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a b s t r a c t

There are proven generalizations of the Hölder’s and Minkowski’s inequalities for the
pseudo-integral. There are considered two cases of the real semiring with pseudo-opera-
tions: one, when pseudo-operations are defined by monotone and continuous function g,
the second semiring ([a,b], sup,�), where � is generated and the third semiring where both
pseudo-operations are idempotent, i.e., � = sup and � = inf.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Pseudo-analysis is a generalization of the classical analysis, where instead of the field of real numbers a semiring is de-
fined on a real interval [a,b] � [�1,1] with pseudo-addition � and with pseudo-multiplication �, see [19–24,32]. Based on
this structure there were developed the concepts of �-measure (pseudo-additive measure), pseudo-integral, pseudo-convo-
lution, pseudo-Laplace transform, etc. The advantages of the pseudo-analysis are that there are covered with one theory, and
so with unified methods, problems (usually nonlinear and under uncertainty) from many different fields (system theory,
optimization, decision making, control theory, differential equations, difference equations, etc.). Pseudo-analysis uses many
mathematical tools from different fields as functional equations, variational calculus, measure theory, functional analysis,
optimization theory, semiring theory, etc.

Similar ideas were developed independently by Maslov and his collaborators in the framework of idempotent analysis
and idempotent mathematics, with important applications [8,9,11]. In particular, idempotent analysis is fundamental for
the theory of weak solutions to Hamilton–Jacobi equations with non-smooth Hamiltonians, see [8,9,11] and also
[22,23,25] (in the framework of pseudo-analysis). In some cases, this theory enables one to obtain exact solutions in the sim-
ilar form as for the linear equations. Some further developments relate more general pseudo-operations with applications to
nonlinear partial differential equations, see [27]. Recently, these applications have become important in the field of image
processing [23,25].

On the other side, more general set functions than pseudo-additive measures, as fuzzy measures and corresponding fuzzy
integrals had been investigated in [6,14,21,28,31,15], as aggregation functions with important applications, e.g., given in
[30,33]. Recently, there were obtained generalizations of the classical integral inequalities for integrals with respect to
non-additive measures [1–4,12,16,17,26,33].

The well-known Hölder’s and Minkowski’s inequality is a part of the classical mathematical analysis, see [29].
. All rights reserved.
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Definition 1. If p and g are positive real number such that 1
p þ 1

q ¼ 1, then we call p and q a pair of conjugate exponents.
Theorem 1. Let p and q be conjugate exponents, 1 < p <1. Let X be a measure space, with measure l. Let f and g be measurable
functions on X, with range in [0,1]. Then

(i) (Hölder’s inequality)
Z
X

fgdl 6
Z

X
f pdl

� �1
p
Z

X
gqdl

� �1
q

ð1Þ
(ii) (Minkowski’s inequality)
Z
X
ðf þ gÞpdl

� �1
p

6

Z
X

f pdl
� �1

p

þ
Z

X
gpdl

� �1
p

ð2Þ
In this paper we shall give generalizations of Hölder’s and Minkowski’s inequality for pseudo-integral. Our paper is orga-
nized as follows. In Section 2 are given some preliminaries on the pseudo-analysis. In Section 3 special kinds of pseudo-inte-
grals are introduced and the generated case is related to the sup-plus case. We prove generalizations of the Hölder,
Minkowski for pseudo-integral in Sections 4 and 5. We note that the third important case � = max and � = min has been
studied in [1,2], where the pseudo-integral in such a case yields the Sugeno integral.

2. Pseudo-integral

Let [a,b] be a closed (in some cases can be considered semiclosed) subinterval of [�1,1]. The full order on [a,b] will be
denoted by �. A binary operation � on [a,b] is pseudo-addition if it is commutative, non-decreasing (with respect to �),
associative and with a zero (neutral) element denoted by 0. Let [a,b]+ = {x j x 2 [a,b],0 � x}. A binary operation � on [a,b] is
pseudo-multiplication if it is commutative, positively non-decreasing, i.e., x � y implies x � z � y � z for all z 2 [a,b]+, associa-
tive and with a unit element 1 2 [a,b], i.e., for each x 2 [a,b], 1 � x = x. We assume also 0 � x = 0 and that� is distributive over
�, i.e.,
x� ðy� zÞ ¼ ðx� yÞ � ðx� zÞ
The structure ([a,b],�,�) is a semiring (see [10,21]). In this paper we will consider only semirings with the following contin-
uous operations (continuity of � can be possibly violated in the cases 0 � a = a � 0 or 0 � b = b � 0, i.e., in points (0,a) and
(a,0), or (0,b) and (b,0)), and where the boundary elements of the interval [a,b] are the neutral elements of the pseudo-
operations:

Case I: The pseudo-addition is idempotent operation and the pseudo-multiplication is not.

(a) x � y = sup(x,y), � is arbitrary not idempotent pseudo-multiplication on the interval [a,b] cancellative on

]a,b[2. We have 0 = a and the idempotent operation supinduces a full order in the following way: x � y if
and only if sup(x,y) = y. Moreover, the pseudo-multiplication � is generated by an increasing bijection
g : [a,b] ? [0,1], x � y = g�1(g(x) � g(y)) (this result follows from [7], see also [5]). Observe that 1 = g�1(1).

(b) x � y = inf(x,y),� is arbitrary not idempotent pseudo-multiplication on the interval [a,b] cancellative on ]a,b[2.
We have 0 = b and the idempotent operation infinduces a full order in the following way: x � y if and only if
inf(x,y) = y. Moreover, the pseudo-multiplication � is generated by a decreasing bijection g : [a,b] ? [0,1],
x � y = g�1(g(x) � g(y)) and 1 = g�1(1).
Case II: The pseudo-operations are defined by a monotone and continuous function g : [a,b] ? [0,1], i.e., pseudo-opera-
tions are given with
x� y ¼ g�1ðgðxÞ þ gðyÞÞ and x� y ¼ g�1ðgðxÞ � gðyÞÞ:

If the zero element for the pseudo-addition is a, we will consider increasing generators. Then g(a) = 0 and g(b) =1. If the zero
element for the pseudo-addition is b, we will consider decreasing generators. Then g(b) = 0 and g(a) =1.
If the generator g is increasing (respectively decreasing), the operation�induces the usual order (respectively opposite to the
usual order) on the interval [a,b] in the following way: x � y if and only if g(x) 6 g(y).

Case III: Both operations are idempotent. We have

(a) x � y = sup(x,y), x � y = inf(x,y), on the interval [a,b]. We have 0 = a and 1 = b. The idempotent operation sup-

induces the usual order (x � y if and only if sup(x,y) = y).
(b) x � y = inf(x,y), x � y = sup(x,y), on the interval [a,b]. We have 0 = b and 1 = a. The idempotent operation inf-

induces an order opposite to the usual order (x � y if and only if inf(x,y) = y).

For x 2 [a,b]+ and p 2 ]0,1[, we will introduce the pseudo-power xðpÞ� as follows: if p = n is a natural number then
xðnÞ� ¼ x� x� � � � � x|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
n

:
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Moreover, xð
1
nÞ
� ¼ supfyjyðnÞ� 6 xg. Then xð

m
nÞ
� ¼ xðrÞ� is well defined for any rational r 2 ]0,1[, independently of representation

r ¼ m
n ¼

m1
n1
;m;n;m1;n1 being positive integers (the result follows from the continuity and monotonicity of �). Due to conti-

nuity of �, if p is not rational, then
xðpÞ� ¼ sup xðrÞ� jr 2�0;p½; r is rational
n o

:

Evidently, if x � y = g�1(g(x) � g(y)), then xðpÞ� ¼ g�1ðgpðxÞÞ. On the other hand, if � is idempotent, then xðpÞ� ¼ x for any
x 2 [a,b] and p 2 ]0,1[.

Let X be a non-empty set. Let A be a r-algebra of subsets of X.

Definition 2. A set function m : A ! ½a; b� is a r-�-measure if there hold

(i) m(£) = 0 (if � is not idempotent)
(ii) mð

S1
i¼1AiÞ ¼a

1
i¼1mðAiÞ holds for any sequence ðAiÞi2N of pairwise disjoint sets from A.

Observe that is the case II, a set function m : A ! ½a; b� is a r-�-measure if and only if g 	m : A ! ½0;1� is a classical mea-
sure, i.e., a r-additive measure.

We suppose that ([a,b],�) and ([a,b],�) are complete lattice ordered semigroups. We suppose that [a,b] is endowed with
a metric d compatible with sup and inf, i.e. lim sup xn = x and lim inf xn = x, imply limn?1d(xn,x) = 0, and which satisfies at
least one of the following conditions:

(a) d(x � y,x0 � y0) 6 d(x,x0) + d(y,y0),
(b) d(x � y,x0 � y0) 6max {d(x,x0),d(y,y0)}.
Both conditions (a) and (b) imply:
d(xn,yn) ? 0) d(xn � z,yn � z) ? 0.
Metric d is also monotonic, i.e.,
x 6 z 6 y) d(x,y) P sup{d(y,z),d(x,z)}.
Let f and h be two functions defined on X and with values in [a,b]. Then for any x 2 X and for any k 2 [a,b] we define

(f � g)(x) = f(x) � g(x), (f � g)(x) = f(x) � g(x), and (k � f)(x) = k � f(x). The characteristic function with values in a semiring
([a,b],�,�) is defined by
vAðxÞ ¼
0; x R A;

1; x 2 A:

�

A step (measurable) function is a mapping e : X ? [a,b] that has the following representation e ¼a

n
i¼1ai � vAi

for
ai 2 [a,b] and sets Ai 2 A are pairwise disjoint if � is nonidempotent.

Let e be a positive real number and B � [a,b]. A subset flei gn2N of set B is a e-net on B if for each x 2 B there exists lei such
that dðlei ; xÞ 6 e. If we, also, have lei � x, then we call flei g a lower e-net. If lei � leiþ1 holds, then flei g is monotone, for more details
see [13,18,21].

Definition 3. Let m : A ! ½a; b� be a r-�-measure.

(i) The pseudo-integral of a step function e : X ? [a,b] m is defined by
Z �

X
e� dm ¼a

n

i¼1
ai �mðAiÞ:
(ii) The pseudo-integral of a measurable function f : X ? [a,b], (if � is not idempotent we suppose that for each e > 0 there
exists a monotone e-net in f(X)) is defined by
Z �

X
f � dm ¼ lim

n!1

Z �

X
enðxÞ � dm;
where ðenÞn2N is a sequence of step functions such that d(en(x), f(x)) ? 0 uniformly as n ?1.

For more details see [9,21,23].

3. Explicit forms of special pseudo-integrals

We shall consider the semiring ([a,b],�,�) for three (with completely different behavior) cases, namely I(a), II and III(a).
Observe that the cases I(b) and III(b) are linked to the cases I(a) and III(a) by duality. First case is when pseudo-operations are
generated by a monotone and continuous function g : [a,b] ? [0,1], case II from Section 2. Then the pseudo-integral for a
measurable function f : X ? [a,b] is given by,
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Z �

X
f � dm ¼ g�1

Z
X
ðg 	 f Þdðg 	mÞ

� �
; ð3Þ
where the integral applied on the right side is the standard Lebesgue integral. In special case, when X ¼ ½c; d�; A ¼ BðXÞ and
m = g�1 	 k, k the standard Lebesgue measure on [c,d], then we use notation
Z �

½c;d�
f ðxÞdx ¼

Z �

X
f � dm:
By (3),
Z �

½c;d�
f ðxÞdx ¼ g�1

Z d

c
gðf ðxÞÞdx

 !
;

i.e., we have recovered the g-integral, see [18,19].
Second case is when the semiring is of the form ([a,b], sup,�), cases I(a) and III(a) from Section 2. We will consider com-

plete sup-measure m only and A ¼ 2X , i.e., for any system (Ai)i2I of measurable sets,
m
[
i2I

Ai

 !
¼ sup

i2I
mðAiÞ:
Recall that if X is countable (especially, if X is finite) then any r-sup-measure m is complete and, moreover,
m(A) = supx2Aw(x), where w : X ? [a,b] is a density function given by w(x) = m({x}). Then the pseudo-integral for a function
f : X ? [a,b] is given by
Z �

X
f � dm ¼ sup

x2X
ðf ðxÞ � wðxÞÞ;
where function w defines sup-measure m.

4. Hölder’s inequality for pseudo-integral

Now we shall give a generalization of the classical Hölder inequality (1).

Theorem 2. Let p and q be conjugate exponents, 1 < p <1. For a given measurable space ðX;AÞ let u,v : X ? [a,b] be two
measurable functions and let a generator g : [a,b] ? [0,1] of the pseudo-addition � and the pseudo-multiplication � be an
increasing function. Then for any r-�-measure m it holds:
Z �

X
ðu� vÞ � dm 6

Z �

X
uðpÞ� � dm

� � 1
pð Þ

�
�

Z �

X
v ðqÞ� � dm

� � 1
qð Þ

�
: ð4Þ
Proof. We apply the classical Hölder’s inequality (1) and then we obtain
Z
X
ðg 	 uÞðg 	 vÞdðg 	mÞ 6

Z
X
ðg 	 uÞpdðg 	mÞ

� �1
p

�
Z

X
ðg 	 vÞqdðg 	mÞ

� �1
q

:

Since function g is increasing function, then g�1 is also increasing function and we have
g�1
Z

X
ðg 	 uÞðg 	 vÞdðg 	mÞ

� �
6 g�1

Z
X
ðg 	 uÞpdðg 	mÞ

� �1
p

�
Z

X
ðg 	 vÞqdðg 	mÞ

� �1
q

 !
:

i.e.,
g�1
Z

X
g g�1ððg 	 uÞðg 	 vÞÞ
� �

ðg 	mÞ
� �

6 g�1 g g�1
Z

X
ðg 	 uÞpdðg 	mÞ

� �1
p

 ! ! 
� g g�1

Z
X
ðg 	 vÞqdðg 	mÞ

� �1
q

 ! !!
:

Hence
Z �

X
ðu� vÞ � dm 6 g�1

Z
X
ðg 	 uÞpdðg 	mÞ

� �1
p

 !
� g�1

Z
X
ðg 	 vÞqdðg 	mÞ

� �1
q

 !
:
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For the right side of the inequality holds:
g�1
Z

X
ðg 	 uÞpdðg 	mÞ

� �1
p

 !
� g�1

Z
X
ðg 	 vÞqdðg 	mÞ

� �1
q

 !

¼ g�1
Z

X
g g�1ððg 	 uÞpÞðg 	mÞ
� �� �1

p
 !

� g�1
Z

X
g g�1ððg 	 vÞqÞ
� �

dðg 	mÞ
� �1

q
 !

¼ g�1
Z

X
g uðpÞ�
� 	

dðg 	mÞ
� �1

p
 !

� g�1
Z

X
g v ðqÞ�
� 	

dðg 	mÞ
� �1

q
 !

¼ g�1 g g�1
Z

X
g uðpÞ�
� 	

dðg 	mÞ
� �� �� �1

p
 !

� g�1 g g�1
Z

X
g v ðqÞ�
� 	

dðg 	mÞ
� �� �� �1

q
 !

¼ g�1 g
Z �

X
uðpÞ� � dm

� �� �1
p

 !
� g�1 g

Z �

X
v ðqÞ� � dm

� �� �1
q

 !
¼

Z �

X
uðpÞ� ðxÞdm

� � 1
pð Þ

�
�

Z �

X
v ðqÞ� ðxÞdm

� � 1
qð Þ

�
;

which completes the proof. h
Example 1

(i) Let [a,b] = [0,1] and g(x) = xa for some a 2 [1,1[. The corresponding pseudo-operations are x� y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xa þ yaa
p

and
x � y = xy. Then (4) reduces on the following inequality
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

½c;d�
uðxÞavðxÞadxa

s
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
½c;d�

uðxÞpadxpa

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
½c;d�

vðxÞqadxqa

s
:

(ii) Let [a,b] = [�1,1] and g(x) = ex. The corresponding pseudo-operations are x � y = ln(ex + ey) and x � y = x + y. Then (4)
reduces on the following inequality
ln
Z
½c;d�

euðxÞþvðxÞdx 6
1
p

ln
Z
½c;d�

epuðxÞdx

 !
þ 1

q
ln

Z
½c;d�

eqvðxÞdx

 !
;

i.e.,
Z
½c;d�

euðxÞþvðxÞdx 6
Z
½c;d�

epuðxÞdx

 !1
p

�
Z
½c;d�

eqvðxÞdx

 !1
q

:

Theorem 3. Let p and q be conjugate exponents, 1 < p <1. For a given measurable space ðX;AÞ let u,v : X ? [a,b] be two mea-
surable functions and let a generator g : [a,b] ? [0,1] of the pseudo-addition � and the pseudo-multiplication � is a decreasing
function. Then for any r-�-measure m it holds:
Z �

X
ðu� vÞ � dm P

Z �

X
uðpÞ� � dm

� � 1
pð Þ

�
�

Z �

X
v ðqÞ� � dm

� � 1
qð Þ

�
:

Proof. In an analogous way as in the proof of Theorem (2) we obtain
g�1
Z

X
ðg 	 uÞðg 	 vÞdðg 	mÞ

� �
P g�1

Z
X
ðg 	 uÞpdðg 	mÞ

� �1
p

�
Z

X
ðg 	 vÞqdðg 	mÞ

� �1
q

 !
:

i.e.,
 Z �

X
ðu� vÞ � dm P

Z �

X
uðpÞ� � dm

� � 1
pð Þ

�
�

Z �

X
v ðqÞ� � dm

� � 1
qð Þ

�
: �
Now we consider the second case, when � = sup, and � = g�1(g(x)g(y)).
Theorem 4. Let � be represented by an increasing generator g and m be a complete sup-measure. Let p and q be conjugate
exponents, 1 < p <1. Then for any functions u,v : X ? [a,b], it holds:
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Z sup

X
ðu� vÞ � dm 6

Z sup

X
uðpÞ� � dm

� � 1
pð Þ

�
�

Z sup

X
v ðqÞ� � dm

� � 1
qð Þ

�
:

Proof. Recall that
Z sup

X
ðu� vÞ � dm ¼ sup

x2X
uðxÞ � vðxÞ � wðxÞð Þ ¼ g�1 sup

x2X
gðuðxÞÞgðvðxÞÞgðwðxÞÞð Þ

� �
;

where w : X ? [a,b] is a density function related to m. Moreover,
Z sup

X
up
� � dm

� � 1
pð Þ

�
¼ g�1 sup

y2X
gpðuðyÞÞgðwðyÞÞð Þ

 !1
p

0
@

1
A ¼ g�1 sup

y2X
gðuðyÞÞg1

pðwðyÞÞ
� 	 !

:

Similarly,
Z sup

X
vq
� � dm

� � 1
qð Þ

�
¼ g�1 sup

z2X
gðvðzÞÞg1

qðwðzÞÞ
� 	� �

:

Consequently,
Z sup

X
up
� � dm

� �1
p

�
�

Z sup

X
vq
� � dm

� �1
q

�
¼ g�1 sup

y2X
gðuðyÞÞg1

pðwðyÞÞ
� 	

� sup
z2X

gðvðzÞÞg1
qðwðzÞÞ

� 	 !

P g�1 sup
x2X

gðuðxÞÞg1
pðwðxÞÞgðvðxÞÞg1

qðwðxÞÞ
� 	� �

¼ g�1 sup
x2X

gðuðxÞÞgðvðxÞÞgðwðxÞÞð Þ
� �

¼
Z sup

X
ðu� vÞ � dm:
Completing the proof. h
Remark 1. In the case III(a), i.e., if � = sup and � = inf, for each x 2 [a,b] and p > 0; xðpÞ� ¼ x: The Hölder inequality in this case
reduces to the inequality
Z sup

X
ðu� vÞ � dm 6

Z sup

X
u� dm

� �
�

Z sup

X
v � dm

� �
;

i.e.,
sup
x2X

infðuðxÞ; vðxÞ;wðxÞÞð Þ 6 inf sup
y2X

infðuðyÞ;wðyÞÞð Þ; sup
z2X

infðvðzÞ;wðzÞÞð Þ
 !

;

which trivially holds because of distributivity of sup and inf.
For a general case I(a) and III(a), i.e., when m is an arbitrary r-sup-measure, suppose that u and v are step function on

ðX;AÞ with values in [a,b]. Then there is a finite partition {E1, . . . ,En} of X so that
u ¼ supi2 1;2;...;nf gui � vEi
; v ¼ supi2 1;2;...;nf gv i � vEi

:

Define a new measurable space (Y,2Y) with Y = {y1, . . . , yn}, yi = Ei, i = 1, . . . ,n, and define mY : 2Y ! ½a; b�; mYðBÞ ¼ mð
S

yi2BEiÞ:
Evidently, mY is a complete sup-measure, and
Z sup

X
u� dm ¼

Z sup

Y
uY � dmY ;
where uY(yi) = ui, i = 1, . . . ,n. Similarly, vY is defined and
Z sup

X
v � dm ¼

Z sup

Y
vY � dmY :
Now, we are ready to prove the Hölder type theorem for general r-sup-measure as a consequence of Theorem (4).
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Corollary 1. Let � be represented by an increasing generator g and m be r-sup-measure. Let p and q be conjugate exponents with
1 < p <1. Then for any measurable functions u,v : X ? [a,b], it holds:
Z sup

X
ðu� vÞ � dm 6

Z sup

X
uðpÞ� � dm

� � 1
pð Þ

�
�

Z sup

X
v ðqÞ� � dm

� � 1
qð Þ

�
: ð5Þ
Proof. Consider the sequences ðenÞn2N and ðfnÞn2N of step function from Definition (3)(ii) such that d(en(x),u(x)) ? 0 and

d(fn(x),v(x)) ? 0 uniformly as n ?1. Then also d((en � fn)(x), (u � v)(x)) ? 0, as well as d ðenÞðpÞ� ðxÞ;u
ðpÞ
� ðxÞ

� 	
! 0 and

d ðfnÞðqÞ� ðxÞ;v
ðqÞ
� ðxÞ

� 	
! 0 uniformly as n ?1. Due to Theorem (4), inequality (5) holds for each pair (en, fn) and thus, due to

Definition (3)(ii), also for desired pair (u,v). h
Example 2. For [a,b] = [�1,1], let g generating � be given by g(x) = ex. Then
x� y ¼ xþ y;
and Hölder type inequality from Theorem (4) reduces on
sup
x2X
ðuðxÞ þ vðxÞ þ wðxÞÞ 6 1

p
sup
x2X
ðp � uðxÞ þ wðxÞÞ þ 1

q
sup
x2X
ðq � vðxÞ þ wðxÞÞ;
where u, v, w are arbitrary real function on X.
5. Minkowski’s inequality for pseudo-integral

Theorem 5. Let u,v : X ? [a,b] be two measurable functions and p 2 [1,1[. If an additive generator g : [a,b] ? [0,1] of the
pseudo-addition � and the pseudo-multiplication � are increasing. Then for any r-�-measure m it holds:
Z �

X
ðu� vÞðpÞ� � dm

� � 1
pð Þ

�
6

Z �

X
uðpÞ� � dm

� � 1
pð Þ

�
�

Z �

X
v ðpÞ� � dm

� � 1
pð Þ

�
:

Proof. We apply the classical Minkowski’s inequality (1) on compositions g 	 u and g 	 v and then we obtain
Z
X
ðg 	 uþ g 	 uÞpdðg 	mÞ

� �1
p

6

Z
X
ðg 	 uÞpdðg 	mÞ

� �1
p

þ
Z

X
ðg 	 vÞpdðg 	mÞ

� �1
p

:

Since function g is increasing function, then g�1 is also increasing function and we have
g�1
Z

X
ðg 	 uþ g 	 uÞpdðg 	mÞ

� �1
p

 !
6 g�1

Z
X
ðg 	 uÞpdðg 	mÞ

� �1
p

þ
Z

X
ðg 	 vÞpdðg 	mÞ

� �1
p

 !
:

Hence
g�1
Z

X
ðg 	 uþ g 	 vÞpdðg 	mÞ

� �1
p

 !
¼ g�1

Z
X

gðg�1ðg 	 uþ g 	 vÞÞ
� �p

dðg 	mÞ
� �1

p
 !

¼ g�1
Z

X
g g�1 gðg�1ðg 	 uþ g 	 vÞÞ

� �p
� 	� 	

dðg 	mÞ
� �1

p
 !

¼ g�1
Z

X
g g�1 ðgðu� vÞÞp

� �� �
dðg 	mÞ

� �1
p

 !

¼ g�1
Z

X
g ðu� vÞðpÞ�
� 	

dðg 	mÞ
� �1

p
 !

¼ g�1 g g�1
Z

X
g ðu� vÞðpÞ�
� 	

dðg 	mÞ
� �� �� �1

p
 !

¼
Z �

X
ðu� vÞðpÞ� � dm

� � 1
pð Þ

�
:
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On the other side, we have
g�1
Z

X
ðg 	 uÞpdðg 	mÞ

� �1
p

þ
Z

X
ðg 	 vÞpdðg 	mÞ

� �1
p

 !
¼ g�1 g g�1

Z
X

g g�1ððg 	 uÞpÞdðg 	mÞ
� �� �1

p
 ! ! 

þ g g�1
Z

X
g g�1ððg 	 vÞpÞ
� �

dðg 	mÞ
� �1

p
 ! !!

¼ g�1
Z

X
g uðpÞ�
� 	

dðg 	mÞ
� �1

p
 !

� g�1
Z

X
g v ðpÞ� ðxÞ
� 	

dðg 	mÞ
� �1

p
 !

¼ g�1 g
Z �

X
uðpÞ� � dm

� �� �1
p

 !
� g�1 g

Z �

X
v ðpÞ� � dm

� �� �1
p

 !

¼
Z �

X
uðpÞ� � dm

� � 1
pð Þ

�
�

Z �

X
v ðqÞ� � dm

� � 1
qð Þ

�
;

which completes the proof. h

In the case of idempotent pseudo-addition � = sup also a version of Minkowski inequality holds. Observe that if � = inf,
then the corresponding inequality means (recall that xðpÞ� ¼ x for each x 2 [a,b], p > 0)
Z �

X
ðu� vÞ � dm 6 sup

Z �

X
u� dm;

Z �

X
v � dm

� �
;

i.e.,
sup
x2X

infðsupðuðxÞ;vðxÞÞ;wðxÞÞ 6 sup sup
y2X
ðinfðuðyÞ;wðyÞÞÞ; sup

z2X
infðvðzÞ;wðzÞÞð Þ

 !
;

which holds due to the distributivity of sup and inf.
Finally, we turn our attention to the case I(a).

Theorem 6. Let � be represented by an increasing generator g, m be a complete sup-measure and p 2 ]0,1[. Then for any
functions u,v : X ? [a,b], it holds:
Z sup

X
ðsupðu;vÞÞðpÞ� � dm

� � 1
pð Þ

�
¼ sup

Z sup

X
uðpÞ� � dm

� � 1
pð Þ

�
;

Z sup

X
v ðpÞ� � dm

� � 1
pð Þ

�

 !
:

Proof. Let w be the density function related to m. As already was shown in proof of Theorem (4),
Z sup

X
up
� � dm

� � 1
pð Þ
¼ g�1 sup

y2X
gðuðyÞÞg1

pðwðyÞÞ
� 	 !

;

and
 Z sup

X
vp
� � dm

� � 1
pð Þ
¼ g�1 sup

z2X
gðvðzÞÞg1

pðwðzÞÞ
� 	� �

:

Therefore
sup
Z sup

X
uðpÞ� � dm

� � 1
pð Þ

�
;

Z sup

X
v ðpÞ� � dm

� � 1
pð Þ

�

 !
¼ g�1 sup sup

y2X
gðuðyÞÞg1

pðwðyÞÞ
� 	

; sup
z2X

gðvðzÞÞg1
pðwðzÞÞ

� 	 ! !

¼ g�1 sup
x2X

g supðuðxÞ;vðxÞÞð Þ � g1
pðwðxÞÞ

� 	� �

¼
Z �

X
ðsupðu;vÞÞðpÞ� � dm

� � 1
pð Þ

�
;

what is the result we have to prove. h
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6. Conclusion

We have proved the Hölder and Minkowski integral type inequality for the pseudo-integral for its characteristic cases.
There are several classical inequalities related to the Lebesgue integral which can be generated for non-linear integrals,
including the pseudo-integrals. Up to the published results mentioned in the introduction, recall, for example, the Markov
inequality
mðf P cÞ 6 1
c

Z
X

fdm;
valid for any integrable non-negative function f and positive constant c. Rewriting the Markov inequality into its equivalent
form
c �mðf P cÞ 6
Z

X
fdm;
we have a straightforward generalization for pseudo-integrals, namely
c �mðf P cÞ 6
Z �

X
f � dm; ð6Þ
whenever c 2 [a,b]+n{0} and f : X ? [a,b]+.
This inequality is trivial if �induced the standard ordering on [a,b], i.e., in cases I(a), III(a) and II with increasing generator

g, due to the non-decreasingness of the corresponding pseudo-integrals, see [18,21], and the fact that the function
fc : X ? [a,b] given by
fcðxÞ ¼
c; if f ðxÞP c;

0; else

�

satisfies fc 6 f, and
Z �

X
f � dm ¼ c �mðf P cÞ:
Moreover, if � is cancellative on ]a,b[ (see cases I(a) and II with g increasing), then (6) generalized into
cðpÞ� �mðf P cÞ 6
Z �

X
f ðpÞ� � dm;
where p is an arbitrary positive constant (recall the case p = 2 for the classical Lebesgue integral, which is a version of Cheby-
shev inequality in statistics).
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