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Štěpán Albrecht1, Václav Šmídl2

1University of West Bohemia, Plzeň, Czech Republic, albrs@kiv.zcu.cz
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ABSTRACT

The problem of memory based music transcription is con-
sidered and a probabilistic model for polyphonic music is
proposed. Parameters of the model correspond to labels of
the pre-recorded sounds and their amplitudes. Since exact
estimation of the parameters is computationally prohibitive,
we develop an approximate estimation algorithm using the
Variational Bayes approximation. Results of the proposed
algorithm are compared to alternative algorithms on piano
recordings

1. INTRODUCTION

Automatic music transcription (AMT) is a process of decom-
posing recorded music signal into a sequence of higher-level
sound events. The entire AMT—i.e. resolving pitch, loud-
ness, timing and instrument of all sound events in an input
audio music signal [1]—is not theoretically possible in gen-
eral [1], therefore practical AMT has to be restricted to a
specific scenario. Commonly used scenarios are memory-
based and data-based AMT. The former utilizes sound mod-
els corresponding to a certain musical instrument sound (al-
lowing to identify the instruments), the latter utilizes only
rules which hold in general. We are concerned with a special
case of the memory-based AMT. Kashino’s transcription sys-
tem [2] is another example of memory-based AMT system in
the sense of [1].

Intuitively, our formalization of the problem can be un-
derstood as an ‘inverse music sequencer’, Fig. 1. Music se-
quencers have a pre-recorded library of sounds (sound com-
ponents) which are combined together to create music signal.
Input to the sequencer is a MIDI file which contains informa-
tion about beginning of music events in time, their duration,
IDs of sounds (in our case the pre-recorded sound compo-
nents), their amplitude and modification type. In this paper
we consider only component truncation as a possible modifi-
cation. Output of the sequencer is the audio signal. Input of
our ‘inverse music sequencer’ is the recorded music signal
and its output is the estimated (transcribed) MIDI-like rep-
resentation of music events. Consideration of possible trun-
cations of the events is a distinct feature of our approach in
comparison to other approaches that consider only full se-
quences of the frames [3].

Figure 1: Principle of a music sequencer. The range of active
frames is yellowed. Note that the amplitudes are the same
for all events in a track s (represented by squares of the same
color).

2. MATHEMATICAL MODEL

The recorded signal yt is modelled by the following state
space model:

yt = ∑
s∈S

asFsls,t + et , (1)

ls,t = T ls,t−1, (2)
ls,t = [0,0, . . . ,1,0 . . . ,0]. (3)

Here, yt is the φ -dimensional vector of measurements at time
t composed of either time- or frequency-representation of the
input music signal segment (frame); the observations are cor-
rupted with noise et of Gaussian distribution with zero mean
and known covariance matrix ω−1Iφ ; F = {F1,F2, . . .FS}
is a library of S pre-recorded sounds; the sound matrix
Fs = [ f s,1, f s,2, . . . , f s,l ] is a collection of temporal sequence
of recorded segments for the isolated sound s. By conven-
tion, the first column f s,1 is composed of zeros; the label
process ls,t = [0,0, . . . ,1,0 . . . ,0] denotes which frame of the
sound is active at time t, ls,t = [1,0, . . .] encodes that sound s
is silent; as is the amplitude of the sound which is assumed to
be constant in time1. The labels form an unobserved Markov

1This will be relaxed in Section 3.2.



model (2) with transition matrix:

T =


tsil tend tend . . . tend

tstart tstay
tstart tnext tstay

... tskip tnext tstay
tstart tskip tnext tstay

 , (4)

where tsil denotes probability of the silent frame staying
silent, tend denotes probability of transition from a non-silent
to the silent state, tstart denotes probability of transition from
silence to non-silence, tstay is the probability of repetition
of the same frame, tnext is probability of continuation of the
sound to the next frame, tskip is probability that one frame in
the sequence is skipped.

3. APPROXIMATE BAYESIAN IDENTIFICATION

The task is to estimate posterior probability of the hid-
den label process Lt = [l1,t , l2,t , . . . lS,t ], i.e. labels of all
sounds in the bank, and their corresponding amplitudes a =
[a1,a2, . . . ,aS]. This can be formally achieved using the
Bayes rule:

p(l1,1:t , l2,1:t . . . lS,1:t ,a|y1:t) ∝

t

∏
τ=1

p(yτ |Lτ ,a)p(Lτ |Lτ−1)p(L0)p(a). (5)

p(Lτ |Lτ−1) =
S

∏
s=1

p(ls,τ |ls,τ−1)

where subscript 1:t denotes a time sequence, e.g. ls,1:t =
[ls,1, ls,2, . . . ls,t ]. Prior distribution p(L0) is chosen as non-
informative, in this case uniform. Prior distribution

p(a) = N (µa,0,Σa,0),

is chosen to regularize the model in case that a sound is not
played at all. In such a case, the data y1:t are not informative
about the amplitude of the sound and the posterior density is
equal to the prior.

Exact Bayesian inference of model (1)–(3) via (19) is
computationally intractable since the number of components
in the likelihood (5) grows with time. Therefore, we propose
to use approximate inference based on Variational Bayes ap-
proximation [4]. This technique was successfully used for
on-line estimation of mixture models [5]. Following the
methodology, we seek approximate inference only within
conditionally independent posterior

p(l1,1:t , . . . lS,1:t ,a|y1:t)≡ p(a|y1:t)
S

∏
s=1

p(ls,t |y1:t). (6)

Minimizing Kullback Leibler divergence between the left-
and the right-hand side of (6), we obtain the following set of
implicit equations:

p(ls,1:t |y1:t) ∝ exp
(
Ea,lσ ,σ=1...S,σ 6=s(ln p(L1:t ,a,y1:t)

)
(7)

p(a|y1:t) ∝ exp
(
Elσ ,σ=1...S,(ln p(L1:t ,a,y1:t))

)
(8)

Solution of this set is often found using an iterative algorithm
[4].

Substituting (1) and (5) into (7) and necessary simplifi-
cation, we obtain:

p(ls,1:t |yt) ∝

t

∏
τ=1

dim(Fs)

∏
i=1

ols,i=1
i,τ t i,:ls,τ−1 (9)

oi,τ ∝ exp
(
−1

2
ω(ỹτ − âs f s,i)

′(ỹτ − âs f s,i)

)
exp
(
−1

2
ωΣa,s,s f ′s,i f s,i

)
. (10)

ỹτ = yτ −
S

∑
σ=1,σ 6=s

âσ Fσ l̂σ ,τ , (11)

p(a|y1:t) = N (µa,Σa), (12)

µa = Σa

(
t

∑
τ=1

E(Φτ)
′yτ +Σ

−1
a,0µa,0

)
, (13)

Σa =

(
t

∑
τ=1

E(Φ′τ Φτ)+Σ
−1
a,0

)−1

. (14)

The expectations are:

E(Φ′τ Φτ) = ω[F1 l̂1,τ , . . . ,FS l̂S,τ ]
′[F1 l̂1,τ , . . . ,FS l̂S,τ ], (15)

E(Φτ) = ω[F1 l̂1,τ , . . . ,FS l̂S,τ ],

l̂s denotes expected value of ls, â = µa.
Note that (17) can be rewritten as

p(ls,1:t |y1:t) ∝

T

∏
τ=1

p(ỹτ |ls,t)p(ls,t |ls,t−1)p(ls,0). (16)

which is a standard hidden Markov model that could be
solved using the forward-backward algorithm. However, due
to dependence of ỹτ on the expected values l̂σ , it will be used
only as a subroutine within the following algorithm:

Algorithm 1 Off-line VB algorithm

1. Set initial conditions, e.g. l̂(0)s = [1,0,0, . . .],∀s, and set
iterative counter i = 0.

2. For s = 1, . . . ,S
(a) compute ỹτ using available estimates (11),

(b) evaluate posterior l̂(i)s via forward-backward algo-
rithm using (4) and (10).

(c) update statistics of p(a|y1:t) using (13)–(14).
(d) i = i+1.

3. If i < max_iterations and distance(l̂(i)s , l̂(i−1)
s ) >

threshold goto 2, end otherwise.

3.1 Extension for unknown precision of observations
The precision of observations ω was considered to be known
in (1). When it is unknown, it can be estimated using the
same methodology. In that case, we need to complement the
likelihood (5) by a prior

p(ω) = Ga(a0,b0),



and conditionally independent posterior of ω is then:

p(ω|yt) ∝ Ga(a,b), a = a0 +φ t, (17)

b = b0 +
t

∑
τ=1

(yτ −∑
s

âsFs l̂s,τ)
′(yτ −∑

s
âsFs l̂s,τ)

+∑
τ

trace(ΣaE(Φτ)
′E(Φτ)) (18)

and ω in (10) and (15) should be replaced by ω̂ = a/b.

3.2 Extension of the algorithm to recursive estimation.
Algorithm 1 can be easily extended to recursive form by run-
ning Algorithm 1 on moving window of length w. In that
case, we perform Bayesian estimation of the labels on the
moving window, Lt−w:t , via the Bayes rule.

p(Lt−w:t |y1:t) ∝

t

∏
τ=t−w

p(yτ |as,Lτ)p(Lτ |Lτ−1)p(Lt−w)p(a). (19)

The prior distribution p(Lt−w) in (19) is the delayed poste-
rior. Note that amplitudes, a, are now considered stationary
only with respect to the moving window.

4. EXPERIMENTS

The simulated data were generated from piano midi files in
the same way as in [6]. Each note was represented by its
pitch, onset time, duration and offset in the sound library.
The last element is an extension of the standard midi. The
amplitudes and the audio signal were generated using model
(1-3).

The sounds assigned to the piano midi events were syn-
thesized according to yacoust = env · sin(2π f · t + 5 · env ·
sin(2π f · t)), where env denotes amplitude envelope and f
represents the fundamental frequency. Frames produced by
such a synthesizer are significantly similar to each other.
Hence, the audio signal generated by the first frame at low
amplitude is remarkably similar e.g. to that of the third frame
at higher amplitude. This is a challenge for estimation, since
the likelihood model alone can not properly distinguish those
two cases and proper use of the transition model (4) is re-
quired.

Elements of the transition matrix T form nuisance param-
eters of the model, δ = [tsil , tstart , tend , tstay, tnext , tskip]. These
were optimized by Matlab function fminsearch to optimize a
measure similar to the total relative sound-to-distortion ratio
[7]:

SDR = 10log10
∑t [b ·Facoustat ]

2

∑t [yt −b ·Facoustat ]2
, (20)

where b is a scalar fitting b ·A = Are f erence +noise according
to MMSE and Facoust is the matrix of frames in acoustic form.

A library of 61 sounds (corresponding to midi notes
36—96) was used for testing, each of the sounds having 10
frames. Each frame contained 4096 samples at 44.1 kHz
sample rate, represented by the magnitude spectrum. For
training of the nuisance parameters, only 36 (midi notes
45—80) sounds were considered. Thus, there were 610
and 360 frames in the testing and the training library, re-
spectively. Model nuisance parameters were trained on 51
frame units long of one of Debussy’s preludes and tested on
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Figure 3: Amplitude envelope of sound 10, i.e., tone A (110
Hz).
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Figure 4: Amplitude estimation. Squares denote true val-
ues, circles represent estimated values. Missing squares / cir-
cles correspond to a state when the sound component is not
present.

582 frame long concatenation of short excerpts of Mozart,
Beethoven and Debussy. In the training phase, 51 units were
filtered by the VB algorithm, frame by frame with no over-
lap. The SDR-optimized results are presented in Fig. 4. In
the testing phase, 58 seconds of music audio signal contain-
ing 1325 active frames were estimated by the VB algorithm.
In our experiments, five iterations of the VB algorithm were
sufficient to achieve convergence. After five iterations we
evaluated the fit of the presence vectors Lt using maximum
aposteriori estimate, i.e. the frame with highest probability
was declared as detected. The number of correctly detected
frames, false positives has been decreased by the current
model while the number of false negatives has been slightly
increased, see Table 1. This is due to missed frames in the
end of the long sounds, the frames correspond to weak sound
since the amplitude envelope of a component decreases in
time, see in Fig. 3. Visual comparison of the presented model
with continuous model of [6] and NMF approach of [1] is
presented in Fig. 4. Since NMF si computationally cheper,
we have used it as initializer of the proposed VB algorithm.
Specifically, the initial estimate of Lt in step 1. of Algorithm
1 were set to the NMF result. From the figures and the result
table it follows that the observation part of the model en-
hances the quality of estimation from the NMF initialization
and that the transitional part of the model improves model es-
timation. For illustration, result of the amplitude estimation
for each sound component can be seen in Fig. 4.

5. CONCLUSION

We have presented a model for polyphonic music signal and
an approximate algorithm for estimation of its parameters
based on Variational Bayes approximation. The experiments
confirm that the off-line version of the algorithm compares
favourably with competing algorithms. Extensive tests of
the recursive version are under development. Further work
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Figure 2: Example of simulated and transcribed piece of polyphonic music in a piano-roll like representation. Vertical axes
denote tone with the due midi keys. Horizontal axis denote discrete time (time units). Blue horizontal lines correspond to the
beginning of the frame sequence due to a tone. a) original music excerpt; b) transcription via model[6]; c) transcription via
NMF without any constraints; d) maximum likelihood estimates of the current frame using the current model; e) posterior
values L̂ of the current model; f) maximum likelihood estimates of the current frame using the current model without the
transition part.

Table 1: Comparison of the presented model with previous
methods.

total
frames hits false

positive
false
neg

SDR
[dB]

current
posterior 1325 1167 154 158 10.08

current
observation1325 1004 2908 321 5.19

[6] 1325 1219 293 106 10.59
NMF 1325 1007 1367 218 3.53

will be directed to optimization of the implied computational
load. The algorithm can be further extended to on-line esti-
mation of the transition matrix of the label process.

REFERENCES

[1] M. Davy and A. Klapuri, eds., Signal Processing Meth-
ods For Music Transcription. Springer, 2006.

[2] K. Kashino and H. Tanaka, “A sound source separa-
tion system with the ability of automatic tone modeling,”
in International Computer Music Conference (ICMC),
Aug. 1993.

[3] A. Mesaros, T. Heittola, A. Eronen, and T. Virtanen,

“Acoustic event detection in real life recordings,” in Eu-
ropean Signal Processing Conference, (Aalborg, North
Denmark), 2010.

[4] V. Šmídl and A. Quinn, The Variational Bayes Method
in Signal Processing. Springer, 2005.

[5] M. Sato, “Online model selection based on the varia-
tional Bayes,” Neural Computation, vol. 13, pp. 1649–
1681, 2001.

[6] Š. Albrecht and V. Šmídl, “Improvements of continu-
ous model for memory-based automatic music transcrip-
tion,” in European Signal Processing Conference, (Aal-
borg, North Denmark), 2010.

[7] R. Gribonval, L. Benaroya, E. Vincent, and C. Févotte,
“Proposals for performance measurement in source sep-
aration,” in Proc. 4th International Symposium on Inde-
pendent Component Analysis and Blind Signal Separa-
tion (ICA2003), (Nara, Japan), pp. 763–768, 2003.


