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Abstract. Factor analysis is a well established mathematical method for factor separation in
the analysis of scintigraphical sequences. The results are typically an input to the next step, e.g.
factor analysis for computing significant diagnostic coefficients. However, this computing highly
depends on proper identification of factors and their biological meaning, which is not ensure
only by factor analysis. The main issue is separation overlaping factors from themselves and
from tissue background covering the whole sequence. Factor analysis highly depends on prior
information which allows us to set biologically reasonable conditions to a mathematical model.
In this paper, we propose a mathematical model which estimates the probability mask of each
image factor and sets it as a prior information for the next step of iterative algorithm based on
Variational Bayes method. The new proposed model provides more realistic estimates of factors
than the standard factor analysis.
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Abstrakt. Jednou ze zndmych matematickych metod pro analyzu scintigrafickych obrazovych
sekvenci je faktorova analyza. Cilem diagnostiky je urcit dilezité diagnostické koeficienty, k
tomu je ovSem potieba detekovat jednotlivé, biologicky smysluplné, faktory, coz nelze zajistit
samotnou faktorovou analyzou. Zakladnim problémem pii analyze sekvence je prekryv jed-
notlivych orgéni a jejich ¢asti a odseparovani krevniho a tkiiového pozadi, které se vyskytuji
v celé sekvenci, pricemz faktorova analyza umoznuje zabudovat biologické predpoklady vedouci
ke smysluplnému feseni problému. V tomto piispévku je piredstaven novy matematicky model,
ktery odhaduje pravdépodobnost prislusnosti jednotlivych pixela k faktorovym obrazkim a tuto
informaci vyuziva k nastaveni apriorna pro daldi krok vypoctu zalozeném na metodé Variacni
Bayes. Tento model dava realistic¢téjsi odhady faktort nez standardni faktorova analyza.
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1 Introduction

Scintigraphy is a well known and very important method in nuclear medicine. Diagnosis
using scintigraphy includes following steps. At first, a tagged radiopharmaceutical is
applied into a human body lying under the scintillation camera. At second, in every
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10 seconds an image of distribution of radiopharmaceutical is saved; consequently, the
functional image sequence with the scanned region of interest is obtained. Further analysis
of measurement is necessary for propper diagnosis. In this paper, we are focused on renal
scintigraphy.

A kidney is composed of parenchyma and pelvis. In biological constraint, in about the
first 120 - 180 seconds fills only parenchyma of kidney [2]; then the radiopharmaceutical
passes from parenchyma to pelvis and next to the urinary bladder. This is very important
information for biologically meaningful solution and verification of a mathematical model,
see Section 4.1. Another assumption, the shape of convolution kernel of factor curve, will
be studied in Section 4.2. For further analysis, factor identification is necessary. This
is typically done by expert manually or by factor analysis automatically [1|. Finally,
the resulting factors can be analyzed to set the proper diagnosis. This analysis can
be done by expert or by semi-automatic algorithm based on more or less sophisticated
mathematical background: Patlak-Rutland plot [4], or post-processing by deconvolution
[6]. The result highly depends on the first step, correct separation, identification, and
detection of factors.

Factor analysis is a statistical method based on data decomposition to the factors.
Its usage is mostly scintigraphy [1], ultrasound [7], or PET [5]. However, the solution of
factor analysis is ambiguous and allows infinitely many solutions. Some restrictions have
been made for biologically meaningful solution, e.g. positivity of factors [10]; nevertheless,
the uniqueness of solution or even biologically meaningful solution is not guaranteed only
by positivity. Uniqueness can be guaranteed when each factor has at least one pixel
where the others have no activity [11], but this assumption does not hold in scintigraphy
because of residue activity in the whole sequence. Additional constraints are necessary
to restrict the space of possible solutions.

The analytical solution of the presented model is intractable; therefore, an additional
approximations have been made. The Variational Bayes approximation methodology [8|
was successfully used in fields related to factor decomposition, e.g. principal compo-
nent analysis, factor analysis, or models with convolution. In addition, Variational Bayes
approximation offers reasonable ratio between options of modeling and computation dif-
ficulties.

2 Variational Factor Analysis (FA)

We briefly review Variational Factor Analysis. The sequence obtained by scintillation
camera contains n images taken at time t = 1...n, typically after 10 seconds. Every
image is a compound of p pixels; consequently, the images are saved in p-dimensional
vectors and data matrix D € RP*" is generated. Let us assume that each observed image
is a linear combination of r factor images, aggregated in matrix A € RP*". Typically, r <
n < p is expected. Every factor image has its time-activity curve, z; = [x1,..., 2 |";
therefore, time-activity matrix X € R"™*" is created. The only that we have is data-
storage matrix D, and we would like to estimate factor image matrix A and factor curve
matrix X.



The model of the factor analysis can be written in matrix form as
D=AX"+FE, (1)

where £ € RP*" is noise matrix with i.i.d. elements with variance w™!. Matrix D
aggregates measurements of radioactive particles with Poisson distributions which can be
approximated by Gauss normal distribution; therefore, covariance matrix of noise matrix
E can be found using correspondence analysis [3] as

f(D|A, X,w) = tNp(AX,w™'Q, ® Q,,), (2)
Qp = diag(Dlnvl), Qn = diag(llva), (3)

where tN(.) denotes truncated normal distribution, diag(.) denotes square diagonal
matrix with diagonal vector as an argument, 1;; denotes matrix of ones of subscripted
dimensions, and ® denotes Kronecker matrix product.

A prior model of parameters follows as:

f(w) = Gu(Vo, po), (4)
FX|T) = tNx (05,0, Q@ Y71, (5)
T = diag(v),v = [vy, ..., v,/ (6)
flv) = | Gy, (aj0: Bj0), (7)
f(A) = tNA(Op,ra Qp ® 1), (8)

where g, po € R are scalar prior parameters, v is vector of hyper-parameters with prior
parameters g, 5y € R, G(.) is gamma distribution, and I, is identity matrix of dimen-
sions 1 X 7.

The difference between principal component analysis (PCA) and factor analysis is
truncation in equations (5) and (8); in addition, for non-truncated distributions in (5)
and (8), variational solution converges to the PCA solution [8].

With respect to Variational Bayes method [8], a logarithm of joint distribution
f(D, A, X, YT, w|r) is computed and the resulting approximate posterior marginals are
recognized in form:

~(WID r) = Gu(v,p), f(X|D,7) = tNx(ux, £x @ 1), (9)

F(v| D, r) HGUZ (v, Bs), F(AID,7) = tNa(a, Q," @ Sa), (10)

and the associated shaping parameters are

—~ — —1
ja = 09, DQ, X, S, = (@X/an + Ir> ,

—~ - .\ —1
jx = 60, D'Q, Ay, Sy = (@A’QPA + T) ,
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a=ap+ Sl B = b+ diag (X0.X),
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The necessary moments of previous distributions are T = diag(av o 371), where o
denotes Hadamard product, & = % and moments of truncated normal distribution are
computed with respect to Appendix A.

3 Factor Analysis with a Prior Mask on Factor Images
(FAM)

In the previous section, we revised classical factor analysis without any additional assump-
tions. Our long-way intention is to automatically analyse a scintigraphical sequence, not
only set out factor images and factor curves. This section models a prior probabilistic
mask on factor images, i.e. matrix A. This is motivated by unsatisfactory separation
of tissue background from other organs, parenchyma and pelvis at most, in the previous
methods.

3.1 Modeling of Factor Images

Our new model should better separate tissue background and the proper organ; conse-
quently, the relation factor curve will be better too. In addition, a probability mask of
location of a factor will be obtained.

Consider prior probability mask of A of the same size as A, i € RP*", where

) 1 ith pixel belongs to the jth factor ) )
i ;= . ] . , with prior
0 4th pixel not belongs to the jth factor

f(ii,j) = EXp()\ij,O)- (11)

In places with pixels which not belong to the related factor, the noise with normal
distribution with zero mean value is expected. For the jth factor, these pixels have
distribution N (0, 55]1) Here, & ; is covariance of these zero-mean-pixels of the jth factor
hyperparametrized by ¢ and ¢ as gamma distribution; for & = [§o1,..., %] 20 =
diag(&o) is

F(&) =[] Geos (@50 ¥50)- (12)

J=1

In case of non-zero-value-pixels of the jth factor, uniform distribution is expected in the
form U(0, A7*) for AP* = max; A; ;. In general, the second parameter of uniform distri-
bution can be replaced by Pareto distribution or Gamma distribution, but the maximum
of the jth column of matrix A is almost the same.



Generally, matrix A is modeled as independent elements as
p
=TT1] s, (13)
i=1 j=1
and each element is modeled as
f(ai,j) = U(O’ A;'nax)ii’j tNai,j (07 5()_731’)(1_ii’j)’ (14)

where exponentation of i; ; or (1 —1i; ;) provides an affilation to the informative or non-
informative part of the factor image.

3.2 Variational Solution

The joint likelihood for the new model, f(D, A, X, T, Zy,1,w|r), is obtained by replacing
(8) in model (2) - (8) with prior information (11), (12), and (14). Using Variational Bayes
method, the following posterior densities are identified:

T

f(XID,7) = N(px, I ® Tx), f(lD,r) HGUJ (0. 3).
f(w|D,7’):Gw(19,p), f(ai|D7T):Nai<:uawzai>
f(&ID,7) = Gg, (¢, ), il Dyr) = Expy, (M),

with shaping parameters

-1
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where ¢; = diag(i; .).

The required moments are ¥ = diag(av o f71), o = diag(gpoy™!), & = %, ;; = ﬁ,
and moments of truncated normal distribution are computed with respect to Appendix

A.
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Figure 1: The results from the FA algorithm (left) and from the FAM algorithm (right)

4 Feasibility Study with Clinical Data

The previous algorithms were tested on a scintigraphic study. Factor images and factor
curves were estimated in the case of FA and FAM algorithms; next, the resulting estimates
and computed convolution kernels of parenchyma are studied.

4.1 Estimation of Factor Images and Curves

The first task is an estimation and separation of factors. Figure 1 shows the results from
the FA algorithm, section 2, and from the FAM algorithm, section 3. From the left, FA
estimates factor images, i.e. A and factor curves, i.e. X FAM estimates probability mask
of factor images, i.e. i, factor images, i.e. A and factor curves, i.e. X. Both algorithms
automatically estimated as the strongest factors blood background, renal parenchyma,
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Figure 2: Theoretical decomposition of a factor curve

renal pelves, and urinary bladder; in addition, FAM estimated tissue background as the
last significant factor.

The main differences between FA and FAM are in the beginning of the factor curves,
especially of renal pelves and urinary bladder. In biological restriction, pelves curve
should be at a zero level for the first 2 — 3 minutes, i.e. 12 — 18 frames. This restriction
is well satisfied by FAM in contrast with FA with significant activity at the beginning of
the curve. The same can be seen by urinary bladder; here, non-zero beginning is caused
by improper separation of tissue background and bladder by FA algorithm. This zero-
level-plateaus are very important from the biological view. In addition, this fact implies
that the factor images of pelves and urinary bladder are undoubtedly better separated
from tissue background by FAM then by FA.

4.2 Estimation of Convolution Kernel of Parenchyma

In the biological point of view, each time activity curve of factor is a convolution between
blood and its specific convolution kernel [6, 2, 9]. Moreover, this convolution kernel is
positive and its shape is shown in Figure 2. There should be a constant positive plateau
and then linear or exponential decline to zero. From the length the plateau can be
identified an important diagnostic coefficient - the transit time.

Figure 3 shows convolution kernels of parenchyma computed using Fourier transform.
The result of FA is in the top, the result of FAM is the bottom row. In FA case, the
peak at the beginning of the convolution kernel implies that separation of parenchyma
and tissue background are not perfect [2]. From this point of view, FAM gives more
appropriate results.

5 Discussion

The results presented in Section 4 suggest that factor analysis with integrated probability
mask on factor images has a potential to improve the whole estimative procedure. How-
ever, more improvement is necessary for automatic estimation of diagnostic coefficients,
which can be compared with experts. For example, the information from probabilis-
tic mask i can be adopted for automatic selection of position of the single organs and
consecutive computations. Study and usage of this fact is suggestion for future work.
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Figure 3: Convolution kernel of parenchyma (right) obtained from blood curve (left) and
parenchyma curve (center).

Modeling of non-zero pixels as uniform distribution (14) is motivated by observation
and seems to be better than modeling as normal distribution. However, more appropriate
distribution or method should be used for modeling of histogram of the matrix A. It could
lead to better separation of the factors.

With respect to study of non-zero priors of factor images, factor curves can be studied
in the same way. A prior zero mean value of X is chosen due to computable reasons;
nevertheless, more appropriate mean value can be computed [9].

6 Conclusion

A new model of factor images in functional analysis of scintigraphic dynamic sequences
is proposed. The main addition is the dividing of pixels of factor images into informative
and non-informative parts. The resulting algorithm is obtained using Variational Bayes
method based on modeling parameters as independent components. Feasibility of solution
is shown on clinical data from renal scintigraphy and compared with classical factor
analysis where is demonstrated an improvements over previous methods. An automatic
estimation of important diagnostic parameters will follow so as an extensive clinical study.

Appendix

A Moments of truncated Normal Distribution

Scalar truncated normal distribution

2
tN, (z|p, 1) = av/2exp (—%) , x>0, (15)
r
has moments
2

T =pu+rav2exp (_g_r)’ :;2:7“+pfi,

where o™t = /77 (1 — erf(——£-) and erf is the error function.
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