-
sive and high precision is demanded [3, 4]. Then, the gain of the better modelling
and adequate processing (without increasing demands on expensive acquisition of
informative data), offered by the proposed algorithm, is significant.

The adopted Bayesian framework brings additional benefits. The estimation pro-
vides not only point estimates of the transition probabilities α but also information
about their uncertainty and consequently about reliability of the classification. Ac-
cording to (33), the variance of α is inversely proportional to the count of time
instants for which the particular component has been active during the estimation
process. Thus, small values of the estimate of this activation count indicate that
the point estimate of the corresponding transition probability is unreliable. The
discussed feature is illustrated in Figure 3.

Left part of Figure 3 shows the time course of the activation count estimate for
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Static 39 31 35 30 33 27
Dynamic 6 24 29 29 33 22

Fig. 2. The counts of incorrectly classified active components

provided by the simple estimator (light) and those from the proposed

estimator (dark). The number of 300 data items were simulated for

each value of the parameter p.

the extremal situation with deterministic, regularly switching pointer, p = 0. The
information about the transitions is maximally strong and the respective components
are visited regularly. Consequently, the achieved precision is high and growing almost
monotonically with the number of processed data samples.

The right part of Figure 3 illustrates the opposite case with “very random”
pointer, p = 0.4. The data are much less informative and consequently the pre-
cision is much lower. Also the time evolution of the statistics is far from being
monotonic. It shows that a mere processing of a new data item does not always
imply an increase in the reliability of estimates.

6. CONCLUSION

An efficient recursive (one-pass) Bayesian estimation of a mixture model with dy-
namically evolving pointers to the active components has been presented. Its prin-
ciple is shown on the case with known components.

A lot remains to be done:

• The algorithm has to be extended to the practically significant case with in-
completely known components. This extension is straightforward and will be
presented soon.

• The algorithm has to be elaborated especially for mixed – discrete and contin-
uous – valued data. This is important especially for data bases applications.
The standard control and signal processing domains need it badly, too. A
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Fig. 3. The individual time courses of the estimates of the activation

counts. The left figure corresponds to the deterministic transitions,

the right one to the very random transitions. The sharp growth of

statistics indicates an increase in the precision of estimation and it

occurs for informative data. The slow growth or even stagnation

means that data are poorly informative and the gained estimates are

unreliable. It allows monitoring the estimation and classification

quality.

closer look at the proposed algorithm indicates that it is well possible using
the similar approximation technique.

• One-pass treatment suffers loss of quality caused by the use of approximate
posterior pdf as the prior pdf for further step. Local iterations with a sort of
forgetting promise at least partial remedy of this problem, studied for instance
in [14].

In spite of the width of the open problem, there are definite contributions worth
stressing:

• The approximation way is universally applicable to fully dynamic models. It
opens a way for development of specialized estimation algorithms relying on
variety of component and pointer models. Application width of the resulting
dynamic clustering, classification and prediction is enormous.

• The adopted Bayesian treatment provides tools for monitoring reliability of
the obtained estimates or predictions.

• The Kullback–Leibler divergence is used to measure quality of the constructed
recursively feasible approximate estimation. Its prominent role in Bayesian
context, analyzed in [1], is often neglected by significant approaches to esti-
mation (for instance, in the so-called functional or mean field approximations
[18]).
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• Recursive (one-pass) estimation is common in control domain [15]. Its high
potential for treatment of extensive data-bases under time constraints is still
incompletely exploited. The availability of efficient well justified algorithms
can contribute to the positive change of this state.

• The dynamic dependence between adjacent data records is commonly respected
in control and signal processing domains [9, 17]. This feature is mostly ne-
glected when handling data bases. At the same time, the commonly accepted
assumption on conditional independence of data records is often rather crude
approximation. The proposed algorithm can handle possible dependence.

7. APPENDIX

7.1. Proof of the basic equality

Here, we are going to prove the equality

αct|ct−1Dα (νt−1) = α̂ct|ct−1;t−1Dα

(
ν

ct|ct−1
t−1

)
. (24)

Taking into account the definition of the Dirichlet distribution

Dα (νt−1) =
1

B (νt−1)

∏
i∈c∗

∏
j∈c∗

α
νi|j;t−1−1

i|j ≡ bα (νt−1)
B (νt−1)

,

where

bα (ν) =
∏
i∈c∗

∏
j∈c∗

α
νi|j−1

i|j , (25)

and B (ν) =
∏
j∈c∗

∏
i∈c∗ Γ

(
νi|j
)

Γ
(∑

i∈c∗ νi|j
) (26)

it is possible to write the right hand side of the proved equality (24)

αct|ct−1Dα (νt−1) = αct|ct−1

1
B (νt−1)

∏
i∈c∗

∏
j∈c∗

α
νi|j;t−1−1

i|j

=
1

B (νt−1)

∏
i∈c∗

∏
j∈c∗

α
νi|j;t−1+δct|ct−1−1

i|j =
1

B (νt−1)

∏
i∈c∗

∏
j∈c∗

α
ν

ct|ct−1
i|j;t−1 −1

i|j

=
bα

(
ν

ct,|ct−1
t−1

)
B (νt−1)

(27)

where δct|ct−1 is a zero matrix with the same dimensions as vt−1 with the number
one on the position ct|ct−1, and

ν
ct|ct−1

i|j;t−1 = νi|j;t−1 + δct|ct−1 .
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After expanding the fraction (27) by dividing and multiplying by the beta function
B
(
ν

ct|ct−1
t−1

)
we obtain

αct|ct−1Dα (νt−1) =
B
(
ν

ct|ct−1
t−1

)
B (νt−1)

bα

(
ν

ct|ct−1
t−1

)
B
(
ν

ct|ct−1
t−1

) =
B
(
ν

ct|ct−1
t−1

)
B (νt−1)

Dα

(
ν

ct|ct−1
t−1

)
. (28)

Now, what remains is to show, that the ratio of the beta functions in the previous
expression is equal to α̂t−1 which is the point estimate of α. A straightforward but
rather long way how to do it is to use the definition of the beta function. We will
prove it in the following way. Apply the integral over α to the first and last term of
the previous equation. We obtain∫

α∗
αct|ct−1Dα (νt−1) dα =

B
(
ν

ct|ct−1
t−1

)
B (νt−1)

∫
α∗
Dα

(
ν

ct|ct−1
t−1

)
dα.

The left hand side of the equation is the expectation of α with Dirichlet distribution
which is α̂t−1 and the integral on the right hand side is equal to one. This completes
the proof.

7.2. Derivation of the approximate posterior pdf

The chosen approximation according to (16) is based on a minimization of the
Kullback–Leibler divergence (17).

The pdfs entering the minimization are: (i) The updated posterior pdf (16) which
is to be approximated

f̃ (α|d (t)) ∝
∑

ct∈c∗

f (dt|ct, d (t−1))
∑

ct−1∈c∗

f (ct−1|d (t−1)) α̂ct|ct−1;t−1Dα

(
ν

ct|ct−1
t−1

)
(29)

and (ii) the posterior pdf f (α|d (t)) = Dα (νt) (17) which is the approximation.

The Kullback–Leibler divergence to be minimized is

KL =
∫

α∗
f̃ (α|d (t)) ln

f̃ (α|d (t))
f (α|d (t))

dα ∝
∫

α∗
f̃ (α|d (t)) ln

1
f (α|d (t))

dα = K.

As K is proportional to KL, we will further deal with K which is called Kerridge
inaccuracy. The minimization of K is equivalent to the minimization of KL.

After substitution of f̃ (α|d (t)) and f (α|d (t)), we obtain

K =
∑

ct∈c∗

f (dt|ct,d (t− 1))
∑

ct−1∈c∗

f (ct−1|d (t− 1)) α̂ct|ct−1;t−1

∫
α∗
Dα

(
ν

ct|ct−1
t−1

)

× ln
B (νt)∏

i

∏
j α

νi|j;t−1

i|j

dα. (30)
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In the expression (30) one has to evaluate integrals∫
α∗

ln
(
αi|j
)
Dα

(
ν

ct|ct−1
t−1

)
dα = Ξ

(
ν

ct|ct−1

i|j;t−1

)
,

where the function Ξ is defined in (21). The derivation can be found e. g. in [10].
Now, the expression K to be minimized with respect to νt takes the form

K = ln [B (νt)]
∑

ct∈c∗

f (dt|ct, d (t− 1))
∑

ct−1∈c∗

f̃ (ct−1|d (t− 1)) α̂ct|ct−1;t−1

−
∑

ct∈c∗

f (dt|ct, d (t−1))
∑

ct−1∈c∗

f̃ (ct−1|d (t− 1)) α̂ct|ct−1;t−1

∑
i,j∈c∗

(
νi|j;t−1

)
Ξ
(
ν

ct|ct−1

i|j;t−1

)
.

The zero point of the derivative is searched for. For the derivative the following
relation holds

∂K

∂νi|j;t
= Ξ

(
νi|j;t

)
Gt−1 −Hi|j;t−1, i, j ∈ c∗,

where Gt−1 and Hi|j;t−1 are given in (18). In the differentiation, the formula

∂

∂νi|j
lnB (ν) = Ξ

(
νi|j
)
, i, j ∈ c∗

has been used. The proof can be found in [10].

The necessary condition for an extreme is a zero gradient. Here, fulfilling the
conditions ∂K

∂νi|j;t
= 0 for all i, j ∈ c∗ is required. However, if the function to be

minimized, is convex and it is defined on a convex domain, the extreme is global
minimum, see [20]. It can be proved that this is the case dealt with here – see Section
7.3 of this Appendix. This guarantees a quick and smooth search for the minimum of
the Kerridge inaccuracy K2 (30). The search can be done with the help of standard
numerical subroutines. For instance, in Matlab the subroutine fsolve has been
successfully used. About 3 or 4 iterations were needed for obtaining satisfactory
results.

7.3. Convexity of the Kullback–Leibler divergence

The Kullback–Leibler divergence (17) is used for approximation of the part of pos-
terior pdf, which loses its form during the estimation and must be restored to its
original Dirichlet form. For this special case, with the approximate pdf being con-
jugated to the exponential family of pdfs [10], the Kullback–Leibler divergence is a
convex function of the optimized parameter. This fact is exploited when looking for
a minimum of this function. The search is not only quick and straightforward, but
it leads to the global minimum. The uniqueness of the minimum is not guaranteed,
however, any global minimizer suits the problem addressed in this paper.

In the following paragraphs, the claimed convexity is demonstrated.
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7.4. Exponential family of pdfs

The pdf f (dt|d (t− 1) , α) belongs to the exponential family if it can be written in
the form

f (dt|d (t− 1) , α) ∝ exp {〈C (α) , B(d(t))〉} , (31)

where C (α) is a function only of the parameter α (not the data d (t) = [dt, d (t− 1)])
and B(d(t)) is just the function of d(t) and not a function of α. Here, 〈·〉 denotes the
scalar product (in our case with column vectors C, B 〈C,B〉 = C ′B, where ′ means
the transposition).

This family possesses the so-called conjugate prior pdf of the form

f(α|V ) =
exp 〈C (α) , V 〉∫

α∗
exp {〈C (α) , V 〉}dα

(32)

determined by a statistic V .

7.4.1. Dirichlet pdf as a member of the exponential family

The Dirichlet distribution Dα (ν) is a member of the exponential family pdf, i. e., it
can be given the form

f (α|ν) =
1

B (ν)

∏
i∈c∗

∏
j∈c∗

α
νi|j−1

i|j =
exp {〈C (α) , V 〉}∫

α∗
exp {〈C (α) , V 〉}dα

= f(α|V ),

where
C (α) =

[
lnα1|1, lnα1|2, . . . , lnα1|n, lnα2|1, . . . , lnαn|n

]′
,

V =
[
ν1|1 − 1, ν1|2 − 1, . . . , ν1|n − 1, ν2|1 − 1, . . . , νn|n − 1

]′
,

and
∫

α∗
exp {〈C (α) , V 〉}dα = B (ν) .

7.4.2. Kullback–Leibler divergence for an exponential family pdf

The proof is performed for the Kerridge inaccuracy

K
(
f̃(·) ‖ f(·)

)
=
∫

f̃(·) 1
f(·)

d·

which is proportional to KL divergence and fully expresses the properties of the
exponential family.

Consider fα (V ) as a conjugate pdf to the exponential family

fα (V ) =
exp {〈C (α) , V 〉}∫

α∗
exp {〈C (τ) , V 〉}dτ

,

where C (α) is the parametric function, V is the data function. Let a pdf f̃α be
arbitrary pdf of the parameter α. Then the Kerridge inaccuracy

K =
∫

α∗
f̃α ln

1
fα (V )

dα
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is a convex function in the vector V .
The convexity is shown by inserting the considered conjugate form into the Ker-

ridge inaccuracy and demonstrating that the matrix of second derivatives is positive
semi-definite. It holds

K =
∫

α∗
f̃α ln

1
exp{〈C(α),V 〉}R

α∗ exp{〈C(τ),V 〉} dτ

dα

= −
∫

α∗
f̃α

[
ln (exp {〈C (α) , V 〉})− ln

∫
α∗

exp {〈C (τ) , V 〉}dτ

]
dα

= −
∫

α∗
f̃α〈C (α) , V 〉dα + ln

∫
α∗

exp {〈C (τ) , V 〉}dτ

= −
〈∫

α∗
C (α) , V

〉
dα + ln

∫
α∗

exp {〈C (τ) , V 〉}dτ.

Form of both the needed derivatives is presented for the scalar V . The evaluation
of the vector V is the same. Just squares x2 have to be replaced by dyadic product
xx′.

∂K

∂V
= −

∫
α∗

C (α) dα +
1∫

α∗
exp {〈C (τ) , V 〉}dτ

∫
α∗

C (τ) exp {〈C (τ) , V 〉}dτ.

The matrix of the second derivatives ∂2K
∂V 2∫

α∗
[C (τ)]2 exp {〈C (τ) , V 〉}dτ

∫
α∗

exp {〈C (τ) , V 〉}dτ−
[∫

α∗
C (τ) exp {〈C (τ) , V 〉}dτ

]2[∫
α∗

exp {〈C (τ) , V 〉}dτ
]2

=
∫

α∗
[C (τ)]2

exp {〈C (τ) , V 〉}∫
α∗

exp {〈C (ϑ) , V 〉}dϑ
dτ −

[∫
α∗

C (τ)
exp {〈C (τ) , V 〉}∫

α∗
exp {〈C (ϑ) , V 〉}dϑ

dτ

]2
= E

[
C2
]
− (E [C])2 = cov (C) ,

where the expectation E is taken over the conjugate pdf.
As the covariance cov(C) is semi-definite, the Kerridge inaccuracy as well as the

Kullback–Leibler divergence are convex functions.

7.5. Estimation of variance of α

The standard estimation of discrete systems consists in recomputing the statistics by
adding one to such its item that corresponds to the actual state of the system. Thus,
the items of the statistics cannot descend. The statistics of the estimation method,
presented during its evolution, can not only grow or stagnate, it can even fall. Thus,
the estimation gives not only the point estimates of the parameter α but also its
variance which determines the strength of the belief in the estimates. The result
reads: the bigger is the sum of all statistics items belonging to a specific component,
the smaller is the variance of component parameters and the more confidence they
have.
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In the following paragraph, the relation between the variance of α-estimates and
the count of data belonging to individual components is demonstrated.

In [10] it is proved, that the Dirichlet pdf Dα (νt) has the following expectation
and variance

E
[
αi|j |νt, d (t)

]
=

νi|j;t∑
i νi|j;t

,

var (α|νt, d (t)) = E
[
αi|j |νt, d (t)

]2 ν−1
i|j;t −

(∑
i νi|j;t

)−1

1 +
(∑

i νi|j;t
)−1 .

Now, for a fixed j dealing with αi, we have

var (α|νt, d (t)) =
(

νi;t∑
i νi;t

)2 ν−1
i;t − (

∑
i νi;t)

−1

1 + (
∑

i νi;t)
−1

=
ν2

i;t

[
ν−1

i;t − (
∑

i νi;t)
−1
]

(
∑

i νi;t)
2
[
1 + (

∑
i νi;t)

−1
] =

νi;t (1− α̂i;t)∑
i νi;t (

∑
i νi;t + 1)

=
α̂i;t (1− α̂i;t)
(
∑

i νi;t + 1)
. (33)

From this result, it can be seen, that the variance of a particular component
is inversely proportional to the sum

∑
i νi;t representing the number of how many

times the component was active during the estimation.
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Miroslav Kárný, Department of Adaptive Systems, Institute of Information Theory and

Automation – Academy of Sciences of the Czech Republic, Pod Vodárenskou věž́ı 4, 182 08
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