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Abstract. The paper deals with online state estimation for dynamic hybrid sys-
tems with mixed continuous and discrete states. The proposed solution is based on
a decomposed version of the state-space model and Bayesian filtering. Specializa-
tion to Gaussian linear dynamic and multinomial state-space models is described.
Experiments with real data illustrating the presented approach are provided.
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1 Introduction

Dynamic systems whose behavior changes not only continuously in time,
but also within some discrete values (i.e., system modes) are met in many
fields (for example, target tracking, image processing, speech recognition,
traffic control, etc.) Modeling and especially adaptive control of such hybrid
systems is a difficult task. Fast online state estimators for hybrid systems
are desired in some of these areas.

Many algorithms exist for state estimation of such systems. The well-
known approach is the interactive multiple model (IMM) algorithm [1], which
performs Kalman filter [2] for each model and then computes a weighted
combination of updated state estimates produced by all the filters. An ex-
act filter for a specialized hybrid system is proposed in [3], where discrete
state is treated via hidden Markov models (HMM) and a solution is pre-
sented as Gaussian sum with explicitly computed specific weights, means
and variances. However, a number of statistics grows geometrically in time,
which restricts duration of online estimation by number of time steps. Other
special cases of dynamic switching models are presented in [4,5]. Iterative
techniques nicely presented in [6] can be found in literature as well as the
mixture Kalman filter [7] based on sequential Monte Carlo methods. These
approaches are closely related to that described at this paper. A part of the
proposed work concerned with the estimation of discrete multinomial state is
also close to HMM theory [8]. However, the algorithms mentioned run mostly
offline and are supported by Monte Carlo computations. The presented pa-
per aims at online state estimation and analytical solution as far as possible.



It means that it applies numerical procedures only in that parts, which can
not be computed analytically. The paper exploits a decomposition of state
estimate, which enables to consider state as a product of various (here spe-
cialized) distributions. An online filter for discrete multinomial state based
on fully analytical solution is proposed. The state-space model is taken as the
probability (density) function in more general (not reduced) form, including
control variables for corresponding distributions.

The layout of the paper is as follows. Section 2 provides a problem formu-
lation and basic facts about models used and Bayesian filtering [9]. Section
3 presents a general solution for online state estimation for hybrid systems
and specializes it for normal and multinomial models in Section 3.2. Sec-
tion 4 demonstrates experiments with real data and comparison with state
estimation using HMM. Section 5 contains a conclusion.

2 Problem formulation

A system to be considered exhibits both continuous and discrete behavior
and can be treated as a hybrid system. Available observations concerning
the system are of a mixed nature:

yt = [yc
t , y

d
t ]′, ut = [uc

t , u
d
t ]′,

where yt is an output vector measured at discrete time moments t = {1, . . . , T}
≡ t∗, ut is a known control input vector, and superscript c denotes a contin-
uous type of a variable, while superscript d – a discrete variable. The present
paper considers normally distributed variables and discrete multinomial vari-
ables. In general, variables with both the superscripts (c and d) are column
vectors.

Having at disposal measured data and assuming that system parameters
are known (or estimated offline), a task is to estimate recursively the unob-
served state of this system

xt = [xc
t , x

d
t ]′ = [xc

1,t, . . . , x
c
C,t, x

d
t ]′

where xc
i,t is a normal entry, i = 1, . . . , C and xd

t is a discrete multinomial
scalar with number of possible values L.

2.1 Basic facts

State-space model Generally, a state-space model is taken in the form of
the following probability (density) functions (p(d)fs),

observation model f (yt|xt, ut) , (1)
state evolution model f (xt+1|xt, ut) . (2)

for simplicity denoted as pdfs for random variables throughout the paper.



Bayesian filtering Bayesian filtering, estimating the system state, includes
the following recursions. The first is the data updating

f
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which incorporates information contained in data dt = (d1, . . . , dt), where
dt ≡ (yt, ut) into the prior pdf f

(
x1

∣∣d0
)
, which starts the recursions. The

prior pdf expresses a subjective prior knowledge about the initial state x1.
The relation (3) also comprises the natural conditions of control [9], according
to those f (xt|ut, d

t) = f (xt|dt). ∝ means a proportionality. The second is
the time updating
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=
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)
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that corrects the state estimate updated by measurements.

Kalman filter Bayesian filtering (3)-(4) applied to linear normal state-space
model (1)-(2) provides Kalman filter [10]. It means that the models take the
following forms

yt = Hxt +Dut + vt, (5)
xt+1 = Axt +But + wt, (6)

where H, D, A and B are parameters supposed to be known, ut is known
control input variable, and vt is measurement Gaussian noise with zero mean
and known covariance Rv and wt is process Gaussian noise with zero mean
and known covariance Rw. For these linear models Kalman filter [10] includes
the following equations starting with prior mean µ1|0 and prior covariance
matrix P1|0.

KG = Pt|t−1H
′(HPt|t−1H

′ +Rv)−1, (7)
µt|t = µt|t−1 +KG(yt −Hµt|t−1 −Dut), (8)
Pt|t = Pt|t−1 − Pt|t−1H

′(Rv +HPt|t−1H
′)HPt|t−1,

µt+1|t = Aµt|t +But, (9)
Pt+1|t = APt|t−1A

′ +Rw, (10)

where KG is a Kalman gain, and µt+1|t and Pt+1|t are the obtained mean
and covariance matrix of the needed state estimate.

Chain rule The chain rule [10] is an operation intensively used in the paper,
which has a form

f (a, b|c) = f (a|b, c) f (b|c) (11)

It decomposes the joint pdf f (a, b|c) into a product of conditional pdfs for
any random variables a, b and c.



3 Online filtering for hybrid systems

Bayesian filtering is proposed to be done with the simultaneous data and
time updating, i.e.,

f(xt+1|dt) ∝
∫
f(xt+1|xt, ut)

f(yt|xt, ut)f(xt|dt−1)︸ ︷︷ ︸
∝f(xt|d t)

 dxt. (12)

3.1 General solution in pdfs

Models in a decomposed form For the considered hybrid system (see
the problem formulation in Section 2) it is convenient to decompose models
(1)-(2) so that to treat each state individually. Using the chain rule, one
decomposes the observation model (1)
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realistically assuming that the past discrete state and a discrete input can
be omitted from the condition for the continuous output yc

t , and continuous
entries – from the condition for discrete yd

t . The obtained decomposition (13)
represents a product of distributions. Similarly the state evolution model (2)
f(xt+1|xt, ut) is decomposed according to the chain rule as
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Prior pdfs Prior pdf f(xt|dt−1) is also chosen in the form
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Online hybrid filter Substituting models (14), (13) and prior pdf (15) in
(12), one obtains
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Relation (16) results in the sum of distributions and loses the prescribed
original form of the posterior pdf. It is necessary to restore it in order to
use in the next step of recursion (12). Kerridge inaccuracy [11], a part of
Kullback-Leibler divergence [12], is adopted as a theoretically justified prox-
imity measure. This divergence is known to be an optimal tool within the
Bayesian approach [9]. An approximation based on Kerridge inaccuracy is
an explicit solution, which restores the original form of the pdf via computa-
tion of a specific weighted combination of the pdfs involved in (16). For any
random variable a, Kerridge inaccuracy is used to measure the proximity of
pdfs f(a) and f̂(a)

Ka(f(a)||f̂(a)) =
∫

a∗
f(a) ln

1

f̂(a)
da (17)

and its minimization allows to find the approximated pdf f̂(a). According to
this approximation [9], sum (16) is replaced by the product

f̂(xc
t+1|xd

t+1, d
t)f(xd

t+1|dt), (18)

which is used as the prior pdf for the next step of recursive estimation.
The proposed general solution is universal in the sense of exploited dis-

tributions. The provided specialization shows usage of the approach with
normal and multinomial models.

3.2 Solution for normal and multinomial models

The decomposed observation model (1) is a product of the multivariate K-
dimensional (i.e., yc

t = [yc
1,t, . . . , y

c
K,t]
′) normal output distribution (5) and

the multinomial distribution provided by an output table, i.e.,
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where αyd
t =q|xd

t =l,ud
t =n are known probabilities of output yd

t = q under con-

ditions of xd
t = l and ud

t = n, and it holds
∑Q

q αq|ln = 1, αq|ln ≥ 0 ∀ q, l, n
and Q.

The decomposed state evolution model (2) represents a product of the
multivariate C-dimensional normal distribution (6) and the multinomial dis-
tribution presented by a transition table, i.e.,
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with known probabilities βxd
t+1=l|xd

t =m,ud
t =n of transition to state xd

t+1 = l

under conditions of xd
t = m and ud

t = n. It holds
∑L

l βl|mn = 1, βl|mn ≥
0 ∀ l,m, n, and l = 1, . . . , L.



Choice of prior distributions The prior pdfs (15) f(xc
t |xd

t , d
t−1)f(xd

t |dt−1)
are specialized as

N (µt|t−1, Pt|t−1)pxd
t (t) (21)

of C-dimensional prior normal distribution with initial mean value µt|t−1 and
covariance Pt|t−1 and of the multinomial distribution in the form of the prior
probability pxd

t =l(t) of xd
t = l, where

∑L
l pl(t) = 1, pl(t) ≥ 0 ∀ l.

Filter for normal and multinomial models For normal models the so-
lution computationally coincides with the Kalman filter (7)-(10) run for each
value of xd

t .
For discrete multinomial models the filtering takes the following form.

For each value l of xd
t+1 and with known output yd

t = q and known input
ud

t = n the probability is computed as

pxd
t+1(t)

= βl|1nαq|1np1(t) + βl|2nαq|2np2(t) + . . .+ βl|Lnαq|LnpL(t) (22)

and then normalized. In this case the resulted relation (16) is mixture dis-
tribution. The mixture distribution

∑L
l=1 pl(t+1)Nl(µt+1|t, Pt+1|t) is replaced

by the approximated normal distribution based on Kerrigde inaccuracy with

µ̂t+1|t =
L∑

l=1

pl(t+1)µl,t+1|t, (23)

P̂t+1|t =
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pl(t+1)Pl,t+1|t +
L∑
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pl(t+1)(µ̂t+1|t − µl,t+1|t−)2 (24)

where µl,t+1 and Pl,t+1 denote results of the Kalman filter (7)-(10) obtained
for each value l. The approximation (23)-(24) is then used as the prior normal
distribution for the next step of the recursion.

4 Illustrative experiments

The presented approach can be found close to the IMM filter [1], comparison
with that for simulated data is described in [13]. This paper demonstrates a
testing of the algorithm for real traffic-control data from one of the controlled
microregions in Prague. The paper compares results of the filtering with those
of the HMM algorithms available in standard package of MATLAB.

A normally distributed state xc
t of the considered hybrid system is a four-

dimensional queue length of cars waiting for passing through a traffic microre-
gion. A full dimension of the taken normal state is eight, since occupancy
of a measured detector is added to the vector to ensure observability of the
model. A discrete state xd

t (system mode) is a level of service (LoS) of the
microregion. It expresses a degree of traffic saturation in that sense how easy



cars can pass through the microregion with 4 possible values: from 1 (the
best) to 4 (the worst).

The measured data used were: yc
t – car outgoing intensity along with

occupancy of a measured detector; yd
t – a time mode of a workday (morn-

ing peak-hour time, lunch, late afternoon peak-hour time, evening); uc
t – a

relative time of the green light; ud
t – a discrete variable, reflecting whether

the saturated strategy of the adaptive control is used or not. A duration of
the online filtering was 1 workday, which corresponds to 288 time periods.
The filtering started at midnight that simplifies a choice of prior distributions
(i.e., zero queue length and LoS=1).

The car queue length for individual arms of the traffic microregion was
estimated using Kalman filter (7)-(10) with traffic linear state-space model
available in [14]. Results for one of the arms is shown at Fig. 1. A rest of the
arm state estimates is of a similar quality depending on intensity.

The discrete state (i.e., LoS) has been estimated via the proposed hybrid
filter and with the help of the HMM algorithm. The same output and tran-
sition tables were used firstly for recursions of the hybrid filter and then as
initial parameters for the HMM estimator. Results for both the estimators
are shown at Fig. 2, at top and bottom figure respectively. The hybrid filter
demonstrates better results: a number of correctly point-estimated states for
the proposed hybrid filter is 240 for 288 possible ones, while the HMM algo-
rithm gives 114. The experiments have been repeated for other data samples.
The hybrid filter again demonstrated a better stability for them. Two peak-

0 50 100 150 200 250 300
20

0

20

40

60

80

100

120

140
Queue length estimation

time [periods]

Q
ue

ue
 le

ng
th

 [c
ar

s]

 

 

real
estimated

Fig. 1. Online filtering of car queue length
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Fig. 2. LoS estimation with the hybrid filter (top)
and the HMM (bottom)

hour times of a workday (morning between 50 and 120 time periods and late



afternoon between 150 and 200) can be easily seen both at Fig. 1 and Fig. 2
in the course of the queue length and in the switching of the LoS values.

5 Conclusion

The paper describes the recursive state estimation for dynamic hybrid sys-
tems. The proposed algorithm runs online and uses explicit solutions. Not
only the discrete state is treated as a pointer to the current mode in which
the system is located, but the whole state-space model is taken as the discrete
one with discrete measurements (output and input). It enables to estimate
jointly the normal and discrete multinomial variables. Comparison with one
of the counterparts is shown.
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