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Abstract. We study the ability of artificial neural networks to price the European style
call and put options on the S&P 500 index covering the daily data for the period from June
2004 to June 2007. We divide the data set into several categories according to moneyness
and time to maturity. We then price all options within the categories. The results show
that neural networks outperform benchmark ad hoc Black-Scholes model with significantly
lower pricing errors across all categories for both call and put options. Moreover, the dif-
ferences between ad hoc Black-Scholes and neural networks errors widen with deepness of
moneyness or longer time to maturity. We show that neural networks, even without the
volatility input, can correct for the Black-Scholes maturity and moneyness bias.
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1. Introduction

Options belong to the wide family of derivatives, price of which is determined the by
underlying security price. They can effectively reduce the risk as they allow investors
to fix a price for future transaction. Much of the success and growth of the market for
options and other derivatives is attributed to Black and Scholes (1973) and Merton
(1973), who derived a closed-form option pricing formula through a dynamic hedging
argument and no-arbitrage condition. Bernstein (1998) points out that the model
was widely in use by practitioners before it was recognized through publication in
academic journals. Since then the original formula has been generalized, extended,
and applied to a vast array of securities. For review of conventional option pricing
techniques, see e.g. Bates (2003).
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Pricing based on the hedging/no-arbitrage condition approach depends heavily
on the price of the underlying asset and its volatility. Thus the misspecification
of the stochastic process driving the stock price produces the systematic pricing
and hedging errors. Therefore, the success of parametric pricing methods strongly
depend on the ability to capture the dynamics of price process of the underlying
asset. However this dynamics is stochastic, and the volatility varies over time. Thus
any analytic formula is difficult to formalize.

In this paper, we use alternative data-driven method for pricing derivative secu-
rities - semiparametric neural networks. The term semiparametric is explained by
the fact that the basis functions are parametric, yet the parameters are not the ob-
ject of interest since we may need an infinity of them to estimate the function in the
usual nonparametric sense. Neural networks are emerging computational technol-
ogy that provide a complex method for exploring the dynamics of various economic
and financial applications. Most studies have focused on prediction of financial
data as neural networks are effective for input and output relationship modeling of
noisy data containing nonlinearities. Among the most recent references, we men-
tion Medeiros et al. (2005); Black and McMillan (2004); Jasic and Wood (2004);
Rapach and Wohar (2005); Baruńık (2008). McNelis (2005) provides a good litera-
ture review of other applications to finance. Based on the universal approximation
theorem, neural networks are able to improve the option pricing as they are able to
approximate any function (Hornik et al., 1989). The data is allowed to determine
both the dynamics of the process of the underlying asset and its relation to the
price of derivative with no assumptions on the underlying process. When properly
trained, the neural networks then become the derivative pricing formula (Hutchinson
et al., 1994).

In the application, we use the set of European style S&P 500 index call and put
options covering the period from June 2004 to June 2007. We follow broad range
of authors who use S&P 500 data, i.e. Bakshi et al. (1997); Dumas et al. (1996);
Garcia and Gencay (2000); Heston and Nandi (2000). S&P 500 index is a broad
index of 500 stocks and it serves as a good approximation of the U.S. stock market.
Moreover, S&P 500 index options belong to most liquid options traded in the U.S.
and world markets.

We follow an unique approach when testing neural networks performance as we
divide the data into several detailed categories according to moneyness and time to
maturity. Then, we test the ability of neural networks to find the option pricing
formula for both calls and puts within all categories without any assumptions on
volatility. As a benchmark, we use ad hoc Black-Scholes model, where volatility
is not identical across the moneyness and maturities. We model the volatility of
the underlying asset as the anualized standard deviation for the period correspond-
ing exactly to the days to expiration. With historical volatility that matches the
true days to expiration and is daily updated, Black-Scholes competes with neural
networks much better than the original version of pricing formula.

In contrast to Hutchinson et al. (1994); Anders et al. (1998); Bennell and Sutcliffe
(2003); Amilon (2003), we particularly train and test the neural networks perfor-
mance within the narrowly defined moneyness and time to maturity categories in
order to show that neural networks can efficiently compete even to well performing
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ad hoc Black-Scholes model in all categories. The networks correct for the Black-
Scholes maturity and moneyness bias. We further use only strike price, close price
and time to maturity as inputs for the neural networks to show that there is no need
to use a problematic volatility component in option pricing.

The organization of the paper is as follows. After introduction to option pricing
and theoretical framework of Black-Scholes, we provide a brief introduction to neural
networks. After the methodology is presented, we apply it to S&P 500 index options
pricing.

2. Option pricing and theoretical framework of Black Sc-
holes model

In this section, we briefly introduce the methodology of Black-Scholes model to help
readers understand the concept of option pricing. Option is a contingent claim
when the option holder (writer) has the right (but no obligation) to buy or sell the
underlying instrument (that can be asset, equity, index, swap, etc.) at or before a
specified date at a specified price. Thus options allow traders either to speculate
on future events and/or to reduce the exposure to the financial risk. Basically, two
kinds of options are traded on the option exchanges: American type and European
type. The former may be exercised any time before its expiration date while the
latter can be exercised only on its expiration date. In this paper, we will restrict
ourselves to the European-style options.

The true option value, or the option fair price, is the puzzle under consideration.
It should reflect the intrinsic value as the potential profit that would arise from the
instantaneous exercise of the option, and the time value of the option, which is the
price of the possibility that the price of the underlying asset would change to the
investors benefit.

The formula derived by Black and Scholes (1973) and Merton (1973) in early
1970’s is the most important formula for pricing options even after the years of
successive research, as it helps to understand the option pricing. Black and Scholes
transformed the option pricing problem into the task of solving a partial differential
equation (PDE) with a boundary condition. The price of the underlying asset is
assumed to follow the Geometric Browian motion with constant drift and volatility.
Using Ito’s lemma, the assumption of no arbitrage, and continuous trading, authors
showed that the price of any contingent claim written on the underlying solve the
parabolic partial differential equation/footnote For further detail see the original
paper Black and Scholes (1973). Authors proved that PDE together with the pay-
off of the option as a boundary condition has an analytical solution. The solution
is well known as Black-Scholes formula:

C = SΦ(d1)−Xe−r(T−t)Φ(d2), (1)

d1 =
ln (S/X) + (r + σ2)(T − t)

(σ
√
T − t)

, (2)

d2 =
ln (S/X) + (r − σ2)(T − t)

(σ
√
T − t)

, (3)
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where Φ(.) represents cumulative normal distribution function, S is a price of an
underlying asset, X is a strike price or exercise price, r is a risk-free interest rate, σ
is a volatility and (T − t) time to expiration.

Using put-call parity a formula for put options is derived as follows:

P (X) = Xe−r(T−t)Φ(−d2)− SΦ(−d1). (4)

The Black-Scholes approach to option pricing led to great boom of derivatives
trading in 1970s and 80s respectively. Even thought the formula is still very popu-
lar, its original version leads to an errors in pricing of the derivatives. Bates (2000)
showed that the distribution implicit in the option prices is negatively skewed in con-
trast to the lognormal distribution assumed by the Black-Scholes model. Moreover,
the instantaneous volatility is not identical across the moneyness and maturities
(Macbeth and Merville, 1979; Rubinstein, 1985; Corrado and Su, 1997). Misspec-
ification of the process driving the stock price S is one of the main drawbacks of
the framework. The key parameter of the model σ is assumed to be constant, but
research in past decades show that we need to allow σ to vary in time.

The choice of Black-Scholes model as a benchmark model has, indeed, its jus-
tification. Although the model has its drawbacks, there is a growing body of evi-
dence, that if an assumption of constant volatility is relaxed, the model performs
very well (as first shown as Chesney and Scott (1989)).Consequently a term ad hoc
Black-Scholes model has estabilished in the literature for a modification of the orig-
inal version using the daily updating of volatility input. Various authors showed
that ad hoc Black-Scholes outperforms the deterministric volatility function models
(e.g. Dumas et al. (1996) amongst others). Heston and Nandi (2000) show that
it competes well with their closed-form GARCH (1,1) option pricing model. More
recently, Christoffersen and Jacobs (2004) find that the ad hoc Black-Scholes model
beats Heston (1993) theoretical model if parameters are updated daily. Berkowitz
(2010) provides further argumentation on justification of ad hoc Black-Scholes op-
tion pricing model with frequent parameters updating. In our work, we use a specific
form of ad hoc Black-Scholes model with historical volatility computed for the time
interval equal to the option expiration, as the proxy for future volatility.

All the variables, but volatility, are easily obtainable from the market. However
the forecasting accuracy is based on the volatility estimation. Therefore we use
the ad hoc Black-Scholes pricing model with daily updating volatility as an input.
Historical volatility is computed for every day, for each option separately. It is
defined as an annualized standard deviation of the log-returns of the underlying
asset prices over the n days, where n equals to remaining time to maturity of given
option. We believe that volatility updated daily improves the Black-Scholes pricing
so that it becomes competitive to neural networks.

3. Neural Networks

In this section, we introduce data driven method of derivative pricing where the data
will determine the dynamics of the price of the underlying asset and its relation to the
derivative security. Assumptions of constant volatility and lognormal distribution
of the underlying process are relaxed thanks to this approach. On the basis of the
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universal approximation theorem, we assume that network is capable to learn the
true option pricing formula (Hutchinson et al., 1994). The neural network can also
be trained on the real data and optimal model with optimal weights becomes the
derivative pricing model. We expect that the neural network can better approximate
the price of derivative through learning process than Black-Scholes formula, and can
be used to minimize error of hedging or pricing of the derivatives.

Greatest advantage of the neural network approach is that networks do not rely
on the restrictive parametric assumptions described above, they are robust to the
specification errors that plague parametric models, and more importantly, they are
also adaptive and respond to structural changes in the data generating process. Fi-
nally, they are flexible enough to encompass a wide range of the price dynamics.
On the other hand, the advantages come to cost at large amounts of data needed
to best optimalization of weights. Therefore, the approach is not appropriate for
newly issued instruments. There is another cost - if the underlying assets prices
are well understood and can be analytically expressed, networks will probably not
outperform the Black-Scholes. The first drawback turns out to diminish if we con-
sider that there are always amounts of derivatives available to the same asset on the
market, thus the newly issued derivative can often be replicated using this data as
the underlying process is identical. Another drawback we need to mention is that
the computational burden of neural network approach is significantly higher when
compared to simple parametric pricing models as Black-Scholes.

3.1. What is a Neural Network?

A neural network relates a set of input variables, say, {xi}ki=1 to a set of one or
more output variables, say, {yj}k

∗
j=1 . The difference between network and other

approximation methods is that the approximating function uses one or more so-
called hidden layers, in which the input variables are squashed or transformed by
a special function. In this paper, we use logsigmoid transformation. While this
approach may seem esoteric or maybe even mystical at first glance, it may be
used as a very efficient way to model nonlinear processes. The reason we turn to
neural networks is straightforward. It is the goal of the pricing problem to find
an approach or method that best prices the options data generated by stochastic
underlying processes.

3.2. Feedforward Neural Network

The most widely used neural network in financial applications with one hidden layer
(Hornik et al., 1989) is the feedforward neural network and contains two neurons,
three input variables, and one output. The general feed-forward or multilayered
perception (MLP) network can be described by the following equations:

nk,t = ωk,0 +
i∗∑

i=1

ωk,ixi,t (5)

Nk,t = Λ(nk,t) =
1

1 + e−nk,t
(6)
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yt = γ0 +
k∗∑

k=1

γkNk,t (7)

where Λ(nk,t) is the logsigmoid activation function. There are i∗ input variables
{x} and k∗ neurons. ωk,i represents a coefficient vector or input weights vector.
Variable nk,t is squashed by the logsigmoid function and becomes a neuron Nk,t

at time t. Then the set of k∗ neurons are combined linearly with the vector of
coefficients {γk}k

∗

k=1 to form the final output, which is the forecast yt. This model
is the workhorse of the neural network modeling approach in finance as almost all
researchers start with this network as the first alternative to linear models.

In contrast to classical linear models, there are two additional neurons which
process the inputs to improve the predictions in the model. Connections between
the input variables and the neurons, also called input neurons, and the connections
between the neurons and the output, the output neurons, are called synapses. For the
purpose of this study, the hidden layer always uses the logsigmoid transfer function.
The reader might note that the simple linear regression model is just a special case of
the feedforward neural network. Namely a network with one neuron which contains
a linear approximation function.

In order to be able to approximate the target function, the neural network has to
be able to ”learn”. The process of learning is defined as the adjustment of weights
using a learning algorithm. The most common way to train a neural network is by
learning an algorithm called backpropagation or error-backpropagation. The main
goal of the learning process is to minimize the sum of the prediction errors for
all training observables. The training phase is thus an unconstrained nonlinear
optimization problem where the goal is to find the optimal set of weights of the
parameters by solving the minimization problem:

min{Ψ(ω) : ω ∈ Rn}, (8)

where Ψ : Rn → Rn is a continuously differentiable error function. There are
several ways of minimizing Ψ(ω), but basically we are searching for the gradient
G = ∇Ψ(ω) of function Ψ which is the vector of the first partial derivatives of
the error function Ψ(ω) with respect to the weight vector ω. Furthermore, the
gradient specifies direction that produces the steepest increase in Ψ. Negative of
this vector thus gives us the direction of steepest decrease. Stochastic gradient
descent backpropagation learning algorithm, as well as other methods, will not be
discussed in any further detail in order to keep the length of the paper under control.

Besides the popular steepest descent algorithm, the conjugate gradient algorithm
is another search method that can be used to minimize the network error function
Ψ(ω) in conjugate directions. This method puts into use the orthogonal and linearly
independent non-zero vectors and in some cases brings better convergence results
than the previous method.

4. Application to S&P 500 Index Options

One of the usage of neural networks in financial markets modeling is an improvement
of forecasts of the stock returns. However, much stronger implications may be made
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when considering usage of neural networks in another area - pricing and hedging
of the derivatives. As discussed above, Black-Scholes model is based on assump-
tions that are unrealistic. One solution to the problem is to re-estimate the model
every day with new updated volatility which will be set to constant. The other ap-
proach may be usage of semiparametric neural networks. On the basis of universal
approximation theorem, neural networks should be able to price the options with
significantly lower error even compared to ad hoc Black-Scholes.

4.1. Experimental Setup

One of the major issues in option pricing is modeling volatility. While neural net-
works have the ability to learn complex nonlinear patterns from the historical data,
we can relax any assumptions on the volatility. Neural networks should be able to
model any nonlinear relationship between the price of an option and the variables
that affect its price. If all market participants would use unique pricing formula to
price the options, neural network would be able to learn it from the data.

We would like to show that neural networks are able to compete ad hoc Black-
Scholes model. We use ad hoc Black-Scholes with unique historical volatilities
matching the days to expiration, as this model performs well (see the section 2
for argumentation). Another aim is to find if neural networks can be used for pric-
ing of all option categories within the moneyness and time to expiration. As we
expect neural network to learn also volatility from the data, our inputs to neural
network will only be S/X ratio, (T − t), r and we will model output option price.
If ad hoc Black-Sholes is able to describe the data set well, then neural network
should be able to recover the Black-Scholes formula but it will not price the options
with lower error. In the situation when Black-Scholes price diverge from real option
prices, like for example during high volatility periods, neural network should be able
to outperform the well established model.

We use the basic generalized feed-forward network architecture, with one hidden
layer, logsigmoid transformation functions and conjugate gradient optimization algo-
rithm. The general rule for partitioning the data for training (in-sample), validation
and testing (out-of-sample) is 60%, 15% and 25%, respectively.

4.2. Evaluation of Tested Models

For evaluation of individual model, we use various loss functions including mean ab-
solute error (MAE), root mean square error (RMSE), and mean absolute percentage
error (MAPE). The loss functions are expressed as follows:

MAE = 1/N
N∑

n=1

|yn − ŷn| (9)

RMSE =

√√√√1/N
T∑

n=1

(yn − ŷn)2 (10)

MAPE = 1/N
N∑

n=1

|yn − ŷn

yn

|, (11)
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where yn is real option price, and ŷn is modeled option price, N is number of obser-
vations.

Using these evaluation criteria, we select the model with the lowest error statistic.
However, for comparison of the performance of two models, i.e. ŷi

n and ŷj
n we

use Diebold and Mariano (1995) approach. Diebold-Mariano (DM) statistics tests
the null hypothesis of equal predictive accuracy. The statistics is based on the
difference of loss functions of two compared models. For further details see Diebold
and Mariano (1995).

4.3. Data

In the paper, we use the set of European-style S&P 500 index call and put options
as they belong to most liquid options traded in U.S. an in the world markets as well.
S&P 500 index is a broad index of 500 stocks. The data consists of the daily close
S&P 500 index price adjusted for dividends, strike price, the date, call/put flag,
option expiration dates, the daily best bid and the best offer. The sample contains
491819 unique option prices and 761 index prices in the period from June 2004 until
June 2007. Figures 1 and 2 show prices and returns of S&P 500 index, respectively.
Following the empirical practice, we use the midpoint of the bid-offer spread as the
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Figure 1: S&P 500 index prices for the period.
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Figure 2: S&P 500 index returns for the period.

option price. Further on, we use the continuously compounded interest rate that is
calculated from the continuously compounded zero-coupon1 interest rates at various
maturities.

1The zero-coupon curve is derived from BBA LIBOR rates and settlement prices of CME
Eurodollar futures
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Following Bakshi et al. (1997), we apply the exclusion filters on the data set.
First, options with less than six days to expiration are excluded in order to prevent
the liquidity related bias. Second, price quotes lower than 0.375 $ are excluded in
order to mitigate the impact of price discreteness on option valuation. Third, the
quotes that do not satisfy the no-arbitrage condition C ≥ max (0, St −Xt) for calls
and P ≥ max (0, Xt − St) for puts are taken away. Almost 30% of the data were
excluded.

We further divide the data set into the categories according to the moneyness and
the time to maturity. We again follow Bakshi et al. (1997) and define the moneyness
and time to maturity as follows. The call (put) is said to be in-the-money (out-
of-the-money), or ITM(OTM), if the spot price to strike price ratio S/X ≥ 1.03.
At-the-money (ATM) are defined by the S/X ∈ 〈0.97, 1.03) and out-of-the-money
(in-the-money), or OTM(ITM), for S/X < 0.97. A finer partition wit boudnaries
of 0.94 and 1.06 respectively includes deep OTM (deep ITM), or DOTM (DITM)
categories. The short-term maturity option expires in less than 60 days, long-term
in more than 180 days and mid-term has more than or equal 60 and less than 180
days to expiration. Table 1 describes the properties of the prices of proposed 18
categories for which the results will be reported.

The summary statistics is obtained for the daily average bid-offer mid-point
option price. Note that the price of the option is increasing with the deepness of
the option being in the money, as there is higher chance for the spot to move in
desirable direction, and increasing days to the expiration, as its time value increases.
The price of call option is in range of $0.96 for short-term deep OTM to $ 333.07
for long-term ITM. Put has somewhat narrower range, it’s price fall between $1.86 -
$140. Earlier in the text, we have mentioned that Black-Scholes performs extremely
bad when pricing in-the-money or out-of-the-money options. To better understand
this moneyness and time to maturity bias, we compute the Black Scholes implied
volatility for each category. The theoretical Black-Scholes price is set equal to the
averaged best bid-offer mid-point option price and the formula is inverted using the
numerical search technique. Table 2 shows the implied volatilities for each category
of the S&P 500 index options compared to the historical volatilities computed using
different historical window length which corresponds to the time to maturity.

Figures 3 and 4 confirms the well-known Black-Scholes bias. Regardless the time
to expiration, the implied volatility exhibits U-shaped pattern across the moneyness
as the option goes from deep OTM to deep ITM. Calls exhibit rather “sneer-like”
pattern, while puts show traditional “smile”. This indicates the most severe mis-
pricing of Black-Scholes for the deep ITM options.

5. Results

The data are randomized for the training and out-of-sample period. Figures 5 and 6
show the RMSE statistic comparison for call options and put options, respectively.
For all categories, neural network with strike, close price and time to maturity as
inputs outperforms ad hoc Black-Scholes. When we look at the RMSE for both
call and put options, the neural network RMSE is flat and low (only very slightly
increasing with days to maturity or as the option goes deep in/out-of-the-money).
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Figure 4: The volatility smile for put op-
tions.

On contrary, the ad hoc Black-Scholes RMSE increases rapidly as the days to ma-
turity increase and moneyness deepens. Neural network RMSE is lower than ad
hoc Black-Scholes RMSE for all categories. It confirms that neural network price
options very well no matter what the moneyness or days to expiration are.
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Figure 5: RMSE for call options. Black-
Scholes RMSE in red, Neural Network
RMSE in black

<60

X60-180L

³180

Days to maturity

DITM
ITM

ATM
OTMDOTM Moneyness

10

20

RMSE

Figure 6: RMSE for put options. Black-
Scholes RMSE in red, Neural Network
RMSE in black

For call options, Black-Scholes tends to overprice deep in-the-money and deep
out-of-the-money options according to the average value of the price, with the high-
est bias for long-term options. On contrary, Black-Scholes undeprices put options.
No such patterns are present for neural networks. Both NMSE and MSE increase
heavily as the days to expiration increase for Black Scholes. Again, no such pattern
is present for neural network. In absolute values, both measures are much lower for
neural network.

Table 3 provides complete results for our out-of-sample performance. We can see
that neural network has lower pricing error according to all evaluation criteria. To
be rigorous, we also compute the test for the comparison of predictive accuracy of
the two tested models. Table 4 summarizes Diebold Mariano (DM) statistic which
is approximately normally distributed under the null hypothesis of equal predictive
accuracy. For all categories, we strongly reject the null hypothesis of equal predic-
tive accuracy of the neural network and Black-Scholes model. Neural network has
significantly lower pricing error than Black-Scholes for all tested call and put options
at 1% significance level except for single category of in-the-money call options with
expiration less than 60 days. In this single category, neural network produces signif-
icantly lower error on 10% level significance. Diebold Mariano test also shows how
the difference between Black-Scholes and neural network errors significantly widens
with deepness or expiration. The deeper the option in/out-of-the-money, and/or
the longer the option has to expiration, the greater the difference between neural
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network and Black Scholes errors have we found. We thus managed to show that
neural network are able to outperform ad hoc Black-Scholes model even without the
knowledge of volatility.

6. Conclusion

Since the famous Black-Scholes option pricing formula has been brought into the
world of finance, immense volume of option pricing literature has been issued. Soon
after the model was proposed, it became heavily criticized for its highly unrealis-
tic assumptions. While Black-Scholes model exhibits strong pricing biases due to
these problems, ad hoc Black-Scholes model with frequently updated volatility input
performs better, as shown in Section 2 of the paper.

In our paper, we test completely different way of pricing options, which allows
us to relax all the restrictive assumptions. Semiparametric neural networks are
believed to be able to capture nonlinear dynamic behavior of complex systems, such
as stock market. Contributions of the paper are as follow: We show that neural
networks learn option pricing formula without the need of volatility as an input. As
the benchmark for network, we use generally well-performing ad hoc Black-Scholes
model. We train network on fine and wide categorization of moneyness and time to
maturity for both call and put options. We show that networks price option within
these categories very well.

We evaluate the performance of generalized feed-forward neural network com-
pared to Black-Scholes model on the European style S&P 500 index call and put
options. For the Black-Scholes model, we use modified approach. In order to make
it more competitive, we use the data that are more likely to be used by practitioners.
We use historical volatility which matches exactly the time to maturity day by day,
as well as changing interest rates. Generalized feed-forward network with one hid-
den layer, logsigmoid transformation function and the conjugate gradient learning
algorithm is used for comparison. Inputs are the same as to the parametric Black-
Scholes model, except for volatility and interest rates inputs, which we relax in the
neural network. We do not use volatility at all in order to prove neural network is
able to recover it from the real world data.

Explanatory power for both models is sufficiently high, as we compare well per-
forming models. Errors of the ad hoc Black-Scholes model increasessignificantly with
increasing moneyness and time to maturity while neural network errors surface stay
flat. For both call options and put options, the errors surface of neural network lies
below the error surface of Black-Scholes. We use Diebold Mariano statistic which
tests the equality of predictive accuracy of the models and we find that neural net-
work produces significantly lower error than Black-Scholes model at 1% significance
level except for single category of in-the-money call options with expiration less than
60 days. In this category, neural network produce significantly lower error on 10%
level significance.

We managed to show that neural networks are able to compete with an ad hoc
Black-Scholes model at wide number of categories even without the knowledge of
volatility.
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