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Abstract—Performance of square-root extended Kalman filter
(EKF) based on reduced order models for sensorless control
of permanent magnet synchronous motor (PMSM) drives is
studied. The reduced order model of PMSM has two-dimensional
state vector comprising of: (i) electrical rotor speed, and (ii)
electrical rotor position. These state quantities are estimated by
the EKF without either speed or position sensor on the motor
shaft. The reduction of the model order results in dramatic
speed-up of calculation of the estimator which takes only a
few tens of microseconds on a conventional fixed-point digital
signal processor. Accuracy of the estimator is improved using
square-root representation of the covariance matrix. Due to its
low computational requirements, the proposed square-root EKF
estimator is eligible for sophisticated diagnostics as well for
sensorless control of PMSM drive in a wide range of industrial
applications. Presented theoretical conclusions are verified by
both simulations and experiments carried out on developed
PMSM drive prototype of rated power of 10.7kW.

I. INTRODUCTION

Sensorless control of an ac drive—i.e. it operation without
either rotor position and/or speed sensor—can be achieved
by many techniques, ranging from MRAS [1] to complex
schemes. The Extended Kalman Filter (EKF) is a basis for
many variants of sensorless control schemes using different
models, e.g. [2], [3]. The common perception of EKF is that
it is computationally expensive and thus unsuitable for a low-
cost digital signal processor (DSP). A possible solution is
to implement the EKF-based sensorless control on powerful
floating-point DSPs or FPGAs [4]. Implementation of the EKF
in a low-cost DSP with limited computational performance—
which are at present used in ac electric drives from simple
consumer electronics up to either traction or generally high-
power drives—is much more demanding for two reasons. First,
low-cost DSPs usually support only fixed-point arithmetics
which implies limited dynamic range and scales, and therefore,
reduced calculation accuracy. Second, reduction of computa-
tional cost motivates to replace full model of the drive by an
approximation e.g. in the form of reduced-order model.

A principled solution to the first problem is based on square
root decomposition of the covariance matrix [5], which has
been applied to the sensorless control problem in [6]. The
number of reduced order models offering potential solution to
the second problem is rather wide. One possibility is to apply
sophisticated techniques of projection of the full state-space
model into lower dimensional state [7], [8], [9]. An alternative

way is to interpret the standard state-space model in terms of
back-emf equations, e.g. [10]. In this paper, we discuss the
latter approach since it does not require any transformations or
auxiliary variables. We focus our attention to implementation
of the EKF in fixed-point arithmetics and discuss differences
from the full state-space model. Specifically, we develop and
compare the Bierman-Thorton variant of the square-root EKF
[5].

This paper is organized as follows. The reduced order
model is introduced in Section II. Details of fixed-point im-
plementation of the square-root EKF are discussed in Section
III. Details of the drive control strategy are presented in
Section IV. The presented algorithms are in detail compared
in simulations in Section V and on a laboratory prototype
of sensorless PMSM drive of rated power of 10.7kW in
Section VI.

II. REDUCED ORDER MODEL OF PMSM

A commonly used model of a PMSM is mathematical model
in stationary reference frame discretized by simple first-order
Euler formula for time step ∆t:

isα,t+1 =aisα,t + bωme,t sinϑe,t + usα,t
∆t

Ls
+ εα,t, (1)

isβ,t+1 =aisβ,t − bωme,t cosϑe,t + usβ,t
∆t

Ls
+ εβ,t, (2)

ωme,t+1 =ωme,t + εω,t, (3)
ϑe,t+1 =ϑe,t + ωme,t∆t+ εϑ,t. (4)

Here, isα, isβ , usα and usβ represent components of stator
current and voltage vector in the stationary reference frame,
respectively; ωme is electrical rotor speed and ϑe is electrical
rotor position. Constants a = (1 − Rs

Ls
∆t) and b =

Ψpm

Ls
∆t

are machine dependent with Rs and Ls being stator resistance
and inductance respectively, Ψpm is the flux linkage excited
by permanent magnets on the rotor, and ∆t is the sampling pe-
riod. Noise terms εα,t, εβ,t, εω,t, εϑ,t, aggregate errors caused
by inaccurate discretization, uncertainties in parameters (e.g.
due to temperature changes, saturation), unobserved physical
effects (such as the unknown load, dead-time effects, non-
linear voltage drops on power electronics devices). Equation
(3) is simplified, we assume that the speed change within one
sampling period is negligible.



Equations (1)–(4) represent non-linear state-space model of
PMSM with state vector xt = [isα,t, isβ,t, ωme,t, ϑe,t]. For
consistency with the extended Kalman filter assumptions, all
of these errors are assumed to influence the state equations as
an additive noise with Gaussian distribution. Generally it is
assumed that the noise between the state variables is uncorre-
lated and its variance is constant, Q = diag(qi, qi, qω, qϑ). In
sensorless control it is assumed that only two state variables,
iα,t and iβ,t are measured via observations iα,t and iβ,t:

is,α = is,α + eα,t, is,β = is,β + eβ,t. (5)

Once again, the measurement errors are assumed to be
non-correlated Gaussian with variances var(eα,t) = ri,
var(eβ,t) = ri. Equations (1)–(4) are then interpreted as
the state equations, while equations (5) are interpreted as the
observation equations in the standard EKF implementations.
Various techniques of model order reduction has been applied
to this model, [8], [7].

In this paper, we propose a simple reduction based on substi-
tution of (5) into (1)–(2). After trivial algebraic manipulation,
we obtain

isα,t+1 =aisα,t + bωme,t sinϑe,t + usα,t
∆t

Ls
+ ξα,t, (6)

isβ,t+1 =aisβ,t − bωme,t cosϑe,t + usβ,t
∆t

Ls
+ ξβ,t. (7)

where the error terms are

ξα,t = −aeα,t + eα,t+1 + εα,t,

ξβ,t = −aeβ,t + eβ,t+1 + εβ,t.

Since all e·and ε·are zero mean Gaussian noises, the ξ· are
also zero-mean Gaussian with variances

var(ξα,t) = var(ξβ,t) = [1 + a2]qi + ri. (8)

The reduced order model of PMSM is then described
by state-equations (3)–(4) and measurement equations (6)–
(7). The state variable of the reduced-order model is xt =
[ωme,t, ϑe,t] and the observation variable is yt = [isα,t, isβ,t].
Stator voltages usα,t, usβ,t are not measured directly but they
are reconstructed from measured dc-link voltage and known
switching combination of a voltage source inverter supplying
a PMSM. Under this interpretation, the classical EKF filter
equations:

P−
t = AP+

t−1A
T +Qt, (9)

Kt = P−
t Ct(CtP

−
t C

T
t +R)−1, (10)

P+
t = (I −KtCt)P

−
t , (11)

x̂t = Ax̂t−1 +Kt(yt − ŷt−1). (12)

are now operating on 2×2 matrices P−
t and P+

t , and matrices

A =

[
1 0

∆t 1

]
, Ct =

[
b sin ϑ̂e,t bω̂me,t cos ϑ̂e,t
−b cos ϑ̂e,t bω̂me,t sin ϑ̂e,t

]
,

are obtained as derivatives of (3)–(4) and (6)–(7), respectively.
We note the following:

• The above interpretation is not a suitable state-space
model for control since it is uncontrollable (the state does
not depend on usα,t and usβ,t). However, it is a valid
model for estimation since it is observable.

• This reduced order model was first used in [10].
• The covariances of the reduced-order observation equa-

tions (8) are greater than these of the full model.

III. FIXED-POINT IMPLEMENTATION OF THE EKF
Implementation of the EKF equations in fixed-point arith-

metics is significantly more demanding than in the floating-
point arithmetics. First, it requires to scale the variables
to bounded range which may be non-trivial for complex
algorithms. Second, the round-off errors are generally greater
than those in the floating-point arithmetics and they propagate
through the equations to the next step.

Finding suitable ranges for the state variables and the
observed variables is straightforward. All these quantities have
physical bounds which allows us to establish identities of the
kind

ωfixme =
ωme
ωmaxme

∈< −1, 1 > . (13)

Substituting identities (13) for all variables, we obtain
Afix,Cfix. However, for a = 1, the predicted variance of
ϑe,t is from (9)

P−
ϑϑ,t = ∆t2P+

ωω,t−1 + 2∆tP+
ωϑ,t−1 + P+

ϑϑ,t−1 + qϑ,

where all variances and covariances are positive and thus
P−
ϑϑ,t > P+

ϑϑ,t−1. In the low-speed region the Kalman gain
does not decrease P−

ϑϑ,t and it keeps growing without bounds,
see [11] for the associated Cramer-Rao bounds. This can not
be implemented in fixed point arithmetics and a bound on
Pϑϑ,t has to be set.

Bierman-Thorton algorithm operated on UD decomposition
of the covariance matrices P+

t and P−
t :

Pt = UtDtU
T
t . (14)

Equations (9)–(12) are then reformulated in terms of updating
of variables U−

t , D
−
t to U+

t , D
+
t . The algorithm that computes

(9) is known as the Thorton algorithm, while the algorithm
computing (10) and (11) is known as Bierman algorithm, see
[5] for their derivation.

Fixed-point implementation of the Bierman-Thorton algo-
rithms has to respect the saturation effect on Pϑϑ,t. Note that

Pt =

[
dω + u2dϑ udϑ

udϑ dϑ

]
, Ut =

[
1 u
0 1

]
, Dt =

[
dω

dϑ

]
,

where Pϑϑ,t = dϑ. Hence, in the element that needs to be
bounded in the UD decomposition is dϑ while the values of the
remaining elements of Pt should not be affected. This can be
easily achieved by bounding dϑ in the Thorton algorithm. No
additional saturations are required in the Bierman algorithm
which can be implemented using standard rules of fixed-point
arithmetics.

In contrast to the full model studied in [6], the reduced-
order model does not allow for as many simplification as the
full model since the matrix C is not identity.



Figure 1. Investigated sensorless control of a PMSM drive with the EKF

IV. PROPOSED SENSORLESS CONTROL OF PMSM DRIVE

Configuration of the investigated sensorless drive control is
displayed in Fig. 1. The drive control is based on conventional
vector control in Cartesian coordinates in rotating reference
frame (d,q) linked to a rotor flux linkage vector. An input to
the drive controller is the commanded electrical rotor speed
ωmew which is controlled by PI controller Rω . Output of
Rω is the demanded torque component Isqw of the stator
current vector. The torque (Isqw) and flux (Isdw) currents
are controlled by PI controllers RIsd and RIsq, respectively.
The flux weakening is secured by PI controller RUrm which
controls PWM modulation depth (signal Urm) and commands
the flux current Isdw. The current controllers are supported by
block “voltage calculation” (often referred to as “decoupling”)
which computes the components of the required stator voltage
vector in (d,q) frame using a simplified model of the PMSM
in steady-state. The components of the stator current vector
(isα, isβ) and the reconstructed stator voltage vector usα, usβ
in stationary reference frame are the inputs to the EKF. The
stator voltage vector is reconstructed from measured dc-link
voltage and known switching combination of the voltage-
source converter. The EKF output is the estimated electrical
rotor speed ω̂me and the electrical rotor position ϑ̂e. The drive
can be operated in two modes: (i) sensored mode (where the
drive control uses the rotor speed and position from the rotor
position sensor and the EKF is operated in open-loop), and (ii)
sensorless mode (where drive control uses the EKF output and
hence, EKF is operated in closed-loop). The voltage-source
converter employs a third-harmonic injected PWM with carrier
frequency of 4kHz. The sampling frequency of the EKF as
well as of the drive control has been set to 125µs.

The proposed sensorless drive control with presented al-
gorithm of the reduced-order square-root EKF (Fig. 1) has
been tested on developed prototype of PMSM drive of rated

Table I
MEASURED EXECUTION TIME OF VARIANTS OF THE EKF ON DSP TEXAS

INSTRUMENTS TMS320F2812 WITH CLOCK FREQUENCY OF 150MHZ

time in µs full model reduced model
Full matrices 78 37
Bierman-Thorton 77 23

power of 10.7kW. The drive control has been implemented
in a fixed-point digital signal processor Texas Instruments
TMS320F2812.

V. SIMULATION RESULTS

Simulation model of the PMSM drive has been designed
and implemented in the C language. The “physical” model
of a surface-mounted PMSM is represented by state-space
model in the stationary reference frame which has been solved
using Adams-Bashforth difference formula of 4th order with
sampling period of 1µs. The voltage-source inverter model
respects as close as possible dead-time effects (the dead-
times have been set to 3µs which corresponds to those of the
laboratory prototype) and non-linear voltage drops on power
electronics devices (the power devices are modeled using
approximations of their V-A characteristics). The implemented
control strategy and the EKF algorithms respect behavior of
a real microcontroller-based control system including realistic
sampling, known transport delays and finite calculation times.
The sampling period of the control and EKF has been, as
defined above, set to 125µs.

Fig. 2 analyzes behavior of the proposed reduced-order
square-root EKF algorithm under speed reversal effect. The
square-root EKF using reduced-order model was compared
with two variants of EKF for the full-order model: (i) the
Bierman-Thorton EKF [6], and (ii) the conventional full-
covariance matrices EKF [12]. In all tests, the drive was



Figure 2. Behavior of the reduced-order square-root EKF algorithm and
its comparison with two full-model EKF variants (the Bierman-Thorton EKF
and the conventional EKF with full covariance matrices): speed reversal effect,
triangular speed profile, commanded el. rotor speed of fmew = ±50Hz

operated in sensored mode, i.e. the control employed rotor
speed and position feedback from the rotor position sensor.
All EKF algorithms were computed during the simulation test
in parallel. Errors of estimation of the electrical rotor speed
by particular EKF algorithms are displayed in Fig. 3. From
the presented simulation results, it can be concluded that the
estimation error of both introduced reduced-order and full-
order square-root EKF is almost the same. The filter with
reduced-order model achieved a little bit better result in the
simulation. The speed estimation error of the new filter is
below 5 electrical degrees in the entire speed range including
critical low speeds. The presented solution significantly out-
performs the conventional EKF with full covariance matrices
which had the biggest speed estimation error.

VI. EXPERIMENTAL RESULTS

The developed prototype of a PMSM drive was in all
presented experiments operated in the sensorless control mode.

Figure 3. Error of electrical rotor speed estimation for all investigated EKF
algorithms: simulation scenario displayed in Fig. 2.

First, we have tested capabilities of the described reduced-
order square-root EKF algorithm in the low-speed region. Fig.
4 shows a start of the drive from standstill and the step change
of commanded electrical rotor speed from zero to 3Hz. In the
next test which is documented in Fig. 5, we have investigated
drive behavior under speed reversal effect. The drive was
operated under triangular speed profile with the commanded
electrical rotor speed of fmew = ±50 Hz. We have purposely
employed quite slow speed ramp to verify the properties of the
analyzed EKF algorithm in the critical low-speed region. In
order to be able to point out the features of introduced reduced-
order square-root EKF, Fig. 6 and Fig. 7 present the behavior
of the drive with full-order square-root EKF estimator. The
algorithms of square-root EKF for full-order model are in
detail described and analyzed in [6]. The reduced-order EKF
was to secure a reliable drive operation at higher rotor speeds
than the full-order EKF. While the full-order EKF allows
robust sensorless drive control from the electrical rotor speed



Figure 4. Reduced-order square-root EKF – Step change of electrical rotor
speed fmew= 0→ 3Hz: initial rotor position is different from the EKF initial
condition. ch1: electrical rotor speed (sensor) [0.625 Hz/div], ch2: estimated
electrical rotor speed (EKF) [0.625 Hz/div], ch3: electrical rotor position
(sensor) [144 deg/div], ch4: estimated electrical rotor position (EKF) [144
deg/div], time scale: 400 ms/div

over 1.8Hz (27 rpm), the reduced-order EKF secures the robust
drive operation from electrical rotor speed over 3Hz (45 rpm).
From the analysis of the drive speed reversal can be concluded
that EKF with full model achieved almost the same transition
through critical low speed region. The proposed reduced-order
square-root EKF achieved very good steady-state precision and
cultivated transitions through the low-speed region. Therefore,
reduced-order EKF represents fully competitive solution to
the EKF with full-order model in terms of precision of the
state estimation. However, computational time of the reduced-
order algorithm is more than 3 times shorter than that of the
original full-order estimators. Execution times of all variants
of the EKF measured with DSP clock frequency of 150MHz
are displayed in Table I.

VII. CONCLUSION

Fixed-point implementation of the square-root EKF based
on reduced-order model was presented and its performance
tested by simulations and experiments carried out on de-
veloped laboratory prototype of PMSM drive of 10.7kW.
Specifically, we have tested and compared Bierman-Thorton
algorithm of EKF for the reduced-order model and the conven-
tional full model. We have found that the reduced-order model
is fully comparable with the full order model in terms of both
static and dynamic properties. The reduced-order model has
fewer elements in the covariance matrix, and is far less sen-
sitive to their choice which simplifies the task of their tuning.
On the other hand, more richer covariance structure of the full
model allows finer tuning of its performance, which has been
demonstrated by achieving reliable performance at lower speed
that the reduced model. The most attractive property of the
reduced order model is more than 3 times shorter computation
time. Hence, it can be computed without significant difficulties

a) Overlapped waveforms (channels)

b) The same transient effect with distributed channels

Figure 5. Reduced-order square-root EKF – speed reversal: triangular
speed profile, commanded electrical rotor speed fmew = ±50 Hz. ch1:
electrical rotor speed (sensor) [40 Hz/div], ch2: estimated electrical rotor speed
(EKF) [40 Hz/div], ch3: electrical rotor position (sensor) [144 deg/div], ch4:
estimated electrical rotor position (EKF) [144 deg/div], time scale: 400 ms/div

on a common fixed-point DSPs which are currently used in
industry. This makes the proposed reduced-order square-root
EKF an eligible solution for diagnostic systems as well as
sensorless control of ac motor drives in a wide range of
industrial applications.
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