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Abstract

“Classical” optimization problems depending on a probability measure (and corresponding to many
applications) belong mostly to a class of nonlinear deterministic optimization problems that are (from
the numerical point of view) relatively complicated. On the other hand, these problems fulfill very often
“suitable” mathematical properties guaranteing the stability (w.r.t probability measure) and moreover
giving a possibility to replace the “underlying” probability measure by an empirical one to obtain “good”
stochastic estimates of the optimal value and the optimal solution. Properties of these (empirical) esti-
mates have been studied mostly for standard types of the “underlying” probability measures with suitable
(thin) tails and independent random samples. However, it is known that probability distributions with
heavy tails correspond to many economic problems better (see e.g. [18]) and, moreover, many applications
do not correspond to the “classical” above mentioned problems.

The aim of the paper is, first, to recall stability results in the case of heavy tails, furthermore, to
introduce more general problems for which above mentioned results can be employed too.
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1 Introduction

To introduce a “classical” one–stage stochastic optimization problem, let (Ω, S, P ) be a probabi-
lity space; ξ (:= ξ(ω) = [ξ1(ω), . . . , ξs(ω)]) s–dimensional random vector defined on (Ω, S, P );
F (:= F (z), z ∈ Rs) the distribution function of ξ; Fi, i = 1, . . . , s one–dimensional marginal
distribution functions corresponding to F ; PF , ZF the probability measure and the support
corresponding to F. Let, moreover, g0(:= g0(x, z)) be a real–valued (say continuous) function
defined on Rn ×Rs; X ⊂ Rn be a nonempty “deterministic” set not depending on F .

If EF denotes the operator of mathematical expectation corresponding to F, then a rather
general “classical” one–stage stochastic programming problem can be introduced in the form:

Find
ϕ(F ) = inf{EF g0(x, ξ)|x ∈ X}. (1)

Since in applications very often the probability measure PF has to be replaced by empirical one,
the solution of the problem (1) has to be (very often) sought w.r.t. an “empirical problem”:

Find
ϕ(FN ) = inf{EFN g0(x, ξ)|x ∈ X}, (2)



where FN denotes an empirical distribution function determined by a random sample {ξi}Ni=1

(not necessary independent) corresponding to the distribution function F. If we denote the
optimal solutions sets of (1) and (2) by X (F ), X (FN ), then it is known, that under rather
general assumptions ϕ(FN ), X (FN ) are “good” stochastic estimates of ϕ(F ), X (F ).

The investigation of these empirical estimates started already in 1974 by R. Wets (see [23]).
In the same time the consistency (under only an ergodic assumption) has been investigated in
[6]. The investigation of the convergence rate started in [7]. Of course, the first results have
been achieved for independent random samples and they have been based on the Hoeffding’s
paper [5] (Chernoff inequality). Let us recall the first result about the convergence rate.

Theorem 1. [7] Let t > 0, X be a nonempty compact set. If

1. g0(x, z) is

a. a uniformly continuous, bounded function on X × ZF ,
b. a Lipschitz function on X with the Lipschitz constant L not depending on z ∈ ZF ,

2. {ξi}Ni=1 for N = 1, 2, . . . is an independent random sample corresponding to PF ,

then

P{ω : |ϕ(F )− ϕ(FN )| > t} ≤ K(t, X) exp{−Nk1t
2}, K(t, X ), k1 > 0 constants.

L. Dal, C. H. Chen and J. R. Birge [2] have tried to generalize the assertion of Theorem 1
(for s = 1) to the case when

EF exp{θξ} <∞ for 0 ≤ θ ≤ θ0, θ0 constant. (3)

Evidently, the relation (3) can be fulfilled only for F with thin tails. However, the assumption
of “thin” tails is not fulfilled in many applications. Relatively a detailed analysis about heavy
tailed distributions (in economics and finance) is presented in [18]. Moreover, a relationship
between the stable distribution (for definition see e.g. [14]) and heavy tailed distributions can
be there found. A relationship between the stable distribution functions and the Pareto tails is
mentioned e.g. in [14] and [17].

Furthermore, it follows from the relation (1) that the objective function is assumed there to
be a linear functional of the probability measure PF ; the objective is a real valued function
and, moreover, the problem is one–stage. Evidently, many problems (corresponding to the
applications) do not fulfil these assumptions. In this contribution we introduce some types of
problems not fulfilling these assumptions, however, for which a little modified corresponding
results can be employed.

2 Some Definitions and Auxiliary Assertions

2.1 Stability Assertions

First, we recall some stability results achieved for the problem (1). To this end let P(Rs) denote
the set of all Borel probability measures on Rs, s ≥ 1. We set

M1(Rs) = {P ∈ P(Rs) :

∫
Rs

‖z‖1sP (dz) <∞}, ‖ · ‖1s denotes the L1 norm in Rs.

Proposition 1.[9] Let X ⊂ Rn be nonempty compact set, PF , PG ∈M1(Rs). If
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1. g0(x, z) is a Lipschitz function of z ∈ Rs with the Lipschitz constant L (corresponding to
L1 norm) not depending on x ∈ X,

2. finite EF g0(x, ξ), EGg0(x, ξ) exist for every x ∈ X,

3. g0(x, z) is a uniformly continuous function on X ×Rs,

then

| inf
x∈X

EF g0(x, ξ)− inf
x∈X

EGg0(x, ξ)| ≤ L
s∑
i=1

+∞∫
−∞

|Fi(zi)−Gi(zi)|dzi.

Evidently, replacing the distribution function G by an empirical FN we can investigate the
convergence rate of the empirical estimates ϕ(FN ), X (FN ).

2.2 Empirical Estimates

The results of this subsection will be introduced for a special case s = 1 . First, we recall the
assertion published in [22] (pp 66).

Lemma 1. [22]. Let s = 1, PF ∈M1(R1). Let, moreover, {ξi}∞i=1 be a sequence of independent
random values with a common distribution function F. If FN is the empirical distribution
function determined by {ξi}Ni=1, N = 1, 2, . . . , then

P{ω :

∞∫
−∞

|F (z)− FN (z)|dz −→(N−→∞) 0} = 1.

The following assertion follows from the results that have been proven in [10].

Proposition 2. Let s = 1, t > 0. If

1. PF is absolutely continuous with respect to the Lebesgue measure on R1,

2. there exists ψ(N, t) := ψ(N, t, R) such that the empirical distribution function FN fulfils
for R > 0 the relation

P{ω : |F (z)− FN (z)| > t} ≤ ψ(N, t) for every z ∈ (−R, R),

then for t
4R < 1, it holds that

P{ω :
∞∫
−∞
|F (z)− FN (z)|dz > t} ≤

(12R
t + 1)ψ(N, t

12R , R) + P{ω :
−R∫
−∞

F (z)dz > t
3}+

P{ω :
∞∫
R

(1− F (z))dz > t
3} + 2NF (−R) + 2N(1− F (R)).

Proposition 3. [10]. Let s = 1, t > 0. Let, moreover {ξi}∞i=1 be a sequence of independent
random values with a common distribution function F. If

1. PF is absolutely continuous with respect to the Lebesgue measure on R1,
(we denote by f the probability density corresponding to F ),
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2. there exist constants C1, C2 > 0 and T > 0 such that

f(z) ≤ C1 exp{−C2|z|} for z ∈ (−∞, −T ) ∪ (T, ∞),

then

P{ω : Nβ

∞∫
−∞

|F (z)− FN (z)| > t} −→N−→∞ 0 for β ∈ (0,
1

2
).

Applying the assertion of Proposition 2 to the Pareto distribution we can obtain also useful
(from economic point of view) assertions. Of course, they are weaker and they depend on the
“stability” coefficient α of the Pareto distribution. According to [16] there exist a few slightly
different definitions of a univariate Pareto distribution; there exists relationship between them.
To recall this type of distributions we employ the definition from [18]. According to it the
random value ξ has a Pareto distribution if

P{ω : ξ > z} = Cz−α, f(z) = Cαz−α−1 for z > C
1
α ,

0 z ≤ C
1
α ,

(4)

where C > 0 is a constant and f(z) is a probability density.

Evidently, we can see that for α > 1 we obtain PF ∈ M1(R1). Furthermore, for β ∈ (0, 1
2)

and R := R(N) = Nγ , γ > 0 it holds that

Nβ
∞∫

R(N)

[1− F (z)]dz = Nβ[C(−α+ 1)z−α+1]∞R(N) = −C(−α+ 1)NβNγ(−α+1),

N [1− F (R(N))] = NCN−αγ = CN1−αγ .

(5)

Consequently we can obtain the following assertion.

Proposition 4. Let s = 1, t > 0, α > 1, and β, γ > 0 fulfil the inequalities γ > 1
α ,

γ
β >

1
α−1 , γ + β < 1

2 . Let, moreover, {ξi}∞i=1 be an independent random sample corresponding to the
(Pareto) distribution function F . If

1. PF is absolutely continuous with respect to the Lebesgue measure on R1

(we denote by f the probability density corresponding to F ),

2. there exists constants C > 0, T > 0 such that

f(z) ≤ Cα|z|−α−1 for z ∈ (−∞, −T ) ∪ (T, ∞),

then

P{ω : Nβ

∞∫
−∞

|F (z)− FN (z)| > t } −→(N−→∞) 0.

Evidently, the assumptions of Proposition 4 can be fulfilled only for α > 2.

2.3 Bivariate Pareto Distributions

A few definitions of slightly different univariate Pareto probability distributions have been in-
troduced in [16]. The Pareto(I) distribution (introduced there) is very similar to the definition
corresponding to the relation (4).The exact form of the definition from [16] is following.
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Definition. The random value ξ is said to have a univariate Pareto(I) distribution if

P{ξ > z } = (
z

σ
)−α for z ≥ σ, α > 0.

σ is referred as the Pareto index of inequality. The distribution is denoted by P (I)(σ, α).

The random element is mostly (in optimization problems) represented by an s–dimensional
random vector (s > 1). In [16] a bivariate and multivariate Pareto corresponding to P (I)(σ, α)
distribution are introduced. We recall the bivariate case only.

Definition. The random two dimensional vector ξ = (ξ1, ξ2) with the joint density function

pξ1,ξ2(z1, z2) = (a+ 1)a(θ1θ2)a+1(θ2z1 + θ1z2 − θ1θ2)−(a+1),

z1 ≥ θ1 > 0, z2 ≥ θ2 > 0, a > 0

may be called a bivariate Pareto distribution of the first kind. Since the marginal distribution
have density functions

pξi(zi) = aθai z
−(a+1)
i , zi ≥ θi > 0, i = 1, 2,

that is ξi =d PI( 1
θi
, a).

Remark. There exists a survey of Pareto distributions applications in [18]. Moreover, there
is also mentioned a usual assumption that all components of s–dimensional random vector
have the same parameter α. However according to an analysis in [18] this assumption is not
fulfilled in many applications. Employing a reduction (from the mathematical point of view) of
multivariate problem to one–dimensional marginal case, we can present some new properties of
the “empirical” estimates.

3 Main Results

We shall introduce a system of the assumptions.

1. A.1 g0(x, z) is

• a uniformly continuous function on X × ZF ,
• for every x ∈ X a Lipschitz function of z with the Lipschitz constant L (corresponding

to the L1 norm),

A.2 • {ξi}∞i=1 is a sequence of independent s–dimensional random vectors with a common
distribution function F,
• FN is an empirical distribution function determined by {ξi}Ni=1, N = 1, 2, . . . ,

A.3 for every x ∈ X there exists finite EF g0(x, ξ).

3.1 Consistency

Theorem 2. Let X be a nonempty compact set, the assumptions A.1, A.2 and A.3 be fulfilled.
If PFi ∈M1(R1), i = 1, . . . , s, then

P{ω : |ϕ(F )− ϕ(FN )| −→N−→∞ 0} = 1.

Proof. The assertion of Theorem 2 follows from Proposition 1 and Lemma 1. 2

Since, first moment exists in the case of many univariate stable distributions with heavy tails,
we can see that ϕ(FN ) (under rather general conditions) is a consistent estimate of ϕ(F ). More
general assumptions guaranteing consistency are introduced in [21]. However, it is much simple
to verify our assumptions.
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3.2 Convergence Rate

Theorem 3. [10] Let t > 0, X be a compact set. Let, moreover, the assumptions A.1, A.2 and
A.3 be fulfilled. If

1. PFi , i = 1, . . . , s are absolutely continuous with respect to the Lebesgue measure on R1

(we denote by fi, i = 1, . . . , s the probability densities corresponding to Fi),

2. there exist constants C1, C2 > 0 and T > 0 such that

fi(zi) ≤ C1 exp{−C2|zi|} for zi ∈ (−∞, −T ) ∪ (T, ∞), i = 1, . . . , s,

then

P{ω : Nβ|ϕ(FN )− ϕ(F )| > t} −→(N−→∞) 0 for β ∈ (0,
1

2
).

Theorem 4. Let t > 0, αi > 1, i = 1, . . . , s, X be a compact set. Let, moreover, the
assumptions A.1, A.2 and A.3 be fulfilled. If

1. PFi , i = 1, . . . , s are absolutely continuous with respect to the Lebesgue measure on R1

(we denote by fi, i = 1, . . . , s the probability densities corresponding to Fi),

2. there exists a constants Ci > 0, i = 1, . . . , s and T > 0 such that

fi(z) ≤ Ciαiz−αi−1
i for z ∈ (−∞, −T ) ∪ (T, ∞), i = 1, . . . , s,

3. αi > 1, γi > 0, i = 1, . . . , s, β > 0 fulfil the inequalities

γi >
1

αi
,

γi
β
>

1

αi − 1
, γi + β <

1

2
,

then
P{ω : Nβ|ϕ(FN )− ϕ(F )| > t} −→(N−→∞) 0.

Proof. The assertion of Theorem 4 follows from Proposition 1 and Proposition 2. 2

4 Application to More General Problems

Furthermore, we introduce some types of problems that do not fulfilled the assumptions of
problem (1), however, for which the former presented results can be employed.

4.1 Portfolio Selection Problem

A simple “underlying” classical portfolio problem is known as the following one:

Find

max
n∑
k=1

ξkxk subject to
n∑
k=1

xk ≤ 1, xk ≥ 0, k = 1, . . . , n, s = n, (6)

where xk is a fraction of the unit wealth invested in the asset k, ξkxk denotes the return of the
value xk invested in the asset k ∈ {1, 2, . . . n}.

If ξk, k = 1, . . . , n are supposed to be random, then surely it is reasonable (and quite usual)
to set to the portfolio selection two–objective optimization problem:
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Find

max
n∑
k=1

µkxk, min
n∑
k=1

n∑
j=1

xkck,jxj

subject to
n∑
k=1

xk ≤ 1, xk ≥ 0, k = 1, . . . , n,
(7)

where µk = EF ξk, ck,j = EF (ξk − µk)(ξj − µj), k, j = 1, . . . n.

Remark. It is mentioned in [1] that the efficient points of the problem (7) and the problem;

Find

max
n∑
k=1

µkxk, min

√
n∑
k=1

n∑
j=1

xkck,jxj

subject to
n∑
k=1

xk ≤ 1, xk ≥ 0, k = 1, . . . , n
(8)

are the same. (For the definition of efficient points of the multicriteria problems see e.g. [4].)

Furthermore, evidently,

σ2(x) =
n∑
k=1

n∑
j=1

xkck,jxj = EF {
n∑
j=1

ξjxj − EF [
n∑
j=1

ξjxj ]}2, x = (x1, . . . , xn)

can be considered as a risk measure. Konno and Yamazaki recalled in [15] another risk measure

w(x) = EF |
n∑
k=1

ξkxk − EF [
n∑
k=1

ξkxk]|. (9)

Moreover, they have recalled that w(x) =
√

2
πσ(x) in the case of mutually normally distributed

random vector (ξ1, . . . , ξn). Other risk measures can be considered in the form:

w+(x) = EF |
n∑
k=1

ξkxk − EF [
n∑
k=1

ξkxk]|+, w−(x) = EF |
n∑
k=1

ξkxk − EF [
n∑
k=1

ξkxk]|−. (10)

Employing a “weight” approach (first employed by Markowitz) we obtain the following one
objective problems:

max
x∈X

[
n∑
k=1

µkxk −KEF |
n∑
k=1

ξkxk − EF [
n∑
k=1

ξkxk]|,

max
x∈X

[
n∑
k=1

µkxk −KEF |
n∑
k=1

ξkxk − EF [
n∑
k=1

ξkxk]|+,

max
x∈X

[
n∑
k=1

µkxk −KEF |
n∑
k=1

ξkxk − EF [
n∑
k=1

ξkxk]|−,

X := X̄ = {x ∈ Rn :
n∑
k=1

xk ≤ 1, xk ≥ 0, k = 1, . . . , n, }, K > 0.

(11)

To introduce more general problems covering problems of the type (1), let h(x, z) = (h1(x, z),
. . . , hm1(x, z)) be m1–dimensional vector function defined on Rn×Rs, g1

0(x, z, y) be a real val-
ued function defined on Rn×Rs×Rm1 . If we replace the problem (1) by a stochastic programming
problem:

Find
ϕ(F ) := ϕ1(F ) = inf{EF g1

0(x, ξ,EFh(x, ξ))|x ∈ X}, (12)
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then to investigate the stability and empirical estimates of the problem (12), evidently, we can
employ a stability approach employed in [19] (pp. 449). We recall the following assertion.

Proposition 4. [10] Let X ⊂ Rn be nonempty compact set, PF , PG ∈M1(Rs). If

1. hi(x, z), i = 1, . . . , m1 are for every x ∈ X Lipschitz functions of z with the Lipschitz
constants Lih (corresponding to L1 norm),

2. g1
0(x, z, y) is for x ∈ X, y ∈ Rm1 a Lipschitz function of z ∈ Rs with the Lipschitz constant
Lz(x, y) (corresponding to L1 norm) and for every x ∈ X, z ∈ ZF a Lipp. fumction of y
with Lips. constant Ly,

then there exists a constant C > 0 such that for every x ∈ X

| inf
X

EF g
1
0(x, ξ, EFh(x, ξ))− inf

X
EGg

1
0(x, ξ, EGh(x, ξ))| ≤

{EF [Ly(x, ξ)]C
m1∑
i=1

Lih + Lz(x, EGh(x, ξ)) }
s∑
j=1

∞∫
−∞
|Fj(zj)−Gj(zj)|dzj .

4.2 Stochastic Linear Programming with Recourse

The following auxiliary assertion can be useful for stochastic linear programming problems
with recourse. To this end we consider the case s = 2 and we set ξ1 := ξ̄, ξ2 := η̄, where
ξ̄(:= ξ̄(ω)), η̄(:= η̄(ω)) are random values defined on (Ω,S, P ) with finite second moments. If
we denote by the symbols F (:= F(ξ̄,η̄)), Fξ̄, Fη̄ the distribution functions of the random vector

(ξ̄, η̄) and marginal distribution functions of the random valuables ξ̄ and η̄, then we can recall
the following auxiliary assertions.

Proposition 5. [12] Let ζ̄ = ξ̄η̄ (:= ξ̄(ω)η̄(ω)), Fζ̄ denote the distribution function of ζ̄. If

1. PFξ̄ , PFη̄ are absolutely continuous with respect to the Lebesgue measure on R1 (we denote
by fξ̄, fη̄ the probability densities corresponding to Fξ̄, Fη̄),

2. there exist constants C ξ̄1 , C
ξ̄
2 , C

η̄
1 , C

η̄
2 > 0 and T > 0 such that

fξ̄(z) ≤ C ξ̄1 exp{−C ξ̄2 |z|} for z ∈ (−∞,−T )
⋃

(T,∞),

fη̄(z) ≤ C η̄1 exp{−C η̄2 |z|} for z ∈ (−∞,−T )
⋃

(T,∞),

then, there exist constants C ζ̄1 , C
ζ̄
2 > 0, D1, D2, D3 > 0, T̄ > 1 such that

Fζ̄(−z) ≤
C ζ̄1

C ζ̄2
exp{−C ζ̄2

√
z}, (1− Fζ̄(z)) ≤

C ζ̄1

C ζ̄2
exp{−C ζ̄2

√
z} for z > T̄

+∞∫
z

(1− Fζ̄(u))du ≤ D1
√
ze−D2

√
z +D3e

−D2
√
z for z > T̄ .

(13)

4.3 Multiobjective Stochastic Programming Problems

A rather general multiobjective stochastic programming problem can be introduced as the fol-
lowing problem [8]:

8



Find
inf EF gi(x, ξ), i = 1, . . . , l subject ro x ∈ X, (14)

where gi(x, z), i = 1, . . . , l are functions defined on Rn ×Rs.
It is known from the multiobjective optimization theory (see e.g. [4]) that the problem (14)

can be in the convex case (under some additional assumptions) solved by one criterion paramet-
ric optimization problem:

Find

inf
x∈X

EF

l∑
i=1

λigi(x, ξ),
l∑

i=1

λi = 1, λi > 0, i = 1, . . . , l. (15)

4.4 Multistage Stochastic Programming Problems

Multistage (generally nonlinear) stochastic problems. It follows, from a recursive definition, that
in the case of autoregressive random sequence or at least Markov sequence, the results achieved
for one–stage problem can be employed for the multistage problems. Namely, the multistage
stochastic programming problem is (according to this approach) introduced as a finite system of
parametric (one–stage) optimization problems with an inner type of dependence (for more details
see e.g. [3] or [11]). The multistage stochastic (generally nonlinear) programming problem is
then introduced in the form:

Find
ϕF (M) = inf {E

F ξ0
g0
F (x0, ξ0)| x0 ∈ K0}, (16)

where the function g0
F (x0, z0) is defined recursively

gkF (x̄k, z̄k) = inf{E
F ξ

k+1|ξ̄k=z̄k g
k+1
F (x̄k+1, ξ̄k+1) |xk+1 ∈ Kk+1(x̄k, z̄k)},

k = 0, 1, . . . ,M − 1

gMF (x̄M , z̄M ) := gM0 (x̄M , z̄M ), K0 := X0.

(17)

ξj := ξj(ω), j = 0, 1, . . . , M denotes an s–dimensional random vector defined on a proba-
bility space (Ω, S, P ); F ξ

j
(zj), zj ∈ Rs, j = 0, 1 . . . , M the distribution function of the

ξj and F ξ
k|ξ̄k−1

(zk|z̄k−1), zk ∈ Rs, z̄k−1 ∈ R(k−1)s, k = 1, . . . , M the conditional distribu-
tion function (ξk conditioned by ξ̄k−1); P

F ξ
j , P

F ξ
k+1|ξ̄k , j = 0, 1, . . . , M, k = 0, 1, . . . , M −

1 the corresponding probability measures. Furthermore, gM0 (x̄M , z̄M ) denotes a continuous
function defined on Rn(M+1) × Rs(M+1); the symbol Kk+1(x̄k, z̄k), k = 0, 1, . . . , M − 1 de-
notes a multifunction mapping Rn(k+1) × Rs(k+1) into the space of subsets of Rn. ξ̄k(:=
ξ̄k(ω)) = [ξ0, . . . , ξk]; z̄k = [z0, . . . , zk], zj ∈ Rs; x̄k = [x0, . . . , xk], xj ∈ Rn. Symbols E

F ξ0
,

E
F ξ

k+1|ξ̄k=z̄k , k = 0, 1, . . . , M−1 denote the operators of mathematical expectation correspond-

ing to F ξ
0
, F ξ

k+1|ξ̄k=z̄k , k = 0, . . . , M − 1.

The problem (16) is a “classical” one–stage, one–objective stochastic problem, the problems
(17) are (generally) parametric one–stage, one–objective stochastic optimization problems.

4.5 Multistage Mlltiobjective Stochastic Programming Problems

Assuming the same inner time dependence as it was assumed in the problem (15) and (16), we
obtain formally the following multistage, multiobjective problem:

Find
ϕiF (M) = inf E

F ξ0
g0, i
F (x0, ξ0), i = 1, . . . , l subject to x0 ∈ K0, (18)
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where the function g0, i
F (x0, z0), i = 1, . . . , l are defined recursively

gk, iF (x̄k, z̄k) = inf E
F ξ

k+1|ξ̄k=z̄k g
k+1, i
F (x̄k+1, ξ̄k+1), i = 1, . . . , l

subject to xk+1 ∈ Kk+1(x̄k, z̄k), k = 0, 1, . . . , M − 1,

gM, i
F (x̄M , z̄M ) :=

M∑
j=0

ḡji (x
j , zj), i = 1, . . . , l, K0 := X0.

(19)

gji (x
j , zj), i = 1, . . . , l, j = 0, 1, . . . , M are real valued functions defined on Rn ×Rs.

The problem (18) is a problem of one–stage multiobjective optimization theory. The problems
(19) are one–stage multiobjective parametric optimization problems. However, it is known that
there doesn’t exist (mostly) an optimal solution simultaneously with respect to all criteria.
Consequently, the optimal solution has to be mostly replaced by a set of efficient points. For
more details and other notions see [13].

5 Conclusion

We have recalled, in section 3, the convergence rate for empirical estimates in the case of the
problem (1). In section 4 we have introduced some special types of problems that are not covered
by the type of the problem (1), however, it follows from the analysis presented in the section 4
that under a little modified assertion can be employed too.
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