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t. Fa
tor analysis is a well established mathemati
al method for fa
tor separation inthe analysis of s
intigraphi
al sequen
es. The results are typi
ally an input to the next step, e.g.fa
tor analysis for 
omputing signi�
ant diagnosti
 
oe�
ients. However, this 
omputing highlydepends on proper identi�
ation of fa
tors and their biologi
al meaning, whi
h is not ensureonly by fa
tor analysis. The main issue is separation overlaping fa
tors from themselves andfrom tissue ba
kground 
overing the whole sequen
e. Fa
tor analysis highly depends on priorinformation whi
h allows us to set biologi
ally reasonable 
onditions to a mathemati
al model.In this paper, we propose a mathemati
al model whi
h estimates the probability mask of ea
himage fa
tor and sets it as a prior information for the next step of iterative algorithm based onVariational Bayes method. The new proposed model provides more realisti
 estimates of fa
torsthan the standard fa
tor analysis.Keywords: Nu
lear Medi
ine, S
intigraphy, Fa
tor Analysis, Fa
tor SeparationAbstrakt. Jednou ze známý
h matemati
ký
h metod pro analýzu s
intigra�
ký
h obrazový
hsekven
í je faktorová analýza. Cílem diagnostiky je ur£it d·leºité diagnosti
ké koe�
ienty, ktomu je ov²em pot°eba detekovat jednotlivé, biologi
ky smysluplné, faktory, 
oº nelze zajistitsamotnou faktorovou analýzou. Základním problémem p°i analýze sekven
e je p°ekryv jed-notlivý
h orgán· a jeji
h £ástí a odseparování krevního a tká¬ového pozadí, které se vyskytujív 
elé sekven
i, p°i£emº faktorová analýza umoº¬uje zabudovat biologi
ké p°edpoklady vedou
íke smysluplnému °e²ení problému. V tomto p°ísp¥vku je p°edstaven nový matemati
ký model,který odhaduje pravd¥podobnost p°íslu²nosti jednotlivý
h pixel· k faktorovým obrázk·m a tutoinforma
i vyuºívá k nastavení apriorna pro dal²í krok výpo£tu zaloºeném na metod¥ Varia£níBayes. Tento model dává realisti£t¥j²í odhady faktor· neº standardní faktorová analýza.Klí£ová slova: Nukleární Medi
ína, S
intigra�e, Faktorová Analýza, Separa
e Faktor·1 Introdu
tionS
intigraphy is a well known and very important method in nu
lear medi
ine. Diagnosisusing s
intigraphy in
ludes following steps. At �rst, a tagged radiopharma
euti
al isapplied into a human body lying under the s
intillation 
amera. At se
ond, in every
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210 se
onds an image of distribution of radiopharma
euti
al is saved; 
onsequently, thefun
tional image sequen
e with the s
anned region of interest is obtained. Further analysisof measurement is ne
essary for propper diagnosis. In this paper, we are fo
used on renals
intigraphy.A kidney is 
omposed of paren
hyma and pelvis. In biologi
al 
onstraint, in about the�rst 120 - 180 se
onds �lls only paren
hyma of kidney [2℄; then the radiopharma
euti
alpasses from paren
hyma to pelvis and next to the urinary bladder. This is very importantinformation for biologi
ally meaningful solution and veri�
ation of a mathemati
al model,see Se
tion 4.1. Another assumption, the shape of 
onvolution kernel of fa
tor 
urve, willbe studied in Se
tion 4.2. For further analysis, fa
tor identi�
ation is ne
essary. Thisis typi
ally done by expert manually or by fa
tor analysis automati
ally [1℄. Finally,the resulting fa
tors 
an be analyzed to set the proper diagnosis. This analysis 
anbe done by expert or by semi-automati
 algorithm based on more or less sophisti
atedmathemati
al ba
kground: Patlak-Rutland plot [4℄, or post-pro
essing by de
onvolution[6℄. The result highly depends on the �rst step, 
orre
t separation, identi�
ation, anddete
tion of fa
tors.Fa
tor analysis is a statisti
al method based on data de
omposition to the fa
tors.Its usage is mostly s
intigraphy [1℄, ultrasound [7℄, or PET [5℄. However, the solution offa
tor analysis is ambiguous and allows in�nitely many solutions. Some restri
tions havebeen made for biologi
ally meaningful solution, e.g. positivity of fa
tors [10℄; nevertheless,the uniqueness of solution or even biologi
ally meaningful solution is not guaranteed onlyby positivity. Uniqueness 
an be guaranteed when ea
h fa
tor has at least one pixelwhere the others have no a
tivity [11℄, but this assumption does not hold in s
intigraphybe
ause of residue a
tivity in the whole sequen
e. Additional 
onstraints are ne
essaryto restri
t the spa
e of possible solutions.The analyti
al solution of the presented model is intra
table; therefore, an additionalapproximations have been made. The Variational Bayes approximation methodology [8℄was su

essfully used in �elds related to fa
tor de
omposition, e.g. prin
ipal 
ompo-nent analysis, fa
tor analysis, or models with 
onvolution. In addition, Variational Bayesapproximation o�ers reasonable ratio between options of modeling and 
omputation dif-�
ulties.2 Variational Fa
tor Analysis (FA)We brie�y review Variational Fa
tor Analysis. The sequen
e obtained by s
intillation
amera 
ontains n images taken at time t = 1 . . . n, typi
ally after 10 se
onds. Everyimage is a 
ompound of p pixels; 
onsequently, the images are saved in p-dimensionalve
tors and data matrix D ∈ R
p×n is generated. Let us assume that ea
h observed imageis a linear 
ombination of r fa
tor images, aggregated in matrix A ∈ R

p×r. Typi
ally, r <
n ≪ p is expe
ted. Every fa
tor image has its time-a
tivity 
urve, xj = [x1,j , . . . , xn,j]

′;therefore, time-a
tivity matrix X ∈ R
n×r is 
reated. The only that we have is data-storage matrix D, and we would like to estimate fa
tor image matrix A and fa
tor 
urvematrix X.



3The model of the fa
tor analysis 
an be written in matrix form as
D = AX ′ + E, (1)where E ∈ R

p×n is noise matrix with i.i.d. elements with varian
e ω−1. Matrix Daggregates measurements of radioa
tive parti
les with Poisson distributions whi
h 
an beapproximated by Gauss normal distribution; therefore, 
ovarian
e matrix of noise matrix
E 
an be found using 
orresponden
e analysis [3℄ as

f(D|A,X, ω) = tND(AX ′, ω−1Ωp ⊗ Ωn), (2)
Ωp = diag(D1n,1),Ωn = diag(11,pD), (3)where tN(.) denotes trun
ated normal distribution, diag(.) denotes square diagonalmatrix with diagonal ve
tor as an argument, 1k,l denotes matrix of ones of subs
ripteddimensions, and ⊗ denotes Krone
ker matrix produ
t.A prior model of parameters follows as:
f(ω) = Gω(ϑ0, ρ0), (4)

f(X|Υ) = tNX(0n,r,Ωn ⊗ Υ−1), (5)
Υ = diag(v), v = [v1, . . . , vr]

′, (6)
f(v) =

r∏

j=1

Gvj
(αj,0, βj,0), (7)

f(A) = tNA(0p,r,Ωp ⊗ Ir), (8)where ϑ0, ρ0 ∈ R are s
alar prior parameters, v is ve
tor of hyper-parameters with priorparameters α0, β0 ∈ R, G(.) is gamma distribution, and Ir is identity matrix of dimen-sions r × r.The di�eren
e between prin
ipal 
omponent analysis (PCA) and fa
tor analysis istrun
ation in equations (5) and (8); in addition, for non-trun
ated distributions in (5)and (8), variational solution 
onverges to the PCA solution [8℄.With respe
t to Variational Bayes method [8℄, a logarithm of joint distribution
f(D,A,X,Υ, ω|r) is 
omputed and the resulting approximate posterior marginals arere
ognized in form:

f̃(ω|D, r) = Gω(ϑ, ρ), f̃(X|D, r) = tNX(µX ,ΣX ⊗ Υ), (9)
f̃(v|D, r) =

r∏

j=1

Gvi
(αi, βi), f̃(A|D, r) = tNA(µA,Ω

−1
p ⊗ ΣA), (10)and the asso
iated shaping parameters are

µA = ω̂ΩpDΩnX̂ΣA, ΣA =
(
ω̂X̂ ′ΩnX + Ir

)−1

,

µX = ω̂ΩnD
′ΩpÂΣX , ΣX =

(
ω̂Â′ΩpA+ Υ̂

)−1

,
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α = α0 +

n

2
1r,1, β = β0 +

1

2
diag

(
X̂ ′ΩnX

)
,

ϑ = ϑ0 +
np

2
, ρ = ρ0 +

1

2
tr
(
DD′ − ÂX̂ ′D′ −DX̂Â′

)
+

1

2
tr
(
Â′AX̂ ′X

)
.The ne
essary moments of previous distributions are Υ̂ = diag(α ◦ β−1), where ◦denotes Hadamard produ
t, ω̂ = ϑ

ρ
and moments of trun
ated normal distribution are
omputed with respe
t to Appendix A.3 Fa
tor Analysis with a Prior Mask on Fa
tor Images(FAM)In the previous se
tion, we revised 
lassi
al fa
tor analysis without any additional assump-tions. Our long-way intention is to automati
ally analyse a s
intigraphi
al sequen
e, notonly set out fa
tor images and fa
tor 
urves. This se
tion models a prior probabilisti
mask on fa
tor images, i.e. matrix A. This is motivated by unsatisfa
tory separationof tissue ba
kground from other organs, paren
hyma and pelvis at most, in the previousmethods.3.1 Modeling of Fa
tor ImagesOur new model should better separate tissue ba
kground and the proper organ; 
onse-quently, the relation fa
tor 
urve will be better too. In addition, a probability mask oflo
ation of a fa
tor will be obtained.Consider prior probability mask of A of the same size as A, i ∈ R

p×r, where
ii,j =

{
1 ith pixel belongs to the jth fa
tor
0 ith pixel not belongs to the jth fa
tor , with prior

f(ii,j) = Exp(λij,0). (11)In pla
es with pixels whi
h not belong to the related fa
tor, the noise with normaldistribution with zero mean value is expe
ted. For the jth fa
tor, these pixels havedistribution N(0, ξ−1
0,j ). Here, ξ0,j is 
ovarian
e of these zero-mean-pixels of the jth fa
torhyperparametrized by φ and ψ as gamma distribution; for ξ0 = [ξ0,1, . . . , ξ0,r]

′,Ξ0 =
diag(ξ0) is

f(ξ0) =
r∏

j=1

Gξ0,j
(φj,0, ψj,0). (12)In 
ase of non-zero-value-pixels of the jth fa
tor, uniform distribution is expe
ted in theform U(0, Amax

j ) for Amax
j = maxiAi,j. In general, the se
ond parameter of uniform distri-bution 
an be repla
ed by Pareto distribution or Gamma distribution, but the maximumof the jth 
olumn of matrix A is almost the same.



5Generally, matrix A is modeled as independent elements as
f(A) =

p∏

i=1

r∏

j=1

f(ai,j), (13)and ea
h element is modeled as
f(ai,j) = U(0, Amax

j )ii,j tNai,j
(0, ξ−1

0,j )
(1−ii,j), (14)where exponentation of ii,j or (1 − ii,j) provides an a�lation to the informative or non-informative part of the fa
tor image.3.2 Variational SolutionThe joint likelihood for the new model, f(D,A,X,Υ,Ξ0, i, ω|r), is obtained by repla
ing(8) in model (2) - (8) with prior information (11), (12), and (14). Using Variational Bayesmethod, the following posterior densities are identi�ed:

f̃(X|D, r) = N(µX , In ⊗ ΣX), f̃(v|D, r) =

r∏

j=1

Gvj
(αj, βj),

f̃(ω|D, r) = Gω(ϑ, ρ), f̃(ai|D, r) = Nai
(µai

,Σai
),

f̃(ξ0|D, r) = Gξ0(φ, ψ), f̃(ii,j|D, r) = Exp
ii,j

(λi,j),with shaping parameters
ΣX =

(
ω̂Â′A+ Υ̂

)−1

, µX = ω̂D′ÂΣX ,

α = α0 +
n

2
1r,1, β = β0 +

1

2
diag(X̂ ′X),

ϑ = ϑ0 +
pn

2
, ρ = ρ0 +

1

2
tr
(
DD′ − ÂX̂ ′D′ −DX̂Â′

)
+

+
1

2
tr
(
Â′AX̂ ′X

)
,

Σai
=

(
ω̂

n∑

k=1

(x̂′kxk) + Ξ̂0(Ir − ι̂i)

)−1

, µai
=

(
Σai

(
ω̂

n∑

k=1

(x̂kdi,k)
′

))′

,

φj =

(
φj,0 +

1

2

p∑

i=1

(1 − îi,j)

)
, ψj =

(
ψj,0 +

1

2

p∑

i=1

(1 − îi,j)â2
i,j

)
,

λi,j = λij,0 − lnAmax
j − 1

2
ln ξ̂0 +

1

2
̂ai,jξ0ai,j,where ιi = diag(ii,:).The required moments are Υ̂ = diag(α ◦ β−1), Ξ̂0 = diag(φ ◦ ψ−1), ω̂ = ϑ

ρ
, îi,j = 1

λi,j
,and moments of trun
ated normal distribution are 
omputed with respe
t to AppendixA.
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Figure 1: The results from the FA algorithm (left) and from the FAM algorithm (right)4 Feasibility Study with Clini
al DataThe previous algorithms were tested on a s
intigraphi
 study. Fa
tor images and fa
tor
urves were estimated in the 
ase of FA and FAM algorithms; next, the resulting estimatesand 
omputed 
onvolution kernels of paren
hyma are studied.4.1 Estimation of Fa
tor Images and CurvesThe �rst task is an estimation and separation of fa
tors. Figure 1 shows the results fromthe FA algorithm, se
tion 2, and from the FAM algorithm, se
tion 3. From the left, FAestimates fa
tor images, i.e. Â, and fa
tor 
urves, i.e. X̂; FAM estimates probability maskof fa
tor images, i.e. î, fa
tor images, i.e. Â, and fa
tor 
urves, i.e. X̂. Both algorithmsautomati
ally estimated as the strongest fa
tors blood ba
kground, renal paren
hyma,
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Figure 2: Theoreti
al de
omposition of a fa
tor 
urverenal pelves, and urinary bladder; in addition, FAM estimated tissue ba
kground as thelast signi�
ant fa
tor.The main di�eren
es between FA and FAM are in the beginning of the fa
tor 
urves,espe
ially of renal pelves and urinary bladder. In biologi
al restri
tion, pelves 
urveshould be at a zero level for the �rst 2 − 3 minutes, i.e. 12 − 18 frames. This restri
tionis well satis�ed by FAM in 
ontrast with FA with signi�
ant a
tivity at the beginning ofthe 
urve. The same 
an be seen by urinary bladder; here, non-zero beginning is 
ausedby improper separation of tissue ba
kground and bladder by FA algorithm. This zero-level-plateaus are very important from the biologi
al view. In addition, this fa
t impliesthat the fa
tor images of pelves and urinary bladder are undoubtedly better separatedfrom tissue ba
kground by FAM then by FA.4.2 Estimation of Convolution Kernel of Paren
hymaIn the biologi
al point of view, ea
h time a
tivity 
urve of fa
tor is a 
onvolution betweenblood and its spe
i�
 
onvolution kernel [6, 2, 9℄. Moreover, this 
onvolution kernel ispositive and its shape is shown in Figure 2. There should be a 
onstant positive plateauand then linear or exponential de
line to zero. From the length the plateau 
an beidenti�ed an important diagnosti
 
oe�
ient - the transit time.Figure 3 shows 
onvolution kernels of paren
hyma 
omputed using Fourier transform.The result of FA is in the top, the result of FAM is the bottom row. In FA 
ase, thepeak at the beginning of the 
onvolution kernel implies that separation of paren
hymaand tissue ba
kground are not perfe
t [2℄. From this point of view, FAM gives moreappropriate results.5 Dis
ussionThe results presented in Se
tion 4 suggest that fa
tor analysis with integrated probabilitymask on fa
tor images has a potential to improve the whole estimative pro
edure. How-ever, more improvement is ne
essary for automati
 estimation of diagnosti
 
oe�
ients,whi
h 
an be 
ompared with experts. For example, the information from probabilis-ti
 mask î 
an be adopted for automati
 sele
tion of position of the single organs and
onse
utive 
omputations. Study and usage of this fa
t is suggestion for future work.
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Figure 3: Convolution kernel of paren
hyma (right) obtained from blood 
urve (left) andparen
hyma 
urve (
enter).Modeling of non-zero pixels as uniform distribution (14) is motivated by observationand seems to be better than modeling as normal distribution. However, more appropriatedistribution or method should be used for modeling of histogram of the matrix A. It 
ouldlead to better separation of the fa
tors.With respe
t to study of non-zero priors of fa
tor images, fa
tor 
urves 
an be studiedin the same way. A prior zero mean value of X is 
hosen due to 
omputable reasons;nevertheless, more appropriate mean value 
an be 
omputed [9℄.6 Con
lusionA new model of fa
tor images in fun
tional analysis of s
intigraphi
 dynami
 sequen
esis proposed. The main addition is the dividing of pixels of fa
tor images into informativeand non-informative parts. The resulting algorithm is obtained using Variational Bayesmethod based on modeling parameters as independent 
omponents. Feasibility of solutionis shown on 
lini
al data from renal s
intigraphy and 
ompared with 
lassi
al fa
toranalysis where is demonstrated an improvements over previous methods. An automati
estimation of important diagnosti
 parameters will follow so as an extensive 
lini
al study.AppendixA Moments of trun
ated Normal DistributionS
alar trun
ated normal distribution
tNx(x|µ, r) = α

√
2 exp

(
−(x− µ)2

2r

)
, x > 0, (15)has moments

x̂ = µ+ rα
√

2 exp

(
−µ

2

2r

)
, x̂2 = r + µx̂,where α−1 =

√
πr(1 − erf(− µ√

2r
) and erf is the error fun
tion.
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