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Image Magnification Using Interval Information
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Humberto Bustince, Member, IEEE

Abstract—In this paper, a simple and effective image-magnifi-
cation algorithm based on intervals is proposed. A low-resolution
image is magnified to form a high-resolution image using a
block-expanding method. Our proposed method associates each
pixel with an interval obtained by a weighted aggregation of the
pixels in its neighborhood. From the interval and with a linear
operator, we obtain the magnified image. Experimental results
show that our algorithm provides a magnified image with better
quality (peak signal-to-noise ratio) than several existing methods.

Index Terms—Image magnification, implication operator, in-
terval, operator.

I. INTRODUCTION

I MAGE-MAGNIFICATION methods attempt to increase
the spatial resolution of an image without introducing a

blur. This process is also known as superresolution [1], [2],
image scaling [3], upsampling [4], zooming [5], and image
enlargement [6] in related literature.
Image magnification is currently a very active area of re-

search as it is used in many applications. For instance, it can
overcome resolution limitations of low-cost imaging systems of
personal digital assistants, mobile phones, or surveillance cam-
eras. It is also considered as key medical- and satellite-imaging
techniques where the diagnosis or analysis in enhanced reso-
lution images is desired. Additionally, there exists a great de-
mand of video sequence enhancement [7] due to the fact that
most web videos are limited by network bandwidth and server
storage; thus, it should be stored in low quality.
Previous works on image magnification can be roughly di-

vided into three categories: 1) reconstruction methods; 2) ap-
proaches based on machine learning techniques; and 3) interpo-
lation methods.
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The reconstruction task is based on prior knowledge about
the model that maps the high-resolution image to the low-res-
olution one. The magnification is then considered as the in-
verse problem: recovering the original high-resolution image by
fusing one or more low-resolution images [8].
In the approaches based on machine learning methods

[9]–[11], a set of examples of low resolution and their ideal
high-resolution patches are organized in a database. The main
idea consists on seeking in the database for similar low-reso-
lution examples, given a patch from the low-resolution input.
Their corresponding high-resolution counterparts can then be
used for the reconstruction.
The most frequently used methods working with a single

image are based on interpolation [12]. Common algorithms,
such as nearest neighbor or bilinear interpolation, are computa-
tionally simple but suffer from smudge problems, particularly in
the edge areas. Directional image interpolations take advantage
of the geometric regularity of image structures by performing
the interpolation in a chosen direction along which the image
is locally regular. Therefore, many adaptive interpolations have
been developed with edge detectors [4]. Nevertheless, linear ap-
proximations are the most used ones since their computational
cost is lower.
Our goal in this paper is to develop a cost-efficient method

to construct, starting from a given image, a new image of larger
size such that each area or block in the new image is obtained
by a weighted aggregation of the intensities of the pixels in the
neighborhood of each pixel in the original image. To reach this
goal, the method that we propose makes use of the notions of
interval and operators [13]. We use intervals because it has
been proven in image processing that they allow keeping infor-
mation about the neighborhood of each pixel [14]. In this way,
we employ that information to get the intensities of the new
pixels in the magnified image. We also use operators be-
cause they allow us to choose, depending on the parameter,
the internal point of the interval that we must select.
To associate an interval to each pixel within the image, we

present a new construction method of intervals from a pixel and
its neighborhood. We are going to understand the length of this
interval as a measure of the variation of intensities in the neigh-
borhood of each pixel.
To see that our method is computationally simple and gets

good results, we compare the images obtained by our algorithm
and the ones obtained by other methods, both classical and more
recent ones.
This paper is organized as follows: First, in Section II, we

recall some preliminary definitions. In Section III, we show
the method to construct intervals. In Section IV, we present
the image-magnification algorithm. We finish with some exper-
imental results in Section V and conclusions in Section VI.
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II. PRELIMINARIES

In this section, we recall the main concepts that are necessary
for subsequent developments. A strictly decreasing and contin-
uous function , such that and

, is called strict negation. If, in addition, is invo-
lutive , then we say that it is a strong
negation. We call automorphism of the unit interval every func-
tion that is continuous, strictly increasing,
and such that and .
Let us denote by the set of all closed subintervals in

[0, 1], that is

and

is a lattice with respect to the relation , which is
defined in the following way, given , , we have

if and only if and

From now on, we denote by the length (width) of the
considered interval; that is, .
Definition 1: Let . The operator
is given by

for all .
Clearly, the following properties hold.
a) for all .
b) for all .
c)

for all .
Notice that operator is a particular case of the Hurwicz

aggregation function [15].

A. Implication Operators

Definition 2: An implication operator is function
that satisfies the following properties

[16].
: implies for all .
: implies for all .
: for all (dominance of falsity).
: for all .
: .

Remark: Properties , , and imply that is an exten-
sion of the standard Boolean implication operators. Indeed, it
holds , and .
We follow the notation presented in [16], where other proper-
ties can be found. In particular, we will use the following ones
throughout this paper.

: (neutrality of truth).
: (exchange property).
: where is a strong negation.
: is a continuous function (continuity).

III. CONSTRUCTION OF INTERVALS OF FIXED LENGTH

In our algorithm, we represent the information of the neigh-
borhood of each pixel by an interval. We use this interval to con-
struct the intensities of the new pixels in the magnified image. In

this section, we propose a construction method of the elements
of from two points in [0, 1], such that the first number
is an internal point of the interval and the second number repre-
sents the length of the interval.
The construction method is described in the following

theorem.
Theorem 1: Let be such that
(F1) for all ;
(F2) is increasing in the first variable;
(F3) is decreasing in the second variable;
(F4) for all .

Then, , , for all
, and mapping

given by

is such that for all , .
Proof: By construction, . From

(F4), for all . By (F2), .
Thus, is well defined.
Due to (F1) and (F3), .

by construction. From (F2),
by (F4). As and ,

by (F3).
In the following lemma, we relate our operator that gen-

erates intervals with implication operators. This result is really
useful because implication operators have been widely studied;
thus, we can use several expressions of implication operators to
create functions.
Lemma 1: Let be such that (F1)–(F4)

hold. Then, mapping

given by

is an implication operator for any strict negation .
Proof: and follow from (F2) and (F3).

. .
from (F4).

In the following theorem, we present a characterization of the
construction method.
Theorem 2: Mapping satisfies properties

(F1)–(F4) if and only if there exists an implication operator sat-
isfying with respect to the standard negation and such that

Proof: (Sufficiency) is decreasing in the first variable
and increasing in the second, from (F2) and (F3).

. .
; thus, .

. (Necessity)
from . (F2) and (F3) from the monotonicity properties of .

from .
Example 1: In this example, we present some expressions of
functions constructed from different implication operators.
a) Consider Kleene–Dienes implication

and standard negation. Then,
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. In this way, the
resulting interval is

(1)

b) Take Reichenbach implication and
standard negation. Then, .
Thus, the resulting interval is

(2)

c) Take Lukasiewicz implication and stan-
dard negation. Then,

. Thus, the resulting interval is

(3)

Remark: From now on, we will use the standard negation as
.
The following theorem is the basis for the image-magnifica-

tion algorithmic construction that we present in Section IV. It is
used to keep the intensity of each pixel from the original image
in the new magnified image.
Theorem 3: In the setting of Theorem 2, the following item

holds:

if and only if

(Reichenbach's implication).

Proof: (Necessity) .
Thus, . (Sufficiency)

.
Theorem 4: If with
for all , , then for all .
Proof: If , then

. , and .
In the next corollary, we build mappings from auto-

morphisms.
Corollary 1: Let be such that (F1)–(F4)

hold. Suppose that the implication operator given by Theorem
2 satisfies , , and . In these conditions, there exists an
automorphism in the unit interval such that

(4)

Proof: Direct from the result,
proved in [16].

Remark: Notice that for (4) to satisfy , it is necessary to
take . Therefore, .
Example 2: If we take , then

(Reichenbach’s implication).

IV. MAGNIFICATION ALGORITHM

We consider image as an matrix. Each coordinate
of the pixels in image is denoted by . The normalized
intensity or normalized gray level of the pixel located at
is represented as , with for each .

Fig. 1. How to select grid . For the magnification of the pixel in dark gray,
all the pixels in (dark and light) gray belong to grid . (a) The case where the
magnification factor is (2 2). (b) The case where the magnification factor is
greater than or equal to (3 3).

Fig. 2. How to select grid for different magnification factors: (a) factor (2
2), (b) factor (3 3), (c) factor (4 4), and (d) factor .

The purpose of our algorithm is, given image of dimension
, to magnify it times; that is, to build a new image

of dimension with , , and
, with and . We denote as a
magnification factor.
To do so, we use two different grids over each pixel in the

original image, in the following way:
1) Grid from which we will calculate an interval of inten-
sities. This block captures the variability of the intensi-
ties in the pixel’s neighborhood. The size of this window is

with , , such that and .
The values of and depend on the magnification factor
(see Fig. 1).

2) Grid whose size is (see Fig. 2). We use this grid
and the interval calculated before to build a new block of
size in the magnified image.

The scheme of our algorithm is illustrated in Fig. 3. The
image on the left is the original one. We assign to the pixel
the expanded block of the same size as (in this example,

; hence, is a 3 3 block). The image on the
right corresponds to the result of the algorithm.
Algorithm 1 presents the method we propose using grids ,
, and . In it, we can see that this method is characterized

by its simplicity from the implementation point of view.
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Fig. 3. Magnified image with .

Algorithm 1

INPUT: original image, magnification factor.

1. Select , .

2. FOR each pixel DO

2.1 Fix a grid of dimension centered at .

2.2 Calculate as the difference between the largest
and the smallest intensities of the pixels in .

2.3 Calculate , where , being
the standard deviation of the intensities of .

2.4 Build the interval using (2).

2.5 Fix a grid of dimension centered at .

2.6 Build a new empty block of size .

2.7 FOR each element of DO

ENDFOR

2.8 Put the block in the magnified image.

ENDFOR

Next, we explain the steps of Algorithm 1 by means of
an example. Given an image in Fig. 4 of dimension 5 5,
we want to build a magnified image of dimension 15 15
magnification factor .

A. Step 1: Select ,

These parameters represent the size of grid . Their values
( for rows and for columns) are selected depending on the
following magnification factor:

if then
else if then
else

Fig. 4. Example: Original image.

Fig. 5. Example: Original image.

which is analogous for and . We just use the set of values
because the greater the size of the grid , the greater

the neighborhood of each pixel that we consider, and we do not
want that remote pixels interfere in the magnification.
In the example, we want to magnify the image by factor (3

3); therefore, .

B. Step 2.1: Fix Grid of Dimension Centered at Each
Pixel

This grid represents the neighborhood that is used to build
the interval. In the example, for pixel (2, 3) (marked in dark gray
in Fig. 5), we fix a grid of dimension around it (in
light gray).
Remark: For pixels in the first or the last row/column, we

choose a grid centered at them, as shown in Fig. 6.

C. Step 2.2: Calculate as the Difference Between the
Largest and the Smallest of the Intensities of the Pixels in

is the maximum length that the interval we are going to
build can have, i.e.,

(5)

In the example, for pixel (2, 3), we calculate as

D. Step 2.3: Calculate

represents the length of the interval that we build. Our
first idea was to use as the length of the interval (instead of

) in our construction. However, that proposal has some
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Fig. 6. Example: Grid for pixels in the first or last row/column. (a) Pixel in the
first column. (b) Pixel in the last column. (c) Pixel in the first row. (d) Pixel in
the last row.

Fig. 7. Problem with the edges in binary images if the amplitude is .

problems, as it is shown in the example in Fig. 7. In the upper
part, it is the numerical calculation and below is its representa-
tion in the image, where 0 means black and 1 means white.
As we can see, the edge in the magnified image is not correct.

To solve this problem, the length of the interval is proportionally
reduced to parameter , and in this way, the jump from white to
black is gradual. To calculate the value, we use the standard
deviation of the intensities in grid . We use the expression

because the maximum standard
deviation in grid is 0.5, and we want the value to vary in [0,
1]. In this sense, if all the pixels in have the same intensity,
the amplitude of the interval is ; nevertheless, when
there is a big difference between the intensities (presence of an
edge), the value of decreases, and therefore, the amplitude also
decreases. Fig. 8 shows the effect of parameter .

Fig. 8. Solution to the problem in Fig. 7 using parameter.

Fig. 9. Original block for pixel (2, 3).

Following the example in Fig. 4, the standard deviation of
grid is 0.0834; thus, .
Then, the length for the interval associated to pixel (2, 3) is

.

E. Step 2.4: Build Interval

We associate to each pixel an interval of length . To do
so, we use the method explained in Section III. In this case, we
take the expression in (2) based on Reichenbach’s implication.
The resulting interval is

In the example, the interval associated to pixel (2, 3) is given by

F. Step 2.5: Fix Grid of Dimension Centered at

In the example, this new block is shown in Fig. 9.

G. Step 2.6: Build a New Empty Block of Size

Following the example, the size of this block is 3 3 (see
Fig. 10).
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Fig. 10. Empty block .

Fig. 11. Expanded block for pixel .

Fig. 12. Numerical expanded block for pixel .

H. Step 2.7: Calculate for Each Pixel

Next, we expand pixel in image over the new block
. In the example, pixel (2, 3) is expanded, as shown in Fig. 11.
To keep the value of the original pixel at the center of the new

block, Theorem 3 states that should be equal to the intensity
of that pixel. In the case of pixel (2, 3), we have

We apply this method to fill in all the other pixels in the block.
In this way, from Proposition 3, we take as for each pixel the
value of that pixel in the grid .
• . Then,

.
• . Then,

.
•
• . Then,

.
In Fig. 12, we show the expanded block for pixel (2, 3) in the

example.
Once each of the pixels has been expanded, we join all the

blocks (Step 2.8) to create the magnified image. This process is
shown in Fig. 3.

V. EXPERIMENTAL RESULTS

To quantitatively estimate the quality of magnification, we
take a set of gray-scale images of size 512 512 and reduce

Fig. 13. Schema to check the algorithm.

Fig. 14. Images used in the different factors experiment. (From left to right)
Ship, Lena, and Peppers.

TABLE I
PSNRS (IN DECIBELS) OVER IMAGES IN FIG. 14. (FROM LEFT TO

RIGHT) IMAGES MAGNIFIED BY FACTORS (1 2),
(2 1), (2 2), (3 3), AND (4 4)

them to several sizes (see Section V-A). Then, we enlarge the
previously reduced images back to 512 512 and compare
them to the images from which we started. Our expectation is
that the enlarged images will be similar to the original ones,
and we can estimate the similarity quantitatively by the peak
signal-to-noise ratio (PSNR).
In Fig. 13, we see a schema of the procedure when we reduce

the image to obtain a 9 smaller one and then enlarge the result
by the magnification factor (3 3).

A. Reduction Algorithm

To reduce the images, we use the algorithm proposed in [17].
Starting from the images of dimension , the scheme of
the algorithm is the following.
1) Divide image in blocks of size . If is not a multiple
of or of , we delete the minimum number of rows/
columns in the boundary of the image until the new size of
the image satisfies the property.

2) Associate each block with an interval in the following way:
The lower bound of the interval is given by the minimum
of the intensities in the block and the upper bound, by the
maximum.

3) Associate each interval with the middle point of the
interval.

We select this reduction algorithm because it takes into
account all the pixels of the block, instead of other reduction
methods such as subsampling (take one of every pixels).



3118 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 11, NOVEMBER 2011

Fig. 15. (a) Reduced image Ship of size 256 256 and its magnification by (b) factor (1 2) of size 256 512, (c) factor (2 1) of size 512 256, and
(d) factor (2 2) of size . (e) Reduced image Ship of size 170 170 and (f) its magnification by factor (3 3) of size 510 510. (g) Reduced image
Ship of size 128 128 and (h) its magnification by factor (4 4) of size 512 512.

Fig. 16. (a) Reduced image Lena of size 256 256 and its magnification by (b) factor (1 2) of size 256 512, (c) factor (2 1) of size 512 256, and
(d) factor (2 2) of size 512 512. (e) Reduced image Lena of size 170 170 and (f) its magnification by factor (3 3) of size 510 510. (g) Reduced image
Lena of size 128 128 and (h) its magnification by factor (4 4) of size 512 512.



JURIO et al.: IMAGE MAGNIFICATION USING INTERVAL INFORMATION 3119

Fig. 17. (a) Reduced image Peppers of size 256 256 and its magnification by (b) factor (1 2) of size 256 512, (c) factor (2 1) of size 512 256 and
(d) factor (2 2) of size 512 512. (e) Reduced image Peppers of size 170 170 and (f) its magnification by factor (3 3) of size 510 510. (g) Reduced
image Peppers of size 128 128 and (h) its magnification by factor (4 4) of size 512 512.

TABLE II
PSNRS (IN DECIBELS) OVER IMAGES SHIP, LENA, AND PEPPERS AND THE AVERAGE PSNR

OVER 96 IMAGES, WHEN THE MAGNIFICATION FACTOR IS (2 2)

TABLE III
PSNRS (IN DECIBELS) OVER IMAGES SHIP, LENA, AND PEPPERS AND THE AVERAGE PSNR

OVER 96 IMAGES, WHEN THE MAGNIFICATION FACTOR IS (3 3)

TABLE IV
AVERAGE TIME (IN SECONDS) FOR THE MAGNIFICATION OF ONE IMAGE FOR MAGNIFICATION FACTORS (2 2) AND (3 3)
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Fig. 18. Cropped images from Ship, Lena, and Peppers. (From top to bottom and from left to right) High-resolution image, magnification by a factor of 2 with
nearest neighbor, bilinear, bicubic, and splines interpolations; SME; KR; and Algorithm 1.

B. Results Obtained for Different Magnification Factors in
Algorithm 1

In this experiment, we compare different solutions ob-
tained when the magnification factor in Algorithm 1 varies.
We take three images from the database [18] (see Fig. 14).
In Figs. 15 –17, we show the magnified images using the
magnification factors (1 2), (2 1), (2 2), (3 3),
and (4 4), as well as the reduced images from which we
start in each case.

In Table I, we present the PSNR obtained by each one of the
images. From this table, we see that the obtained results are
very good. Evidently, as it happens with all the magnification
methods, when the magnification factor is increased, the result
loses quality.

C. Comparison With Other Methods

In this section, we compare our image-magnification algo-
rithm with other methods that can be found in the literature.
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Fig. 19. Cropped images from Ship, Lena, and Peppers. (From top to bottom and from left to right) High-resolution image, magnification by a factor of 3 with
nearest neighbor, bilinear, bicubic, and splines interpolations; KR; and Algorithm 1.

Specifically, we use four classic interpolations [12]: 1) nearest
neighbor; 2) bilinear; 3) bicubic; and 4) splines interpolations,
as well as three recent superresolution algorithms: 1) sparse
mixing estimation (SME) [8]; 2) kernel regression (KR) [19];
and 3) sparse representation (SP) [11]. All experiments are per-
formed with softwares provided by the authors (SME, KR, and
SP) and MATLAB implementation of different interpolations.1

1This paper has supplementary downloadable material available at http://iee-
explore.ieee.org, provided by the authors. This includes the MATLAB imple-
mentation of Algorithm 1, three example images, and a read-me file. This ma-
terial is 104 kB in size.

In the experiment, we work with 96 images from the database
given in [18]. The original dimension of all the images is 512
512. We reduce them with the reduction algorithm, as explained
in Section V-A, to dimensions 256 256 (using block size 2
2) and 170 170 (using block size 3 3). We magnify them
with the seven mentioned methods, as well as our method. We
calculate the similarity between each of the resulting images and
the original images by means of PSNR.
Next, we show the different magnifications of the cropped

images Ship, Lena, and Peppers. In Fig. 18, the starting point is
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a reduced image of dimension 256 256, and the magnification
process has a factor of (2 2). In Fig. 19, the starting point is
a reduced image of dimension 170 170, and the magnifica-
tion factor is 3 3. In this case, we do not show the SME and
SP algorithms because these methods can magnify images by a
factor of (2 2).
We visually check that the SME, KR, and SP methods get

the results with less jaggy artifacts. However, if we study the
PSNR obtained by each method, we check that the quality of
images magnified with Algorithm 1 is better than the quality
obtained by the rest of the implemented methods, except with
the SP method (see Tables II and III). This happens with the
three shown images and with the average of the 96 images of
the experiment. In this way, we argue that our proposal works
very well, and therefore achieves very good results, in all the
nonedge areas, i.e., areas where the changes of intensities are
not very big.
We have already said that simplicity is one of the strongest

points of Algorithm 1. This fact has an effect on the execution
time of the algorithm. All the experimentation in this paper have
been executed with a processor Intel Core 2 Duo 6750 at 2.66
GHz with 3 GB of random access memory. The software for
the SME and KR methods has been provided by their authors,
and the interpolation methods have been implemented by the
function interp2 of MATLAB, over the version MATLAB 7.8.0
(R2009a). In Table IV, the mean time for the magnification of
one image with each one of the implemented methods (for mag-
nification factors 2 2 and 3 3) is shown. In this sense, the
fastest algorithms are the four classic interpolations, whose time
is always smaller than 0.3 s. However, comparing with the more
recent methods, Algorithm 1 is between 11 and 23 times faster
than KR, 208 times faster than SME, and 427 times faster than
SP.

VI. CONCLUSION AND FUTURE RESEARCH

In this paper, we have presented an image-magnification al-
gorithm that uses intervals and operators. In this method, a
new block is constructed for every pixel of the image, and the
central pixel of that block maintains the intensity of the original
pixel. To fill in the rest of the pixels, we use the relation between
the pixel in the original image and its neighbors.
In this sense, the algorithm shows that intervals are a good

representation of the effect of the neighborhood over an ele-
ment. Due to this, our algorithm provides better results than
some of the most commonly used methods as we have con-
firmed with the PSNR values of the experiments. We have also
proven the computational simplicity of our algorithm.
From the results we have obtained, we plan as future research

the study of new methods to calculate the parameter and the
use of filters to improve our results in edge zones.

ACKNOWLEDGMENT

The authors would like to thank the editor and the anony-
mous reviewers for their valuable suggestions that have greatly
improved this paper.

REFERENCES

[1] S. Park, M. Park, and M. Kang, “Super-resolution image reconstruc-
tion: A technical overview,” IEEE Signal Process. Mag., vol. 20, no.
3, pp. 21–36, May 2003.

[2] K. I. Kim and Y. Kwon, “Single-image super-resolution using sparse
regression and natural image prior,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 32, no. 6, pp. 1127–1133, Jun. 2010.

[3] C. Kim, S. Seong, J. Lee, and L. Kim, “Winscale: An image-scaling
algorithm using an area pixel model,” IEEE Trans. Circuits Syst. Video
Technol., vol. 13, no. 6, pp. 549–553, Jun. 2003.

[4] Y. J. Lee and J. Yoon, “Nonlinear image upsampling method based on
radial basis function interpolation,” IEEE Trans. Image Process., vol.
19, no. 10, pp. 2682–2692, Oct. 2010.

[5] C. Arcelli, N. Brancati, M. Frucci, G. Ramella, and G. S. di Baja, “A
fully automatic one-scan adaptive zooming algorithm for color im-
ages,” Signal Process., vol. 91, no. 1, pp. 61–71, Jan. 2011.

[6] M. Unser, A. Aldroubi, and M. Eden, “Enlargement or reduction of
digital images with minimum loss of information,” IEEE Trans. Image
Process., vol. 4, no. 3, pp. 247–258, Mar. 1995.

[7] Z. Xiong, X. Sun, and F. Wu, “Robust web image/video super-resolu-
tion,” IEEE Trans. Image Process., vol. 19, no. 8, pp. 2017–2028, Aug.
2010.

[8] S. Mallat and G. Yu, “Super-resolution with sparse mixing estimators,”
IEEE Trans. Image Process., vol. 19, no. 11, pp. 2889–2900, Nov.
2010.

[9] P. P. Gajjar and M. V. Joshi, “New learning based super-resolution:
Use of DWT and IGMRF prior,” IEEE Trans. Image Process., vol. 19,
no. 5, pp. 1201–1213, May 2010.

[10] K. S. Ni and T. Q. Nguyen, “Image superresolution using support
vector regression,” IEEE Trans. Image Process., vol. 16, no. 6, pp.
1596–1610, Jun. 2007.

[11] J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution
Via sparse representation,” IEEE Trans. Image Process., vol. 19, no.
11, pp. 2861–2873, Nov. 2010.

[12] A. Amanatiadis and I. Andreadis, “A survey on evaluation methods
for image interpolation,” Meas. Sci. Technol., vol. 20, no. 10, pp.
104 015–104 023, Oct. 2009.

[13] H. Bustince, T. Calvo, B. De Baets, J. Fodor, R. Mesiar, J. Montero, D.
Paternain, and A. Pradera, “A class of aggregation functions encom-
passing two-dimensional OWA operators,” Inf. Sci., vol. 180, no. 10,
Sp. Iss. SI, pp. 1977–1989, May 15, 2010.

[14] H. Bustince, E. Barrenechea, J. Fernandez, M. Pagola, J. Montero, and
C. Guerra, “Contrast of a fuzzy relation,” Inf. Sci., vol. 180, no. 8, pp.
1326–1344, Apr. 15, 2010.

[15] L. Hurwicz, Optimality Criteria for Decision Making Under Ignorance
Cowles Communication Discussion Paper, Statistics No. 370, 1951.

[16] H. Bustince, P. Burillo, and F. Soria, “Automorphisms, negations and
implication operators,” Fuzzy Sets Syst., vol. 134, no. 2, pp. 209–229,
Mar. 1, 2003.

[17] H. Bustince, D. Paternain, B. De Baets, T. Calvo, J. Fodor, R. Mesiar,
J. Montero, and A. Pradera, “Two methods for image compression/re-
construction using OWA operators,” inRecent Developments in the Or-
dered Weighted Averaging Operators: Theory and Practice. Berlin,
Germany: Springer-Verlag, 2010.

[18] [Online]. Available: http://decsai.ugr.es/cvg/dbimagenes/g512.php
[19] H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression for image

processing and reconstruction,” IEEE Trans. Image Process., vol. 16,
no. 2, pp. 349–366, Feb. 2007.

Aranzazu Jurio received the M.Sc. degree in com-
puter sciences in 2008 from the Public University
of Navarra, Pamplona, Spain, where she is currently
working toward the Ph.D. degree and holds a re-
search position in the Department of Automatics and
Computation.
Her research interests are image processing,

focusing on magnification and segmentation, and
applications of fuzzy sets and their extensions.



JURIO et al.: IMAGE MAGNIFICATION USING INTERVAL INFORMATION 3123

Miguel Pagola received the M.Sc. degree in in-
dustrial engineering from the Public University of
Navarra, Pamplona, Spain, in 2000.
He is an Associate Lecturer with the Department

of Automatics and Computation, Public University
of Navarra. He is the author of over 14 published
original articles and involved in teaching artificial in-
telligence to students of computer science. His re-
search interests include fuzzy techniques for image
processing, fuzzy set theory, medical image segmen-
tation, and medical data mining.

Radko Mesiar received the Ph.D. degree from
Comenius University, Bratislava, Slovakia, in 1979
and the D.Sc. degree from Czech Academy of
Sciences, Prague, Czech Republic, in 1996.
He is currently the Head of the Department of

Mathematics, Faculty of Civil Engineering, Slovak
University of Technology, Bratislava, Slovakia.
He has been a Fellow Member of the Institute of
Information Theory and Automation, Academy of
Sciences of the Czech Republic, Prague, Czech
Republic, since 1995 and the Institute for Research

and Application of Fuzzy Modeling, University of Ostrava, Ostrava, Czech
Republic, since 2006. He is the author of more than 200 papers in Web of
Science and the coauthor of two scientific monographs and five edited volumes.
His research interests include the area of uncertainty modeling, fuzzy logic and
several types of aggregation techniques, nonadditive measures, and integral
theory.
Dr. Mesiar is the founder and organizer of the Conferences of Fuzzy Set

Theory and Applications and Aggregation Operators.

Gleb Beliakov (SM’08) received the Ph.D. degree in
physics and mathematics from the Russian Peoples
Friendship University, Moscow, Russia, in 1992.
He was a Lecturer and a Research Fellow with Los

Andes University, Bogota, Colombia; the University
of Melbourne, Victoria, Australia; and the University
of South Australia, Adelaide, Australia. He is cur-
rently an Associate Professor with the School of In-
formation Technology, Deakin University, Burwood,
Australia. He is the author of a hundred research pa-
pers in the areas below and a number of software

packages. His research interests are fuzzy systems, aggregation operators, mul-
tivariate approximation, global optimization, decision support systems, and ap-
plications of fuzzy systems in health care.

Humberto Bustince (M’06) received the Ph.D. de-
gree in mathematics from the Public University of
Navarra, Pamplona, Spain, from 1994.
He is a Full Professor with the Department of

Automatics and Computation, Public University of
Navarra. He is the author of more than 80 papers in
Web of Science. His research interests are fuzzy logic
theory, extensions of fuzzy sets (type-2 fuzzy sets,
interval-valued fuzzy sets, Atanassov’s intuitionistic
fuzzy sets), fuzzy measures, aggregation operators,
and fuzzy techniques for image processing.


