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Abstract—In this work we propose an image reduction
algorithm based on weak local reduction operators. We use
several averaging functions to build these operators and we
analyze their properties. We present experimental results where
we apply the algorithm and weak local reduction operators in
procedures of reduction, and later, reconstruction of images.
We analyze these results over natural images and noisy images.

I. INTRODUCTION

Image reduction consists in diminishing the resolution or

dimension of the image while keeping as much information

as possible. Image reduction can be used to accelerate

computations on an image ([13], [8]), or just to reduce its

storage cost ([10]).

In the literature there exist many methods for image

reduction. We can divide these methods in two groups. In the

first group, the image is separated in blocks. Then each block

is treated in an independent way. The reduced image is made

by composition of the results of the algorithm in each block

([7], [9]). For the second group, on the contrary, the image

is considered in a global way ([10]). For this work we focus

on the first group of algorithms. Working with small pieces

of the image allows to design simple reduction algorithms.

Besides, as the algorithm act locally on the image, we can

develop reduction algorithms with better features as keeeping

some properties of the image (i.e. edges) or reducing some

type of noise.

The problem we consider is the following: To build an

image reduction algorithm such that, for each block in the

image, we obtain a single value that represents all the

elements in that block, and hence, such that we keep as much

information as possible.

We propose the concept of weak local reduction operator

that takes a block of the image and returns a single point

satisfying certain conditions. We are going to use averaging

functions for building weak local reduction operators, since

these particular aggregation functions have been widely

studied ([1], [4], [6]). Moreover, we are going to analyze the

properties of these averaging functions and how they affect

to image reduction.
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There is no exact way of determining the best reduction

method. It depends on a particular application we are consid-

ering. In this work, to decide whether one reduction is better

than another, we reconstruct the original image from the

reduction using the bilinear interpolation of MATLAB. We

chose this reconstruction method since we also implement

our methods with MATLAB. We analyze how weak local

reduction operators operate in the reduction of images with

different types of noise.

The remainder of the work is organized as follows. In

Section 2 we briefly introduce some theoretical concepts. In

Section 3 we present the definition of weak local reduction

operators. In Section 4 we present our image reduction algo-

rithm. In Section 5 we build weak local reduction operators.

Finally, we show some experimental results, as well as some

brief conclusions and future lines of research.

II. PRELIMINARIES

We start by recalling some concepts that will be used along

this work.

Definition 1: An aggregation function of dimension n

(n-ary aggregation function) is a non-decreasing mapping

M : [0, 1]n → [0, 1] such that M(0, . . . , 0) = 0 and

M(1, . . . , 1) = 1.
Definition 2: Let M : [0, 1]n → [0, 1] be a n-ary aggre-

gation function.

(i) M is said to be idempotent if M(x, . . . , x) = x for any

x ∈ [0, 1].
(ii) M is said to be homogeneous if M(λx1, . . . , λxn) =

λM(x1, . . . , xn) for any λ ∈ [0, 1] and for any

(x1, . . . , xn) ∈ [0, 1]n.
(iii) M is said to be shift-invariant if M(x1 + r, . . . , xn +

r) = M(x1, . . . , xn) + r for all r > 0 such that 0 ≤
xi + r ≤ 1 for any i = 1, . . . , n.

A complete characterization for shift-invariance and homo-

geneity of aggregation functions can be found in [11], [12].

We know that a triangular norm (t-norm for short)

T : [0, 1]2 → [0, 1] is an associative, commutative,

non-decreasing function such that T (1, x) = x for all

x ∈ [0, 1]. A basic t-norm is the minimum (TM (x, y) =
∧(x, y)). Analogously, a triangular conorm (t-conorm for

short) S : [0, 1]2 → [0, 1] is an associative, commutative, non-
decreasing function such that S(0, x) = x for all x ∈ [0, 1].
A basic t-conorm is the maximum (SM (x, y) = ∨(x, y)).

III. LOCAL REDUCTION OPERATORS

In this work, we consider an image of n×m pixels as a

set of n×m elements arranged in rows and columns. Hence

we consider an image as a n ×m matrix. Each element of

the matrix has a value in [0, 1] that will be calculated by
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normalizing the intensity of the corresponding pixel in the

image. We use the following notation.

• Mn×m is the set of all matrices of dimension n ×m

over [0, 1].
• Each element of a matrix A ∈ Mn×m is denoted by

aij with i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}.
• Let A,B ∈ Mn×m. We say that A ≤ B if for all

i ∈ {0, . . . , n}, j ∈ {0, . . . ,m} the inequality aij ≤ bij

holds.

• Let A ∈ Mn×m and c ∈ [0, 1]. A = c denotes that

aij = c for all i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}. In this

case, we will say that A is constant matrix or a flat

image.

Our objective is to reduce images acting on blocks of the

image. We propose the definition of weak local reduction

operators as operators that take a block of the image and

return a single value. We impose two properties that, in

our opinion, the operators must fulfill: monotonicity and

idempotence.

Definition 3: A weak local reduction operator WORL is

a mapping WORL : Mn×m → [0, 1] that satisfies

• (WORL1) For all A,B ∈ Mn×m, if A ≤ B, then

WORL(A) ≤WORL(B).
• (WORL2) If A = c then WORL(A) = c.

Remark: We call our operators weak local reduction oper-

ators since we demand the minimum number of properties

that, in our opinion, a local reduction operator must fulfill.

Definition 4: We say that a weak reduction operator

WORL is:

• (WORL3) homogeneous if WORL(λA) = λ ·
WORL(A) for all A ∈Mn×m and λ ∈ [0, 1]

• (WORL4) stable under translation (shift-invariant) if

WORL(A + r) = WORL(A) + r for all A ∈ Mn×m

and r ∈ [0, 1] such that 0 ≤ aij + r ≤ 1 whenever

i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}

IV. IMAGE REDUCTION ALGORITHM

Given an image A ∈ Mn×m and a reduction block

size n′ × m′ (with n′ ≤ n and m′ ≤ m), we propose the

following algorithm:

(1) Choose a weak local reduction operator.

(2) Divide the image A into disjoint blocks of dimension

n′ ×m′.

If n is not a multiple of n′ or m is not a multiple of

m′ we suppress the smallest number of rows and/or

columns in A that ensures that these conditions hold.

(3) Apply the weak local reduction operator to each block.

V. CONSTRUCTION OF WEAK LOCAL REDUCTION

OPERATORS FROM AVERAGING FUNCTIONS

In this section we study construction methods of weak

local reduction operators using averaging functions. We also

study the properties of some families of averaging functions.

Proposition 1: Let M be an idempotent aggregation func-

tion. The operator defined by

WORL(A) = M(a11, a12, . . . , a1m, . . . , an1, . . . , anm)

for all A ∈Mn×m is a weak local reduction operator.

Example 1: a) Take M = TM . In Figure 1 we apply the

weak local reduction operator obtained from TM to the

image (a) and we obtain image (a1).

b) Take M = SM . In the same figure, we apply the weak

local reduction operator obtained from SM to image (a)

and we obtain image (a2).

(a)

(a1)

(a2)

Fig. 1. Reduction of Cameraman using minimum and maximum and block
size of 2× 2

In images (a) and (b) of Figure 2 we add some salt and

pepper noise to the original Cameraman image. Image (a) has

noise level of 0.05 (i.e., around 5% of pixels are affected by

noise). Image (b) has noise level of 0.1. Applying the same

procedure than in the previous figure:

a) We apply the weak local reduction operator obtained

from TM to the images (a) and (b) and we obtain images

(a1) and (b1).

b) We apply the weak local reduction operator obtained

from SM to images (a) and (b) and we obtain images

(a2) and (b2).

Observe that these two operators minimum and maximum

are not good local reduction operators. If we take the

minimum over a block with noise we always obtain the value

0. Analogously, if we consider the maximum and apply it to

a block with noise, we always recover the value 1. In this

way we lose all information about the elements in the block



(a) (b)

(a1) (b1)

(a2) (b2)

Fig. 2. Reduction of Cameraman with noise using minimum and maximum
and block size 2× 2

that have not been affected by noise. This behavior can be

seen in Figure 2. Moreover, The greater the level of the noise

is, the worse the quality of the reduced image. This fact leads

us to study other aggregation functions.

Proposition 2: The following items hold:

(1) WORL(A) = TM (a11, a12, . . . , a1m, . . . , an1, ..., anm)
is a weak local reduction operator that verifies

(WORL3) and (WORL4).
(2) WORL(A) = SM (a11, a12, . . . , a1m, . . . , an1, ..., anm)

is a weak local reduction operator that verifies

(WORL3) and (WORL4).
Proof: It follows from the fact that both weak local reduc-

tions operators constructed from minimum and maximum

satisfies (WORL3) and (WORL4).

A. Weighted quasi arithmetic means

Definition 5: Let g : [0, 1] → [−∞,∞] be a continuous

and strictly monotone function and w = (w1, . . . , wn) a

weighting vector such that
∑n

i=1 wi = 1. A weighted quasi-

arithmetic mean is a mapping Mg : [0, 1]n → [0, 1] defined
as

Mg(x1, . . . , xn) = g−1

(

n
∑

i=1

wig(xi)

)

Proposition 3: Let Mg : [0, 1]n·m → [0, 1] be a weighted
quasi-arithmetic mean. The operator defined as

WORL(A) = g−1





n
∑

i=1

m
∑

j=1

wijg(aij)





for all A ∈Mn×m is a weak local reduction operator.

Notice that from Definition 5 we can generate well-

known aggregation functions as, for instance, the weighted

arithmetic mean (g(x) = x) and the weighted harmonic mean

(g(x) = x−1).

In Figure 3 we apply the following weak local reduction

operators:

a) We apply the weak local reduction operator constructed

from arithmetic mean to image (a) and we obtain image

(a1).

b) We apply the weak local reduction operator constructed

from harmonic mean to image (a) and we obtain image

(a2).

In Figure 4 we have added some salt and pepper noise to

the House image. In image (a) we have added noise with a

level of 0.05, whereas in image (b), noise with a level of 0.1.

Following the same procedure:

a) We apply the weak local reduction operator constructed

from arithmetic mean to image (a) and we obtain images

(a1) and (b1).

b) We apply the weak local reduction operator constructed

from harmonic mean to image (a) and we obtain images

(a2) and (b2).

Notice that the two operators do not react in the same to

this kind of noise. If we take the arithmetic mean, the image

that we obtain is less affected than if we use the harmonic

mean. This is due to the fact that if we apply the harmonic

mean over a block with noise, we always get the value 0.

(a)

(a1)

(a2)

Fig. 3. Reduction of House using arithmetic mean and harmonic mean and
block size of 2× 2



(a) (b)

(a1) (b1)

(a2) (b2)

Fig. 4. Reduction of House with noise using arithmetic mean and harmonic
mean and block size of 2× 2

These results have led us to study properties (WORL3)
and (WORL4) in weak local reduction operators built from
weighted quasi-arithmetic means.

Proposition 4: A weak local reduction operator built from

a weighted quasi-arithmetic with wij = 1
n·m

satisfies

(WORL3) if and only if

WORL(A) =





n
∏

i=1

m
∏

j=1

aij





1

n·m

or

WORL(A) =





n
∑

i=1

m
∑

j=1

aα
ij

n ·m





1

α

with α 6= 0

for all A ∈Mn×m.

Proof: See page 118 of [6].

In Figure 5 we illustrate property (WORL3). Image (a)

is Peppers image with random noise (white pixels). Image

(b) has been obtained multiplying the intensity of each of

the pixels of (a) by λ = 0.5. That is,

(b) = 0.5 · (a).

Under these conditions, we consider the following weak local

reduction operators.

• the harmonic mean in the second row.

• the following quasi arithmetic mean

Mg(x1, . . . , xn) =















n
√
∏

n
i=1

xi

n
√
∏

n
i=1

xi+
n
√
∏

n
i=1

(1−xi)

if {0, 1} 6⊆ {x1, . . . , xn}
0 otherwise

in the third row

We see that

(b1) = 0.5 · (a1),

so they keep the same proportion as images (a) and (b).

However, it is visually clear that

(b2) 6= 0.5 · (a2).

This is due to the fact that the second aggregation function

that we have used does not satisfy (WORL3).

(a) (b)

(a1) (b1)

(a2) (b2)

Fig. 5. Test of property (WORL3) of weak local reduction operators

Proposition 5: A weak local reduction operator built from

a weighted quasi-arithmetic mean with wij = 1
n·m

satisfies

(WORL4) if and only if

WORL(A) =
1

n ·m

n
∑

i=1

m
∑

j=1

aij or

WORL(A) =
1

α
log





n
∑

i=1

m
∑

j=1

eαaij

n ·m



 with α 6= 0

for all A ∈Mn×m

Proof: See page 118 in [6].

In Figure 6 we illustrate property (WORL4). The nor-

malized intensity of the pixels in image (a) vary from 0 to

0.5. Image (b) corresponds to add r = 0.5 to each of the

intensities of the pixels in image (a). That is,

(b) = (a) + 0.5.

We apply the following weak local reduction operators:

• the arithmetic mean in the second row



• the harmonic mean in the third row.

Observe that

(b1) = (a1) + 0.5.

However, it is visually clear that

(b2) 6= (a2) + 0.5.

This is due to the fact that the arithmetic mean satisfies

(WORL4) whereas the harmonic mean does not.

(a) (b)

(a1) (b1)

(a2) (b2)

Fig. 6. Test of property (WORL4) of weak local reduction operators

B. Median

Proposition 6: The operator defined as

WORL(A) = Med(a11, . . . , a1m, . . . , an1, . . . , anm)

for all A ∈ Mn×m, where Med denotes the median, is

a weak local reduction operator verifying (WORL3) and

(WORL4).
Proof: It is straightforward.

In Figure 7 we show the original Lena image (image (a)).

We take as weak local reduction operator the one defined

from the median and obtain image (a1).

In Figure 8 we add salt and pepper noise to Lena image

with a level of 0.05 to get image (a) and with a level of 0.1

to get image (b). We apply the same weak local reduction

operator constructed from the median and obtain (a1) and

(b1). Observe that for this kind of reduction operators, noise

does not have as much influence as for others. The reason

is that the median is not sensitive to the magnitufe of the

extreme values.

Remark: Observe that we can build weak local reduction

operators based on Choquet integrals. In particular, if we

impose symmetry, we get OWA operators and the median as

prominent cases.

(a)

(a1)

Fig. 7. Reduction of image Lena using the median operator with block
sizes of 2× 2.

(a) (b)

(a1) (b1)

Fig. 8. Reduction of image Lena with noise using the median operator
with block sizes of 2× 2.

VI. EXPERIMENTAL RESULTS

To settle which the best reduction is, we are going to

reconstruct the reduced images in order to make a compar-

ison with the original one. As we have already said in the

Introduction, there is no single method of determining which

the best reduction is. In this work, we have reconstructed the

reduced images using the bilinear interpolation provided by

MATLAB.

There exist many methods to calculate the similarity

between the original image and the reconstructed one. In fact,

we know that there is a relation between the different types



of errors (absolute mean error, quadratic mean error, etc.) and

the aggregation function to be considered in each case ([4]).

We will study in the future the relationship between the error

measure and the aggregation function in image comparison.

On the other hand, we can consider an image as a fuzzy

set ([3]). For this reason, we are going to use fuzzy image

comparison indexes. In [2] an in depth study of such indexes

is carried out. In our work we are going to consider the

Similarity measure based on contrast de-enhancement. This

index has been used, for instance, in [5] and it satisfies the six

properties demanded in [2] to similarity indexes: reflexivity,

simmetry, reaction to binary images, the comparison between

two images must be the same as the comparison between

their negatives, the comparison between an image and its

negative indicate how far away from binarity the image is

and reaction to the noise. With the notations we are using,

given A,B ∈Mn×m, this index is given by:

S(A,B) =
1

n ·m

n
∑

i=1

m
∑

j=1

1− |aij − bij |.

In these experiments, we are going to use weak local reduc-

tion operators based on five averaging functions: minimum,

harmonic mean, arithmetic mean, median and maximum. We

are going to reduce and reconstruct the images in Figure 9.

Observe that we take reduction blocks of size 2 × 2. If the
original images are of dimension 256 × 256, the reduced

dimensions are 128× 128.
In Table I we show the result of the comparison by means

of the S index between the original images in Figure 9 and

the reconstructed ones.

Observe that, in general, we obtain very good results. On

average, the best result for the four images is obtained with

the median. Results are very similar if we take the arithmetic

mean or the harmonic mean. Results are worse if we take

minimum or maximum. This is due to the fact that with these

two operators we only take into account a single value for

each block, which needs not to be representative of the rest

of values in that block.

TABLE I

COMPARISON BETWEEN RECONSTRUCTED AND ORIGINAL IMAGES

Av. Fun. Image (a) Image (b) Image (c) Image (d)

Minimum 0, 9617 0, 9595 0, 9448 0, 97
Harm. Mean 0, 9733 0, 9713 0, 9606 0, 9789
Arith. Mean 0, 9733 0, 9713 0, 9607 0, 9775
Median 0, 9741 0, 9719 0, 9611 0, 9778
Maximum 0, 9629 0, 96 0, 9448 0, 9666

To analyze the reaction to noise of weak local reduction

operators, we have added salt and pepper noise to original

images with level of 0.05, and we have obtained the images

in Figure 10. In Table II we show the comparison between the

reconstructions and the original images. In these conditions,

the best result is also obtained using the median as weak

local reduction operator. This is due to the fact that the value

provided by the median is not affected by salt and pepper

noise. Moreover, we observe that the operators given by the

minimum, the harmonic mean and the maximum are very

sensitive to this noise. For the first two ones, a single pixel

of 0 intensity determines that the value for the corresponding
block is also 0. For the maximum, if there is a pixel with

intensity equal to 1, then the result is also equal to 1.

TABLE II

COMPARISON BETWEEN RECONSTRUCTED AND ORIGINAL IMAGES WITH

NOISE (P=0.05)

Av. Fun. Image (a) Image (b) Image (c) Image (d)

Minimum 0, 9001 0, 9168 0, 9091 0, 9332
Harm. Mean 0, 9125 0, 9286 0, 9254 0, 9409
Arith. Mean 0, 958 0, 9576 0, 9492 0, 9634
Median 0, 9724 0, 9701 0, 9596 0, 9756
Maximum 0, 9393 0, 9174 0, 8967 0, 9162

In Figure III we have added more salt and pepper noise to

the images, up to a noise level of 0.1. In Table II we show

a comparison between the reconstructed and the original

images. The results are then more pronounced: weak local

reduction operators constructed from minimum, harmonic

mean and maximum give very bad results; the weak local

reduction operator constructed from the arithmetic mean

worsen its results in a less acute way; finally, the operator

constructed from the median keeps its good results.

TABLE III

COMPARISON BETWEEN RECONSTRUCTED AND ORIGINAL IMAGES WITH

NOISE (P=0.1)

Av. Fun. Image (a) Image (b) Image (c) Image (d)

Minimum 0, 8419 0, 8727 0, 8773 0, 897
Harm. Mean 0, 856 0, 8857 0, 8947 0, 9054
Arith. Mean 0, 9435 0, 9446 0, 9388 0, 9495
Median 0, 9676 0, 9655 0, 9555 0, 9707
Maximum 0, 9152 0, 8747 0, 8514 0, 866

A comparison between results is shown in Figure 12.

For each of the weak local reduction operators we show

the average of the S index in the four test images. The

first column of each operator corresponds to reduction and

reconstruction of the original images. The second column

corresponds to images with salt and pepper noise and p =
0.05. The third column corresponds to images with salt and

pepper noise and p=0.1.

VII. CONCLUSIONS

In this work we have axiomatically defined local reduction

operators. We have studied how to construct these operators

by means of averaging functions. We have analyzed which

properties are satisfied by some of these aggregation-based

reduction operators.

From our operators, we have proposed an image reduction

algorithm. To settle which is the best local reduction operator,

we have proposed an application based on reconstructing the

original images from the reduced ones. To compare images

we have used a fuzzy similarity index. We have seen that,



Fig. 9. Original images for experimental results

Fig. 10. Original images with noise (p=0.05) for experimental results

Fig. 11. Images with noise (p=0.1) for experimental results

Fig. 12. Comparison of reconstructions with different weak local reduction
operators and different noise

in all of the cases, the best weak local reduction operator

is provided by the median. Moreover, this operator is not

affected by salt and pepper noise.
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