
Fator Analysis of Sintigraphi Image Sequeneswith Integrated Probabilisti Mask of FatorImagesOnd°ej Tihý∗2nd year of PGS, email: otihy�utia.as.zDepartment of MathematisFaulty of Nulear Sienes and Physial Engineering, CTU in Pragueadvisor: Válav �mídl, Institute of Information Theory and Automation,Department of Adaptive Systems, AS CRAbstrat. Fator analysis is a well established mathematial method for fator separation inthe analysis of sintigraphial sequenes. The results are typially an input to the next step, e.g.fator analysis for omputing signi�ant diagnosti oe�ients. However, this omputing highlydepends on proper identi�ation of fators and their biologial meaning, whih is not ensureonly by fator analysis. The main issue is separation overlaping fators from themselves andfrom tissue bakground overing the whole sequene. Fator analysis highly depends on priorinformation whih allows us to set biologially reasonable onditions to a mathematial model.In this paper, we propose a mathematial model whih estimates the probability mask of eahimage fator and sets it as a prior information for the next step of iterative algorithm based onVariational Bayes method. The new proposed model provides more realisti estimates of fatorsthan the standard fator analysis.Keywords: Nulear Mediine, Sintigraphy, Fator Analysis, Fator SeparationAbstrakt. Jednou ze známýh matematikýh metod pro analýzu sintigra�kýh obrazovýhsekvení je faktorová analýza. Cílem diagnostiky je ur£it d·leºité diagnostiké koe�ienty, ktomu je ov²em pot°eba detekovat jednotlivé, biologiky smysluplné, faktory, oº nelze zajistitsamotnou faktorovou analýzou. Základním problémem p°i analýze sekvene je p°ekryv jed-notlivýh orgán· a jejih £ástí a odseparování krevního a tká¬ového pozadí, které se vyskytujív elé sekveni, p°i£emº faktorová analýza umoº¬uje zabudovat biologiké p°edpoklady vedouíke smysluplnému °e²ení problému. V tomto p°ísp¥vku je p°edstaven nový matematiký model,který odhaduje pravd¥podobnost p°íslu²nosti jednotlivýh pixel· k faktorovým obrázk·m a tutoinformai vyuºívá k nastavení apriorna pro dal²í krok výpo£tu zaloºeném na metod¥ Varia£níBayes. Tento model dává realisti£t¥j²í odhady faktor· neº standardní faktorová analýza.Klí£ová slova: Nukleární Mediína, Sintigra�e, Faktorová Analýza, Separae Faktor·1 IntrodutionSintigraphy is a well known and very important method in nulear mediine. Diagnosisusing sintigraphy inludes following steps. At �rst, a tagged radiopharmaeutial isapplied into a human body lying under the sintillation amera. At seond, in every
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210 seonds an image of distribution of radiopharmaeutial is saved; onsequently, thefuntional image sequene with the sanned region of interest is obtained. Further analysisof measurement is neessary for propper diagnosis. In this paper, we are foused on renalsintigraphy.A kidney is omposed of parenhyma and pelvis. In biologial onstraint, in about the�rst 120 - 180 seonds �lls only parenhyma of kidney [2℄; then the radiopharmaeutialpasses from parenhyma to pelvis and next to the urinary bladder. This is very importantinformation for biologially meaningful solution and veri�ation of a mathematial model,see Setion 4.1. Another assumption, the shape of onvolution kernel of fator urve, willbe studied in Setion 4.2. For further analysis, fator identi�ation is neessary. Thisis typially done by expert manually or by fator analysis automatially [1℄. Finally,the resulting fators an be analyzed to set the proper diagnosis. This analysis anbe done by expert or by semi-automati algorithm based on more or less sophistiatedmathematial bakground: Patlak-Rutland plot [4℄, or post-proessing by deonvolution[6℄. The result highly depends on the �rst step, orret separation, identi�ation, anddetetion of fators.Fator analysis is a statistial method based on data deomposition to the fators.Its usage is mostly sintigraphy [1℄, ultrasound [7℄, or PET [5℄. However, the solution offator analysis is ambiguous and allows in�nitely many solutions. Some restritions havebeen made for biologially meaningful solution, e.g. positivity of fators [10℄; nevertheless,the uniqueness of solution or even biologially meaningful solution is not guaranteed onlyby positivity. Uniqueness an be guaranteed when eah fator has at least one pixelwhere the others have no ativity [11℄, but this assumption does not hold in sintigraphybeause of residue ativity in the whole sequene. Additional onstraints are neessaryto restrit the spae of possible solutions.The analytial solution of the presented model is intratable; therefore, an additionalapproximations have been made. The Variational Bayes approximation methodology [8℄was suessfully used in �elds related to fator deomposition, e.g. prinipal ompo-nent analysis, fator analysis, or models with onvolution. In addition, Variational Bayesapproximation o�ers reasonable ratio between options of modeling and omputation dif-�ulties.2 Variational Fator Analysis (FA)We brie�y review Variational Fator Analysis. The sequene obtained by sintillationamera ontains n images taken at time t = 1 . . . n, typially after 10 seonds. Everyimage is a ompound of p pixels; onsequently, the images are saved in p-dimensionalvetors and data matrix D ∈ R
p×n is generated. Let us assume that eah observed imageis a linear ombination of r fator images, aggregated in matrix A ∈ R

p×r. Typially, r <
n ≪ p is expeted. Every fator image has its time-ativity urve, xj = [x1,j , . . . , xn,j]

′;therefore, time-ativity matrix X ∈ R
n×r is reated. The only that we have is data-storage matrix D, and we would like to estimate fator image matrix A and fator urvematrix X.



3The model of the fator analysis an be written in matrix form as
D = AX ′ + E, (1)where E ∈ R

p×n is noise matrix with i.i.d. elements with variane ω−1. Matrix Daggregates measurements of radioative partiles with Poisson distributions whih an beapproximated by Gauss normal distribution; therefore, ovariane matrix of noise matrix
E an be found using orrespondene analysis [3℄ as

f(D|A,X, ω) = tND(AX ′, ω−1Ωp ⊗ Ωn), (2)
Ωp = diag(D1n,1),Ωn = diag(11,pD), (3)where tN(.) denotes trunated normal distribution, diag(.) denotes square diagonalmatrix with diagonal vetor as an argument, 1k,l denotes matrix of ones of subsripteddimensions, and ⊗ denotes Kroneker matrix produt.A prior model of parameters follows as:
f(ω) = Gω(ϑ0, ρ0), (4)

f(X|Υ) = tNX(0n,r,Ωn ⊗ Υ−1), (5)
Υ = diag(v), v = [v1, . . . , vr]

′, (6)
f(v) =

r∏

j=1

Gvj
(αj,0, βj,0), (7)

f(A) = tNA(0p,r,Ωp ⊗ Ir), (8)where ϑ0, ρ0 ∈ R are salar prior parameters, v is vetor of hyper-parameters with priorparameters α0, β0 ∈ R, G(.) is gamma distribution, and Ir is identity matrix of dimen-sions r × r.The di�erene between prinipal omponent analysis (PCA) and fator analysis istrunation in equations (5) and (8); in addition, for non-trunated distributions in (5)and (8), variational solution onverges to the PCA solution [8℄.With respet to Variational Bayes method [8℄, a logarithm of joint distribution
f(D,A,X,Υ, ω|r) is omputed and the resulting approximate posterior marginals arereognized in form:

f̃(ω|D, r) = Gω(ϑ, ρ), f̃(X|D, r) = tNX(µX ,ΣX ⊗ Υ), (9)
f̃(v|D, r) =

r∏

j=1

Gvi
(αi, βi), f̃(A|D, r) = tNA(µA,Ω

−1
p ⊗ ΣA), (10)and the assoiated shaping parameters are

µA = ω̂ΩpDΩnX̂ΣA, ΣA =
(
ω̂X̂ ′ΩnX + Ir

)−1

,

µX = ω̂ΩnD
′ΩpÂΣX , ΣX =

(
ω̂Â′ΩpA+ Υ̂

)−1

,
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Â′AX̂ ′X

)
.The neessary moments of previous distributions are Υ̂ = diag(α ◦ β−1), where ◦denotes Hadamard produt, ω̂ = ϑ

ρ
and moments of trunated normal distribution areomputed with respet to Appendix A.3 Fator Analysis with a Prior Mask on Fator Images(FAM)In the previous setion, we revised lassial fator analysis without any additional assump-tions. Our long-way intention is to automatially analyse a sintigraphial sequene, notonly set out fator images and fator urves. This setion models a prior probabilistimask on fator images, i.e. matrix A. This is motivated by unsatisfatory separationof tissue bakground from other organs, parenhyma and pelvis at most, in the previousmethods.3.1 Modeling of Fator ImagesOur new model should better separate tissue bakground and the proper organ; onse-quently, the relation fator urve will be better too. In addition, a probability mask ofloation of a fator will be obtained.Consider prior probability mask of A of the same size as A, i ∈ R

p×r, where
ii,j =

{
1 ith pixel belongs to the jth fator
0 ith pixel not belongs to the jth fator , with prior

f(ii,j) = Exp(λij,0). (11)In plaes with pixels whih not belong to the related fator, the noise with normaldistribution with zero mean value is expeted. For the jth fator, these pixels havedistribution N(0, ξ−1
0,j ). Here, ξ0,j is ovariane of these zero-mean-pixels of the jth fatorhyperparametrized by φ and ψ as gamma distribution; for ξ0 = [ξ0,1, . . . , ξ0,r]

′,Ξ0 =
diag(ξ0) is

f(ξ0) =
r∏

j=1

Gξ0,j
(φj,0, ψj,0). (12)In ase of non-zero-value-pixels of the jth fator, uniform distribution is expeted in theform U(0, Amax

j ) for Amax
j = maxiAi,j. In general, the seond parameter of uniform distri-bution an be replaed by Pareto distribution or Gamma distribution, but the maximumof the jth olumn of matrix A is almost the same.



5Generally, matrix A is modeled as independent elements as
f(A) =

p∏

i=1

r∏

j=1

f(ai,j), (13)and eah element is modeled as
f(ai,j) = U(0, Amax

j )ii,j tNai,j
(0, ξ−1

0,j )
(1−ii,j), (14)where exponentation of ii,j or (1 − ii,j) provides an a�lation to the informative or non-informative part of the fator image.3.2 Variational SolutionThe joint likelihood for the new model, f(D,A,X,Υ,Ξ0, i, ω|r), is obtained by replaing(8) in model (2) - (8) with prior information (11), (12), and (14). Using Variational Bayesmethod, the following posterior densities are identi�ed:

f̃(X|D, r) = N(µX , In ⊗ ΣX), f̃(v|D, r) =

r∏

j=1

Gvj
(αj, βj),

f̃(ω|D, r) = Gω(ϑ, ρ), f̃(ai|D, r) = Nai
(µai

,Σai
),

f̃(ξ0|D, r) = Gξ0(φ, ψ), f̃(ii,j|D, r) = Exp
ii,j

(λi,j),with shaping parameters
ΣX =

(
ω̂Â′A+ Υ̂

)−1

, µX = ω̂D′ÂΣX ,
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2
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,

λi,j = λij,0 − lnAmax
j − 1

2
ln ξ̂0 +

1

2
̂ai,jξ0ai,j,where ιi = diag(ii,:).The required moments are Υ̂ = diag(α ◦ β−1), Ξ̂0 = diag(φ ◦ ψ−1), ω̂ = ϑ

ρ
, îi,j = 1

λi,j
,and moments of trunated normal distribution are omputed with respet to AppendixA.
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Figure 1: The results from the FA algorithm (left) and from the FAM algorithm (right)4 Feasibility Study with Clinial DataThe previous algorithms were tested on a sintigraphi study. Fator images and fatorurves were estimated in the ase of FA and FAM algorithms; next, the resulting estimatesand omputed onvolution kernels of parenhyma are studied.4.1 Estimation of Fator Images and CurvesThe �rst task is an estimation and separation of fators. Figure 1 shows the results fromthe FA algorithm, setion 2, and from the FAM algorithm, setion 3. From the left, FAestimates fator images, i.e. Â, and fator urves, i.e. X̂; FAM estimates probability maskof fator images, i.e. î, fator images, i.e. Â, and fator urves, i.e. X̂. Both algorithmsautomatially estimated as the strongest fators blood bakground, renal parenhyma,
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Figure 2: Theoretial deomposition of a fator urverenal pelves, and urinary bladder; in addition, FAM estimated tissue bakground as thelast signi�ant fator.The main di�erenes between FA and FAM are in the beginning of the fator urves,espeially of renal pelves and urinary bladder. In biologial restrition, pelves urveshould be at a zero level for the �rst 2 − 3 minutes, i.e. 12 − 18 frames. This restritionis well satis�ed by FAM in ontrast with FA with signi�ant ativity at the beginning ofthe urve. The same an be seen by urinary bladder; here, non-zero beginning is ausedby improper separation of tissue bakground and bladder by FA algorithm. This zero-level-plateaus are very important from the biologial view. In addition, this fat impliesthat the fator images of pelves and urinary bladder are undoubtedly better separatedfrom tissue bakground by FAM then by FA.4.2 Estimation of Convolution Kernel of ParenhymaIn the biologial point of view, eah time ativity urve of fator is a onvolution betweenblood and its spei� onvolution kernel [6, 2, 9℄. Moreover, this onvolution kernel ispositive and its shape is shown in Figure 2. There should be a onstant positive plateauand then linear or exponential deline to zero. From the length the plateau an beidenti�ed an important diagnosti oe�ient - the transit time.Figure 3 shows onvolution kernels of parenhyma omputed using Fourier transform.The result of FA is in the top, the result of FAM is the bottom row. In FA ase, thepeak at the beginning of the onvolution kernel implies that separation of parenhymaand tissue bakground are not perfet [2℄. From this point of view, FAM gives moreappropriate results.5 DisussionThe results presented in Setion 4 suggest that fator analysis with integrated probabilitymask on fator images has a potential to improve the whole estimative proedure. How-ever, more improvement is neessary for automati estimation of diagnosti oe�ients,whih an be ompared with experts. For example, the information from probabilis-ti mask î an be adopted for automati seletion of position of the single organs andonseutive omputations. Study and usage of this fat is suggestion for future work.
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Figure 3: Convolution kernel of parenhyma (right) obtained from blood urve (left) andparenhyma urve (enter).Modeling of non-zero pixels as uniform distribution (14) is motivated by observationand seems to be better than modeling as normal distribution. However, more appropriatedistribution or method should be used for modeling of histogram of the matrix A. It ouldlead to better separation of the fators.With respet to study of non-zero priors of fator images, fator urves an be studiedin the same way. A prior zero mean value of X is hosen due to omputable reasons;nevertheless, more appropriate mean value an be omputed [9℄.6 ConlusionA new model of fator images in funtional analysis of sintigraphi dynami sequenesis proposed. The main addition is the dividing of pixels of fator images into informativeand non-informative parts. The resulting algorithm is obtained using Variational Bayesmethod based on modeling parameters as independent omponents. Feasibility of solutionis shown on linial data from renal sintigraphy and ompared with lassial fatoranalysis where is demonstrated an improvements over previous methods. An automatiestimation of important diagnosti parameters will follow so as an extensive linial study.AppendixA Moments of trunated Normal DistributionSalar trunated normal distribution
tNx(x|µ, r) = α

√
2 exp

(
−(x− µ)2

2r

)
, x > 0, (15)has moments

x̂ = µ+ rα
√

2 exp

(
−µ

2

2r

)
, x̂2 = r + µx̂,where α−1 =

√
πr(1 − erf(− µ√

2r
) and erf is the error funtion.
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