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a b s t r a c t

We consider a family of copulas that are invariant under univariate truncation. Such
a family has some distinguishing properties: it is generated by means of a univariate
function; it can capture non-exchangeable dependence structures; it can be easily
simulated. Moreover, such a class presents strong probabilistic similarities with the class
of Archimedean copulas from a theoretical and practical point of view.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The process of estimating the dependence structure of a multivariate extreme phenomenon (either minimum or
maximum) is usually difficult. Generally, one may assume that a parametric family of copulas describes the dependence
andmay try to fit the parameters. However, even if several goodness-of-fit tests are now available, the model obtained may
suffer from a degree of arbitrariness.

As underlined by Juri andWüthrich (2002), a remedy to this situation is to find dependence models for conditional joint
extremes, along the lines of the Pickands–Balkema–De Haan theorem. Themost relevant example of this type is provided by
the Clayton family of copulas (Cook and Johnson, 1981; Genest and MacKay, 1986; Oakes, 1982), whose members are given,
for every θ ≥ −1, θ ≠ 0 and uv ≠ 0, by

CCl
θ (u, v) =


max


0, u−θ

+ v−θ
− 1

−1/θ
.

In fact, it is known (see, for instance, Charpentier and Juri, 2006, Juri and Wüthrich, 2002) that Clayton copulas can
approximate the dependence behavior of a random pair (X, Y )when X and Y are less than their α-quantile and β-quantile,
respectively, for sufficiently small α, β ∈ (0, 1). This is a consequence of the fact that, besides the comonotone copula M
and the independence copulaΠ , Clayton copulas are the only copulas that are invariant under bivariate truncation; i.e. if a
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Clayton copula C is associated with a random pair (X, Y ), and x and y are given thresholds, then C is also the copula of (X, Y )
supposing that X ≤ x and Y ≤ y provided that P(X ≤ x, Y ≤ y) > 0 (Ahmadi-Javid, 2009; Charpentier and Juri, 2006;
Durante and Jaworski, in press; Oakes, 2005).

With motivation from these investigations, copulas that are invariant under univariate truncation have been considered
by Jágr et al. (2010), Mesiar et al. (2008) and characterized by Durante and Jaworski (in press). Analogously to the Clayton
ones, such invariant copulas describe the limit behavior of (X, Y )when one component is taking on very small values. Along
the lines of these investigations, the following class of bivariate copulas that are generated by a univariate function f has
been introduced by Durante and Jaworski (in press).

Theorem 1.1. Let I := [0, 1]. Let Cf : I2 → I be the function given by

Cf (u, v) =

uf

f [−1](v)

u


, u ≠ 0,

0, otherwise,
(1)

where f : [0,∞] → I is surjective and monotone, and f [−1]: I → [0,∞] denotes the right-inverse of f given by f [−1](s) =

inf{t ∈ [0,+∞] | f (t) = s}.
If f is concave and nondecreasing (or convex and nonincreasing), then Cf is a copula.

In this paper, we aim at investigating the class of copulas of type (1), by showing some strong similarities and connections
with the class of Archimedean copulas. Specifically, Section 2 presents some facts about copulas of type (1). Section 3
discusses some similarities of the family introduced, with Archimedean copulas, while practical consequences are derived
in Section 4. Section 5 concludes.

Notice that, while extreme value theory concerns withmaxima of random variables, we are mainly interested in minima
of random variables. However, it should be mentioned that similar results can also be obtained for maxima by using, for
instance, the survival copula associated with a random pair.

2. Definitions and basic properties

For basic definitions and properties of copulas, we refer the reader to Durante and Sempi (2010), Joe (1997) and Nelsen
(2006). We denote by C the class of bivariate copulas and by A the class of Archimedean copulas, whose members can be
represented in the form

Aψ (u, v) = ψ(ψ [−1](u)+ ψ [−1](v)),

where ψ: [0,+∞] → I is a convex, surjective and nonincreasing function called the generator. The class of all generators
of Archimedean copulas will be indicated by Ψ .

We denote by CLT the class of bivariate copulas that are invariant under univariate truncation, namely if C is the copula of
a continuous randompair (X, Y ), then C is also the copula of (X, Y ) conditional on the fact thatX is less than itsα-quantile for
all α ∈ (0, 1). The characterization of CLT has been given by Durante and Jaworski (in press). Namely, the copulas belonging
to CLT can be represented as a g-ordinal sum of the independence copulaΠ and copulas of type (1).

The class of copulas of type (1) will be indicated by the symbol CLTI . As known from Durante and Jaworski (in press),
CLTI ⊂ CLT . Moreover, among all elements of CLT any copula C ∈ CLTI satisfies the additional property that no α ∈ (0, 1)
exists such that C(α, v) = αv. We will use the term irreducible to denote such copulas.

Elements ofCLTI are the Fréchet–Hoeffding upper and lower bounds given, respectively, byM(u, v) = min(u, v), obtained
when f (t) = min(t, 1), andW (u, v) = max(u+v−1, 0), obtainedwhen f (t) = max(0, 1−t). Moreover, the independence
copulaΠ(u, v) = uv belongs to CLT but not to CLTI .

As regards some known dependence properties, irreducible copulas can be characterized by means of their generator f .

Proposition 2.1. Let Cf ∈ CLTI .

(a) If f is concave and increasing, then Cf (u, v) > uv on (0, 1)2, that is Cf is positively quadrant dependent (for short, PQD).
(b) If f is convex and decreasing, then Cf (u, v) < uv on (0, 1)2, that is Cf is negatively quadrant dependent (for short, NQD).

As a consequence, if f ∈ Ψ , then f generates an NQD copula in CLTI . Moreover, it can be easily proved that, if f = 1 − f
for some f ∈ Ψ , then Cf ∈ CLTI is PQD. Notice that it holds that Cf (u, v) = u − Cf (u, 1 − v), i.e. Cf and Cf are connected via
a flipping transformation (De Baets et al., 2009). In other words, if (U, V ) is distributed according to Cf , then (U, 1 − V ) is
distributed according to Cf . Setting Ψ = {f : f = 1 − f for some f ∈ Ψ }, we have CLTI = {Cf }f∈Ψ ∪ {Cf }f∈Ψ .

While Archimedean copulas are exchangeable, most of the copulas in CLTI are not, as the following result shows.

Proposition 2.2. Let Cf ∈ CLTI . Then Cf is exchangeable if, and only if, either Cf = M or Cf is a Clayton copula.
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Proof. Suppose that Cf ∈ CLTI is an exchangeable copula. Then C t
f (u, v) = Cf (v, u) is a copula that is invariant under right

truncation (compare with Durante and Jaworski (in press)). It follows that Cf is invariant under left and right truncation and,
by Durante and Jaworski (in press, Theorem 4.1), either Cf = M or C is a Clayton copula. �

Generally, it follows that, starting with a generator f ∈ Ψ , two kinds of models can be built: an exchangeable model,
based on the Archimedean copula Af ; a non-exchangeable model, based on a copula Cf or Cf belonging to CLTI .

Example 2.1. Consider fθ (t) = min(tθ , 1) ∈ Ψ for θ ∈ (0, 1). Then Cf ∈ CLTI is given by

Cf (u, v) =


u, v > uθ ,
u1−θv, otherwise

which is a member of the Marshall–Olkin family of copulas (Marshall and Olkin, 1967).

3. Similarities between CLTI and Archimedean copulas

Besides the fact that they are generated by some univariate function f ∈ Ψ , the classes A and CLTI have a strong
connection, as the following result shows.

Theorem 3.1. (a) Let (U, V ) be a pair of continuous random variables distributed according to Af ∈ A . Then Cf ∈ CLTI is the
distribution function of the random pair (X, Y ), where it holds almost surely that

X =
f [−1](V )

f [−1](U)+ f [−1](V )
, Y = V .

(b) Let (X, Y ) be a pair of continuous random variables distributed according to Cf ∈ CLTI , where f ∈ Ψ . Then Af ∈ A is the
distribution function of the random pair (U, V ), where it holds almost surely that

U = f

f [−1](Y )

X
− f [−1](Y )


, V = Y .

Proof. First, consider the following mappings:

T1 : (0, 1)2 −→ (0, 1)2, T1(u, v) =


f [−1](v)

f [−1](u)+ f [−1](v)
, v


,

T2 : (0, 1)2 −→ I2, T2(x, y) =


f

f [−1](y)

x
− f [−1](y)


, y


.

Then, for almost all (x, y) and (u, v) in (0, 1)2,

∂2Af (T2(x, y)) = ∂2Cf (x, y) and ∂2Cf (T1(u, v)) = ∂2Af (u, v).

In fact, at all of their respective points of differentiability,

∂2Cf (x, y) = f ′


f [−1](y)

x


(f [−1])′(y)

and

∂2Af (u, v) = f ′(f [−1](u)+ f [−1](v))(f [−1])′(v).

Thus, almost surely on I2,

∂2Cf (T1(u, v)) = f ′

 f [−1](v)

f [−1](v)
f [−1](u)+f [−1](v)

 (f [−1])′(v)

= f ′(f [−1](u)+ f [−1](v))(f [−1])′(v) = ∂2Af (u, v),

and

∂2Af (T2(x, y)) = f ′(f [−1](f (x−1f [−1](y)− f [−1](y))+ f [−1](y)))(f [−1])′(y)

= f ′


f [−1](y)

x


(f [−1])′(y) = ∂2Cf (x, y).
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Now, let us prove part (a) (part (b) can be proved analogously). In view of Nelsen (2006, Theorem 4.3.7), X is uniformly
distributed on [0, 1]. Therefore, we have only to show that the conditional distribution of X with respect to Y is a conditional
distribution of the copula Cf ∈ CLTI . In fact, for all (x, y) ∈ I we have

P(X ≤ x | Y = y) = P


f [−1](V )
f [−1](U)+ f [−1](V )

≤ x | V = y


= P

U ≤ f


f [−1](y)

x
− f [−1](y)


| V = y


= ∂2Af


f

f [−1](y)

x
− f [−1](y)


, y


= ∂2Cf (x, y)

and hence Cf is a copula of the pair (X, Y ) (compare with Nelsen (2006, Eq. (2.9.1))).

Theorem 3.1 allows us to translate results from A to CLTI (and conversely). Some consequences of this relationship will
be given below.

We recall that any copula C can be decomposed into the form C = CA + CS , where CA and CS are, respectively, the
absolutely continuous (with respect to the Lebesgue measure) and the singular components of C .

Proposition 3.2. Let Cf ∈ CLTI . Then Cf is absolutely continuous if, and only if, the first derivative f ′ exists and is absolutely
continuous on (0,∞).

Proof. First, suppose that f ∈ Ψ . It holds that Cf ∈ CLTI is absolutely continuous if, and only if, Af ∈ A is absolutely
continuous. In fact, consider T ∗

1 and T ∗

2 given by

T ∗

1 : (0, 1)2 → B, T ∗

1 (u, v) =


f [−1](v)

f [−1](u)+ f [−1](v)
, v


,

T ∗

2 : B → (0, 1)2, T ∗

2 (x, y) =


f

f [−1](y)

x
− f [−1](y)


, y


,

where B = {(x, y) ∈ (0, 1)2: f [−1](y) · (1− x) < f [−1](0) · x}. Notice that these mappings are well-defined on their domains.
Moreover, T ∗

2 is an inverse of T ∗

1 . Indeed, for all (x, y) ∈ Bwe get

T ∗

1 ◦ T ∗

2 (x, y) = T ∗

1


f

f [−1](y)

x
− f [−1](y)


, y



=

 f [−1](y)

f [−1]

f


f [−1](y)
x − f [−1](y)


+ f [−1](y)

, y


=

 f [−1](y)
f [−1](y)

x − f [−1](y)


+ f [−1](y)
, y

 = (x, y)

and, similarly, for all (u, v) ∈ (0, 1)2,

T ∗

2 ◦ T ∗

1 (u, v) = T ∗

2


f [−1](v)

f [−1](u)+ f [−1](v)
, v


=


f

f [−1](v)

f [−1](u)+ f [−1](v)

f [−1](v)
− f [−1](v)


, v


= (u, v).

Thus, T ∗

1 and T ∗

2 are injective and locally Lipschitz on their respective domains, because the derivatives of f and f [−1] are
locally bounded. In addition, Cf is vanishing on (0, 1)2 \ B. In fact, for all x ≠ 0, if f [−1](y) · (1 − x) ≥ f [−1](0) · x,
then x−1f [−1](y) ≥ f [−1](0), and Cf (x, y) = xf (f [−1](0)) = 0. Therefore, it follows from the change of variable formula
(Villani, 2009, chapter 1) that, if Cf is absolutely continuous, then so is Af (and conversely). Now, the assertion follows by
the characterization of absolutely continuous Archimedean copulas given by McNeil and Nešlehová (2009, Proposition 4.2).

Finally, if f ∈ Ψ , then the assertion follows by considering that Cf is absolutely continuous if, and only if, Af ∈ A is
absolutely continuous. �

Let f be a generator of a copula in CLTI . Since f ′ is monotonic, f ′′ is defined almost everywhere on (0,∞). The density
of the absolutely continuous component of the copula Cf is equal to its second mixed derivative, which is defined almost
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everywhere on I2 by

cf (u, v) = −f ′′


f [−1](v)

u


f [−1](v)

f ′(f [−1](v))u2
. (2)

Therefore, if Cf ∈ CLTI is absolutely continuous, then cf given by (2) is the density of Cf . Moreover, if cf = 0 almost
everywhere on I2, then Cf is singular. As a consequence, the following result follows.

Corollary 3.3. Let Cf ∈ CLTI . Then Cf is singular if, and only if, f ′′(t) = 0 almost everywhere on (0,∞).

Three examples of singular copulas in CLTI are given below.

Example 3.1. Consider the piecewise linear function f : [0,+∞] → I, given by f (x) = max(0, 1 − 2x, (1 − x)/2). Then
f ∈ Ψ and, since f ′′

= 0 except for finitely many points, it generates the singular copula Cf given by

Cf (x, y) =


0, y ≤ f (x),
W (x, y), y ≥ 1 − 2x/3,

y +
x − 1
2

,
3 − x
6

≤ y ≤
1
3
,

x
2

+
y − 1
4

, elsewhere.

Note that the support of Cf consists of the three segments connecting, respectively, (0, 1) with (1/3, 1/3), (1/3, 1/3) with
(1, 0), and (1, 1)with (1/3, 1/3).

Example 3.2. Let π be the bijection defined by

π :N × N −→ N, π(p, q) =
1
2
(p + q)(p + q + 1)+ q,

called the Cantor pairing. Consider f : [0,+∞] → I given by

f (x) =

+∞−
p,q=1

2−π(p,q)

1 −

q
p
x
+

,

where x+
:= max(x, 0) for all x ∈ R. Then f ∈ Ψ and, since f ′′

= 0 except for a countable set of points, it generates a
singular copula Cf ∈ CLTI .

Note that the probability mass of Cf is located on a dense subset of I2, which consists of a countable set of lines (compare
with Proposition 4.3).

Example 3.3. Consider f : [0,+∞] → I given by

f (x) =

2
∫ 1−x

0
Γ (ξ)dξ for x ∈ [0, 1],

0 for x > 1,

where Γ : I → I is the Cantor function.1 Note that, since Γ (1− ξ) = 1− Γ (ξ), we have that f (0) = 1 and
 1
0 Γ (ξ)dξ =

1
2 .

Then f ∈ Ψ and, since f ′′(t) = 0 except for the Cantor set, it generates a singular copula Cf ∈ CLTI . See also McNeil and
Nešlehová (2009, Example 4.3).

Remark 3.1. Associative copulas have been characterized in terms of ordinal sums of Archimedean copulas (see Ling, 1964;
Klement et al., 2000). We may note the analytical correspondence between this result and the representation of copulas in
CLT as given in Durante and Jaworski (in press, Theorem 3.1).

The similarities between A and CLTI also extend to constructions applied to the Archimedean class. For instance, in order
to extend A , Archimax copulas have been considered by Capéraà et al. (2000). An analogous extension of the CLTI is given
by DUCS copulas, introduced by Mesiar and Pekárová (2010).

1 Its graph is called figuratively the ‘‘Devil’s staircase’’.
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4. Practical implications

4.1. Modelling tail dependence

As already said, copulas of type (1) can capture non-exchangeable dependence structures. Moreover, another interesting
feature of this family is its ability to model non-trivial tail dependence.

We recall that, given a copula C , we can describe the tail behavior of C on the four corners of I2 by means of the tail
dependence functions Lij (i, j ∈ {0, 1}). Following Joe et al. (2010) and Klüppelberg et al. (2008), these functions are given for
every x, y ∈ [0,∞) by the following formulas:

L0,0(x, y) = lim
t→0+

t−1P(U ≤ tx, V ≤ ty) = lim
t→0+

C(tx, ty)
t

,

L0,1(x, y) = lim
t→0+

t−1P(U ≤ tx, V ≥ 1 − ty) = x − lim
t→0+

C(tx, 1 − ty)
t

,

L1,0(x, y) = lim
t→0+

t−1P(U ≥ 1 − tx, V ≤ ty) = y − lim
t→0+

C(1 − tx, ty)
t

,

L1,1(x, y) = lim
t→0+

t−1P(U ≥ 1 − tx, V ≥ 1 − ty) = x + y + lim
t→0+

C(1 − tx, 1 − ty)− 1
t

,

provided that the limits exist and (U, V ) is a pair of uniform random variables distributed according to C . Actually, such
Lij are the leading parts of the tail expansion (of degree 1) of the copula C near the corners of the unit square (Jaworski,
2004, 2010). Notice that the upper and lower tail dependence coefficients are equal to λU = L1,1(1, 1) and λL = L0,0(1, 1),
respectively.

Herewe calculate the tail dependence functions associatedwith Cf . Notice that, for a function g , g ′(x+

0 ) and g ′(x−

0 ) denote,
respectively, the right and left first derivatives of g .

Proposition 4.1. Let Cf ∈ CLTI , where f ∈ Ψ . Then the following expressions hold:

L0,0(x, y) = xf
y
x
(f [−1])′(0+)


,

L0,1(x, y) = L1,0(x, y) = 0,

L1,1(x, y) =


min


y, xf ′(f [−1](1)−)f [−1](1)


, f [−1](1) < ∞,

0, f [−1](1) = ∞.

Proof. Let f ∈ Ψ and Cf ∈ CLTI . Since Cf is PQD, it follows that L0,1 = L1,0 = 0. Let (x, y) ∈ (0,∞)2. We have

L0,0(x, y) = lim
t→0+

C(tx, ty)
t

= lim
t→0+

xf

f [−1](ty)

tx


= x f


lim
t→0+

f [−1](ty)
tx


= xf

y
x
(f [−1])′(0+)


.

In order to calculate L1,1, we have to distinguish two cases.

• Suppose that f [−1](1) < ∞. It follows that

L1,1(x, y) = x + y + lim
t→0+

−1 + (1 − tx)f


f [−1](1−ty)
1−tx


t

= x + y − xf (f [−1](1))+ lim
t→0+

−f (f [−1](1))+ f


f [−1](1−ty)
1−tx


t

.

If f [−1](1)x > (f [−1])′(1−)y, then f ′(f [−1](1)+) = 0 implies that

L1,1(x, y) = y + f ′(f [−1](1)+)(−y(f [−1])′(1−)+ xf [−1](1)) = y.

If f [−1](1)x < (f [−1])′(1−)y, then f ′(f [−1](1)+)(f [−1])′(1−) = 1 implies that

L1,1(x, y) = y + f ′(f [−1](1)−)(−y(f [−1])′(1−)+ xf [−1](1)) = xf ′(f [−1](1)−)f [−1](1).
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If f [−1](1)x = (f [−1])′(1−)y, then for sufficiently small t > 0 we get
−f (f [−1](1))+ f


f [−1](1−ty)

1−tx


t

 ≤
f ′(f [−1](1 − ty)−)

  f [−1](1 − ty)− f [−1](1)
t

+ xf [−1](1)
 1
1 − tx

t→0+

−→ |f ′(f [−1](1)−) ‖ xf [−1](1)− y(f [−1])′(1−)| = 0.

Summarizing, we get

L1,1(x, y) = min

y, xf ′(f [−1](1)−)f [−1](1)


.

• Suppose that f [−1](1) = ∞. Then we have

L1,1(x, y) = lim
t→0+

−f (f [−1](1 − ty))+ f


f [−1](1−ty)
1−tx


t

≤ lim
t→0+

f ′(f [−1](1 − ty)−)f [−1](1 − tx)
x

1 − tx
= x lim

ξ→+∞

f ′(ξ)ξ = 0.

This concludes the proof. �

The tail behavior of Cf for f ∈ Ψ can be obtained analogously.

Proposition 4.2. Let Cf ∈ CLTI , where f ∈ Ψ . Then the following expressions hold:

L0,1(x, y) = xf
y
x
(f [−1])′(1−)


,

L0,0(x, y) = L1,1(x, y) = 0,

L1,0(x, y) =


min


y, xf ′(f [−1](0)+)f [−1](0)


, f [−1](0) < ∞,

0, f [−1](0) = ∞.

4.2. Stochastic simulation

Several methods have been proposed for generating a random pair (U, V ) with distribution Aψ ∈ A (see, for instance,
Hofert, 2010 and the references therein). The insights of Theorem 3.1 give a method for generating copulas in CLTI based on
the known algorithms for the Archimedean case. Specifically, we distinguish two cases.

Let Cf ∈ CLTI be an NQD copula (thus, f ∈ Ψ ). In order to generate a random pair (X, Y ) from Cf the algorithm goes as
follows:
1. Generate a random pair (U, V ) from the Archimedean copula Af .
2. Set X =

f [−1](V )
f [−1](U)+f [−1](V )

and Y = V .
3. Return (X, Y ).

Otherwise, let Cf ∈ CLTI be a PQD copula. Then, in order to generate a random pair (X, Y ) from Cf , one should use the
following procedure:
1. Generate a random pair (U, V ) from the Archimedean copula Af , where f = 1 − f .

2. Set X =
f [−1]

(V )

f [−1]
(U)+f [−1]

(V )
and Y = V .

3. Return (X, 1 − Y ).

Examples of random samples generated from copulas in CLTI are given in Fig. 1. Note that the two figures are identical
up to a mirror symmetry (x, y) → (x, 1− y), as a consequence of the sampling algorithms, which differ only in point 3. We
may also notice the asymmetries of the samples with respect to the main diagonal of I2 and in the corners of I2.

4.3. Statistical inference

From Theorem 3.1, the following result can also be proved.

Proposition 4.3. Let (X, Y ) be a pair of continuous random variables distributed according to Cf ∈ CLTI , where f ∈ Ψ . Let
Z = Cf (X, Y )/X. Then the following statements hold:
(a) The distribution function of Z is given, for all t ∈ (0, 1), by

FZ (t) = t − f [−1](t)f ′(f [−1](t)−). (3)
(b) The random variables X and Z are independent.
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Fig. 1. Sampling 1000 points from an NQD copula C ∈ CLTI with a Gumbel generator with parameter 1.2 (left side) and its corresponding PQD copula in
CLTI (right side).

Proof. Let f ∈ Ψ , Cf ∈ CLTI and Af ∈ A . Notice that Z is a random variable whose support is (0, 1). As a direct consequence
of Theorem 3.1(a), we have

Z =
Cf (X, Y )

X
= f


f [−1](Y )

X


= f

 f [−1](V )
f [−1](V )

f [−1](U)+f [−1](V )


= f (f [−1](U)+ f [−1](V )) = Af (U, V ).

Therefore due to Genest and Rivest (1993, Proposition 1.1) (see also Nelsen (2006, Theorem 4.3.4)), it follows that, for all
t ∈ (0, 1),

FZ (t) = t − f [−1](t)f ′(f [−1](t)−),

and X =
f [−1](V )

f [−1](U)+f [−1](V )
and Z = Af (U, V ) are independent. �

Proposition 4.3 may be used to derive some inference procedure for copulas in CLTI . In fact, roughly speaking, in the
class CLTI the random variable Z previously defined plays the same role as the bivariate probability integral transformation
V = C(X, Y ) plays in the case of Archimedean copulas (see Genest et al., 2006; Genest and Rivest, 1993; Wang and Wells,
2000).

To illustrate this, let U1, . . . ,Un be bivariate vectors that are supposed to form a random sample from Cf ∈ CLTI (just
for the sake of simplicity, consider here f ∈ Ψ ). Obviously, such a sample can be derived by applying marginal empirical
distribution functions to bivariate data (Genest and Favre, 2007). For each observation Uk = (Uk1,Uk2) we could consider
the quantity Zk = Vk/Uk1, where Vk = Cf ,n(Uk1,Uk2) is obtained from the empirical copula Cf ,n associated with the sample.
The empirical distribution function of Zk represents a nonparametric estimation of the distribution function given by (3).

By applying Proposition 4.3 the following statistical procedures can be implemented.
• If a copula C is assumed to be of the form (1), a nonparametric estimator of its generator could be derived from the

pseudo-sample Z1, . . . , Zn.
• In order to check H0: C is of the form (1) against H1: C is not of the form (1), a goodness-of-fit test can be constructed by

using the fact that, under the null hypothesis, (Uk1)k and (Zk)k are independent.

5. Conclusions

Formula (1) introduces a new family of copulas that have some distinguishing properties:
• they are generated by means of univariate functions;
• they can capture non-exchangeable dependence structures;
• they can be easily simulated by using standard simulation algorithms for Archimedean copulas.

Moreover, such a class presents strong probabilistic similarities with the class of Archimedean copulas from theoretical
and practical points of view.

The higher-dimensional characterization of the class CLT has been obtained by Jaworski (submitted for publication).
Interestingly, multivariate copulas that are invariant under univariate truncation can be constructed by means of a suitable
combination of the elements of CLTI on the basis of the vine method (Czado, 2010; Klüppelberg, 2010). However, such
multivariate copulas do not seem to have the same nice features as in the bivariate case; for instance, they do not allow
for a closed form and/or stochastic equivalence with the Archimedean class.
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