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Abstract – Many various algorithms are developed for
state estimation of dynamic switching systems. It is not a
straightforward task to choose the most suitable one. This
paper deals with testing of state estimation via two well-
known approaches: recursive estimation with finite mixtures
and iterative technique with hidden Markov models. A
discussion of comparison of these online and offline coun-
terparts is of true interest. The paper describes experiments
providing a comparison of these methods.
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I. INTRODUCTION

Systems switching dynamically among different modes
are met in many application fields. Modeling of behavior
of such systems is a difficult task. Finite mixture models
[1] and hidden Markov models (HMM) [2] both are
widely-spread and powerful tools for description and
identification of such systems. Variety of estimation ap-
proaches concerned with some of them (and not only) is
developed [3]–[9].

In some areas (supervising a rolling mill, traffic flow
control, optimization of fuel consumption, medicine) ef-
fective online (recursive) estimators based on currently
measured data are strongly desired. In other applications
offline iterative methods demonstrate needed quality of
estimation. However, it is not a straightforward task
to see instantly advantages and drawbacks of existing
algorithms. In other words, it is not always clear if pluses
of online estimation does not lose in the background of
necessary approximations against offline methods.

An inspiration for this paper has arisen during the
work on developing the novel algorithms [10] for fully
dynamic mixture estimation. The question was to compare
the effectiveness of the online mixture estimation [1] and
offline HMM estimation [2] with the help of experiments
with simulated data. This is the main task addressed in
the paper.

The paper is organized as follows. Section II provides
basic facts about mixtures and hidden Markov mod-
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els. Section III describes experiments of comparison of
the mentioned estimators under different conditions and
demonstrates the results. Section IV provides a conclusion
and summarizes the work.

II. PRELIMINARIES

A general state-space model used in the paper has the
following form

state evolution (transition) model f(xt|xt−1, α), (1)
output (emission) model f(yt|xt, θ), (2)

where xt is an unobserved state to be estimated, α and
θ are the unknown model parameters, yt is a measured
output, and t = 1, 2, 3, . . . , T denotes discrete time
moments for all involved processes. In general, the used
variables can be as of a discrete as of a continuous nature
at time t.

A. Mixture Model

A mixture model represents probability (density) func-
tion (p(d)f) in the form of a sum of weighted distributions.

For this paper the following mixture is considered
C∑

i=1

αi|xt−1fi(yt|xt = i, θ), (3)

where state xt is a discrete variable described by the
transition table

f (xt|xt−1, α) = P (xt = i|xt−1 = j) = αxt|xt−1 (4)

with probabilities αxt=i|xt−1=j , i = 1, . . . , C, j =
1, . . . , C of transition to state i from state j, where∑C

i αi|j = 1, αi|j ≥ 0 ∀ i, j. They represent weights
in (3). For example, for the model with two states the
transition table can be as follows.

xt = 1 xt = 2
xt−1 = 1 α1|1 α2|1
xt−1 = 2 α1|2 α2|2

Transition probabilities reflect a switching of the system
to a possible mode, i.e., indicate an active component at
the current time moment t conditioned by the past active



component. The i-th component in (3) indexed by state
xt = i is represented by normal model fi(yt|xt = i, θ) ∼
Ni (µi, ri), where

yt = µi + et, et ∼ N (0, ri)

with mean value µi and variance ri and where et is a
white normal noise.

B. Hidden Markov Models (HMM)

In the HMM case both models (1)-(2) are discrete and
given by tables. The transition model (1) has the same
form as for the considered mixture model, i.e., (4). The
emission model (2) is considered as

f (yt|xt, θ) = P (yt = k|xt = i) = θyt|xt
(5)

with probabilities θk|i of yt = k, k = 1, . . . , N , when
the current state is i, and it holds

∑N
k θk|i = 1, θk|i ≥

0 ∀ k, i. For example, for sets of possible values of
the state x∗ = {1, 2} and of the output y∗ = {1, 2, 3}
respectively this model can take the form

yt = 1 yt = 2 yt = 3
xt = 1 θ1|1 θ2|1 θ3|1
xt = 2 θ1|2 θ2|2 θ3|2

C. Problem Formulation

For both the mixture models and HMM a problem is
to estimate the unobservable state xt that means a mode
to which the system is going to switch currently. The
task is to compare the quality of estimation under various
conditions of experiments. It is not the aim of the present
paper to describe the algorithms exploited in details; they
can be found in literature. For mixtures the recursive
Quasi-Bayes mixture estimation algorithm proposed in [1]
and implemented in MATLAB toolbox [11] developed in
authors’ department under project ProDaCTool [12] has
been used. For HMM estimation the standard iterative
procedures available in MATLAB was exploited.

III. COMPARISON OF MIXTURE AND HMM
ESTIMATORS

In order to compare these two methods, a special form
of the HMM emission model with many (greater than 15)
possible values of the output variable yt was considered.
Number of data was 300 for all the experiments.

The experiments consist in the following steps.
1) The HMM system was simulated with the output

having a certain great number of possible values.
The table of probabilities for the output model was
constructed so that the probabilities were distributed
along a normal-distribution curve with some chosen
mean value of the output. The dimension of the state
was 2 for all the experiments.

2) The estimation has been performed with the HMM
estimator with some initial parameters, to obtain the
transition and emission tables.

3) The state was estimated by the HMM method and
compared with the simulated one.

4) The same simulated data was used for the mixture
estimation with a discrete 2-dimensional state and
2 normal components. The state was estimated and
compared with the simulated one.

5) The number of correctly point-estimated states was
evaluated for both the methods.

6) Computational time was evaluated for both the
algorithms.

During the experimental work it was realized that,
in general, three basic factors influence the quality of
estimation for both the algorithms. They are: i) distance
between mean values in the output probabilities table;
ii) number of possible values of the output (15 − 100);
iii) transition probabilities (more deterministic or more
uncertain).

A. Experiments with Distance between Mean Values

These experiments deal with the impact of different
distances between mean values in the output probabilities
table. The number of possible values for yt for the HMM
simulator was set 15, state transition probabilities were set
more deterministic [0.97 0.03; 0.05 0.95] in MATLAB
notation, so that the system remains some time at one
of the states and only then jumps to another one. The
experiment was run with various distances between mean
values and great variances: from strongly overlapping
up to almost not overlapping ones. It was realized, that
the mixture estimator is sensitive to strongly overlapping
mean values: the quality of estimation was worse, see
Fig.1 (left). The HMM shows perfect results, see Fig.1
(right). The number of correctly point-estimated states is
286 for mixtures and 299 for HMM.

However, for the almost not overlapping mean values
from the emission table the state estimation was error-free
for both the methods.

Comparison of computational time (i.e., elapsed time
in seconds) is provided in Table I. It can be seen that the
mixture estimator was faster.

Table I. COMPARISON OF COMPUTATIONAL TIME

Computational Time
Mixture estimator 1.927 seconds
HMM estimator 2.122 seconds

B. Experiments with Number of Output Possible Values
and with Random Start

The experiments were done with increasing number of
the output values: 30, 50, 100. The mean values were set
as almost not overlapping in order to justify the conditions
for both the estimators. The following results have been
obtained. Starting with almost precise initial parameters
for the HMM estimation, both the methods demonstrate
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Figure 1. State estimation with strongly overlapping mean values with the mixture estimator (left) and HMM estimator (right).
Note that the HMM estimator shows more stability: the number of correctly point-estimated states is 286 for mixtures and 299 for

HMM.

very similar nice results with some advantage of the
HMM. It shows the error-free state estimation from 30 to
100 possible output values, while the mixture estimator
provides insignificant improvement of the results: for 30
values it has 296 correctly point-estimated states, for 100
values – 298. Several errors at the beginning are caused
by the insufficient knowledge of the online algorithm at
the start of learning.

The same experiments were also done with random
parameter start for the HMM estimator. It was realized,
that with a random start, the estimation with HMM mostly
failed. For 30 output values the HMM method has 181
correctly point-estimated states, for 50 values – 173 , for
100 values – 152. The mixture estimator always started
randomly and shows 298 correctly point-estimated states
for all these experiments. The results for 100 possible
output values with random start can be seen in Fig.2.

Computational time for the experiments with 100 out-
put values and the random parameter start can be seen in
Table II for both the methods. Here, the HMM estimator
demonstrates a significantly longer computational time
than the mixture one.

Table II. COMPARISON OF COMPUTATIONAL TIME

Computational Time
Mixture estimator 1.929 seconds
HMM estimator 5.123 seconds

C. Experiments with Transition Probabilities

These experiments deal with various settings of state
transition probabilities. The mean values are chosen al-
most not overlapping, and the number of possible output

values is 15. The initial parameters for the HMM estima-
tion are almost precise. The state transition probabilities
are chosen rather uncertain: [0.6 0.4; 0.4 0.6], then
[0.55 0.45; 0.5 0.5] and further [0.5 0.5; 0.5 0.5],
so that the system jumps from one state to another.
The HMM estimator is more sensitive to the uncertain
transition model: it provides 296, 299 and 174 correctly
point-estimated states respectively. The mixture estima-
tion proves more stability and has 300 correct estimates
for all these experiments. The results for the last attempt
are shown in Fig.3.

Computational time for the experiments with the state
transition probabilities [0.55 0.45; 0.5 0.5] is shown
in Table III. For probabilities [0.5 0.5; 0.5 0.5] the
computational time for mixtures was 1.883 seconds and
for HMM – 4.918 seconds. It can be seen the mixture
estimator was much faster for these experiments.

Table III. COMPARISON OF COMPUTATIONAL TIME

Computational Time
Mixture estimator 1.395 seconds
HMM estimator 6.163 seconds

IV. CONCLUSION

To summarize the experiments, it can be said, that both
the algorithms have their own strong and weak points. The
HMM offline estimation proves better results for either
strongly or almost not overlapping mean values in the
emission table, but it is more sensitive to increasing num-
ber of the output possible values and “jumping” uncertain
states. The HMM estimation shows the worsened stability
with the random initial parameters. The mixture online
estimator worsens with more overlapping mean values,
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Figure 2. State estimation for 100 possible output values with the mixture estimator (left) and HMM estimator (right). Note that
for a random start of the HMM estimator, the stability of the estimation could be violated. The number of correctly

point-estimated states is 298 for the mixtures and 152 for HMM.
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Figure 3. State estimation for uncertain “jumping” transition probabilities for the mixture estimator (left) and HMM (right). The
HMM estimator is more sensitive to the uncertain transition model and provides 174 correctly point-estimated states with the

transition table [0.5 0.5; 0.5 0.5]. The mixture estimation proves more stability and has 300 correct estimates.

however it starts randomly successfully and it is stable
with great number of the output possible values and with
uncertain transition probabilities.

Comparison of computational time proves that the
mixture estimator has a shorter (sometimes significantly)
elapsed time for running of all the experiments.

It was noticed that offline algorithms proved worse
stability in the sense that they either converge with perfect
results or they do not converge and the estimation fails.
For online algorithms a difference between good and bad
results is much more smooth.
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