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Graphical Markov models, most of all Bayesian networks, have become a very popular
way for multidimensional probability distribution representation and processing.
What makes representation of a very-high-dimensional probability distribution
possible is its independence structure, i.e. a system of conditional independence
relations valid for the distribution in question. The fact that some of independence
systems can be successfully represented with the help of graphs is reflected in the
general title: graphical modelling. However, graphical representation of independence
structures is also associated with some disadvantages: only a small part of different
independence structures can be faithfully represented by graphs; and still one structure
is usually equally well represented by several graphs. These reasons, among others,
initiated development of an alternative approach, called here theory of compositional
models, which enables us to represent exactly the same class of distributions as
Bayesian networks. This paper is a survey of the most important basic concepts and
results concerning compositional models necessary for reading advanced papers
on computational procedures and other aspects connected with this (relatively new)
approach for multidimensional distribution representation.

Keywords: multidimensional probability distribution; conditional independence;
graphical Markov model; composition of distributions

1. Introduction

A number of different models for knowledge representation have been developed. When

uncertain knowledge is considered – and in our opinion, deterministic knowledge applies

to very specific situations only – one has to consider models based on some of the calculi

proposed specifically for this purpose. The oldest one is probability theory but many others

appeared in the second half of the last century, from many-valued and fuzzy logics,

through rough sets theory to approaches based on non-additive measures, e.g. possibility

theory.

In this paper, we shall discuss one class of models built within the framework of

probability theory. However, it should be stressed that these models can also be developed

equally efficiently in possibility theory (Vejnarová 1998a, 1998b, Dubois and Prade 2001,

Klir 2006) and in the framework of Dempster–Shafer theory of evidence (Dempster 1967,

Shafer 1976, Jiroušek et al. 2007). This means that they can also be applied to situations

when the assumption of additivity is not adequate (Jiroušek and Vejnarová 2003).

Nevertheless, in this paper, we shall restrict our consideration only to probabilistic models.
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The basic idea of the approach described here is the same as that on which expert

systems are based; it is beyond human capabilities to represent/express/understand global

knowledge of an application area – one always has to work only with pieces of local

knowledge. Such local knowledge can be, within probability theory, easily represented by

an oligodimensional (low-dimensional) distribution.

What should be stressed, however, is the fact that in such situations the dimensionality

of the estimated distributions is strictly limited also because of the size of available data.

Whatever size of data is at our disposal, we can hardly expect to obtain reliable estimates

of probabilities of a 20-dimensional distribution (even for binary variables). Typically, one

can assume that dimensionality of the considered distributions is between two and eight.

This is why we call them oligodimensional distributions.

When pieces of local knowledge are represented by oligodimensional distributions, the

global knowledge should be represented by a multidimensional probability distribution.

In artificial intelligence, application of the whole class of methods based on knowledge

modelling by multidimensional probability distributions – and here, we have in mind

distributions of hundreds rather than tens of variables – was catalysed by successes

achieved during the last three decades in the field known as graphical Markov modelling

(Pearl 1988, Lauritzen 1996). This term is used to describe any of the approaches

representing multidimensional probability distributions by means of graphs and systems of

quantitative parameters. These parameters are usually oligodimensional, sometimes

conditional, probability distributions. Therefore, graphical Markov modelling includes

influence diagrams, decomposable and graphical models, chain graph models, and many

other models. What is common to all of them is the capability to represent and process

distributions of very high dimensionality, which cannot be otherwise handled because of

the exponential growth of the number of necessary parameters. Perhaps the most famous

representative of these models, Bayesian networks (Jensen 2001), represents distributions

having special dependence structures, which are described by acyclic directed graphs.

Some other models, like decomposable models, use undirected graphs for the dependence

structure representation, and special models need even more complicated graphical tools

like chain graphs, hypergraphs, or annotated (di)graphs.

The approach presented herein abandons the necessity to describe the dependence

structure of a modelled distribution using a graph. In contrast to this, the presented technique

of compositional models describes directly how the multidimensional distribution is

computed – composed – from a system of low-dimensional distributions and, therefore,

need not represent the dependence structure explicitly. Thus, we start describing our model

with an assumption that there are a (usually great) number of pieces of local knowledge

represented by a system of low-dimensional distributions. The task we will address in this

paper resembles a jig-saw puzzle that has a large number of parts, each bearing a local piece

of a picture, and the goal is to figure out how to assemble them in such a way that the global

picture makes sense, reflecting all of the individual small parts. The only difference is that, in

our case, we will look for a linear ordering of oligodimensional distributions in the way that,

when composed together, the resulting multidimensional distribution optimally reflects all of

the local knowledge carried by the oligodimensional distributions (Figure 1).

This paper is a survey making an introduction to compositional models in probability

theory. Here, we will define the most important notion of this approach, the operators of

composition, which were originally introduced by Jiroušek (1997), and selected results

published by Jiroušek (1998, 2000), especially those describing how these operators are

used to construct multidimensional models and what the properties are of the resulting

models. The paper includes parts that have not yet been published (e.g. flexible sequences
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and their properties), but due to space limitations we could not include some other

advanced results. For example, we could not include sections describing identification of

the conditional independence structure of the models, which can be performed with the

help of so-called persegrams (Jiroušek 2008), or description of computationally efficient

algorithms that were designed for compositional models (Jiroušek 2000).

The paper is organized as follows. Section 2 introduces notation and general basic

concepts used from probability theory. In Section 3, operator of composition and its basic

properties are introduced. More advanced properties of this operator are also studied in

Sections 4, 5, 7, and 8. In connectionwith this, wewant to stress that the reader cannot expect

new results of probability theory; just using the well-known properties of this theory, we

show (algebraic) properties of the operator of composition. We show that, despite the fact

that it is generally neither commutative nor associative, in some special situations these

properties are observed. Lack of associativity also called for definition of an anticipating

operator, whose definition and basic properties are described in Section 9. Its purpose and

importance manifest mainly in studies of computational procedures; yet, the basic notions of

compositional models would not be complete if this operator was omitted. So, although it is

not frequently used in this paper, we devote a short section to it. An application of the

operators of composition to representation of multidimensional probability distributions is

described in Sections 10–13, with each of them applied to one special class of models.

A special role is designated to Section 6. We believe that by presenting Imre Csiszár’s

point of view, we can help some readers to form their own intuitive image that helps them

to understand the approach of compositional models.

While all the necessary concepts are introduced in this paper, the reader is expected to

be familiar with basic notions of (finite) probability theory. With respect to the fact that the

described approach forms an algebraic alternative to Bayesian networks, some knowledge

of graphical Markov modelling is advantageous, but not necessary to fully understand the

text (a formalized comparison of compositional models and graphical Markov models can

be found in Jiroušek’s (2004a, 2004b) papers).

2. Basic notions of probability theory and notation

In this paper, we will deal with a finite system of finite-valued random variables. Let N be

an arbitrary finite index set, N – Y. Each variable from {Xi}i[N is assumed to have a finite

(non-empty) set of values Xi. The set of all combinations of the considered values will be

denoted XN ¼ £i[NXi. Analogously, for K , N, XK ¼ £i[KXi.

Distributions of the considered variables will be denoted by Greek letters (p; k; n;
and m) with possible indices; thus for K # N, we can consider a distribution pððXiÞi[KÞ.

Figure 1. Ordering of pieces of a jig-saw puzzle.

International Journal of General Systems 625

D
ow

nl
oa

de
d 

by
 [

R
ad

im
 J

ir
ou

se
k]

 a
t 2

1:
19

 0
8 

Ju
ly

 2
01

1 



To make the formulae more lucid, the following simplified notation will be used: symbol

pðKÞ will denote a jKj-dimensional distribution and pðxÞ is a value of probability

distribution p for point x [ XK .

For a probability distribution pðKÞ and J , K, we will often consider a marginal

distribution p #J of p, which can be computed for all x [ XJ by

p #JðxÞ ¼
X

y[XK :y # J¼x

pðyÞ;

where y #J denotes the projection of y [ XK into XJ . For computation of marginal

distributions, we need not exclude situations when J ¼ Y. By definition, we get p #Y ¼ 1.

Having two distributions pðKÞ and kðKÞ, we say that k dominates p (in symbol pp k)

if for all x [ XK ;

kðxÞ ¼ 0¼)pðxÞ ¼ 0

(notice that some authors say that p is absolutely continuous with respect to k; the latter

notion is used mainly when considering continuous spaces).

2.1 Conditional independence of variables

One of the most important notions of this paper, a concept of conditional independence,

generalizes the well-known independence of variables. Since it does not belong among the

basic subjects notoriously repeated in all textbooks on probability theory, we introduce it

here in the form of a definition, along with two of the most important properties that can be

found in several books on probabilistic multidimensional models: for example, Lauritzen

(1996) or Studený (2005).

Definition 2.1. Consider a probability distribution pðKÞ and three disjoint subsets

L;M;R # K such that both L;M – Y. We say that groups of variables XL and XM are

conditionally independent given XR (in symbol XL n XMjXR½p�) if

p #L<M<Rp #R ¼ p #L<Rp #M<R: ð1Þ

Lemma 2.2 (Factorization lemma). Let K; L;R , N be disjoint such that K – Y – L.

Then for any probability distribution pðK < L< RÞ,

XK n XLjXR½p�;

if and only if there exist functions

c1 : XK<R ! ½0;þ1Þ; c2 : XL<R ! ½0;þ1Þ;

such that for all x [ XK<L<R pðxÞ ¼ c1ðx
#K<RÞc2ðx

#L<RÞ:

Lemma 2.2 (Block independence lemma). Let K; L;M;R , N be disjoint and K – Y,
L – Y, and M – Y. Then for any probability distribution pðK < L<M < RÞ, the

following two expressions are equivalent

(A) XK n XL<MjXR½p�,

(B) XK n XMjXR½p� and XK n XLjXM<R½p�.

R. Jiroušek626
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2.2 Extensions of distributions

Consider K # L # N and a probability distribution pðKÞ. By PðLÞ, we shall denote the set

of all probability distributions defined for variables XL. Similarly, PðLÞðpÞ will denote the

system of all extensions of the distribution p to L-dimensional distributions

PðLÞðpÞ ¼ k [ PðLÞ : k #K ¼ p
� �

:

Having a system J ¼ p1ðK1Þ;p2ðK2Þ; · · ·;pnðKnÞf g, of oligodimensional distributions

ðK1 < · · ·< Kn # LÞ, the symbol PðLÞðJÞ denotes the system of distributions that are

extensions of all the distributions from J;

PðLÞðJÞ ¼ k [ PðLÞ : k #Ki ¼ pi;i ¼ 1; · · ·; n
� �

¼
\n
i¼1

PðLÞðpiÞ:

It is obvious that the set of extensions PðLÞðJÞ is either empty or convex (naturally, a

one-point set is convex, too).

3. Definition of operators of composition

To be able to compose low-dimensional distributions to get a distribution of a higher

dimension, we will introduce two operators of composition.

First, let us introduce an operator M of right composition. To make it clear from the

very beginning, let us stress that it is just a generalization of the idea of computing the

three-dimensional distribution from two two-dimensional ones introducing the conditional

independence

pðx1; x2Þ Mkðx2; x3Þ ¼
pðx1; x2Þkðx2; x3Þ

kðx2Þ
¼ pðx1; x2Þkðx3jx2Þ;

where kðx2Þ and kðx3jx2Þ denote the corresponding marginal and conditional distributions,

respectively.

Consider two probability distributions pðKÞ and kðLÞ, whose composition we want to

define. Notice that we do not pose any condition on the relationship of the two sets of

variables: XK and XL. Nevertheless, if these sets are not disjoint, it may happen (as will be

illustrated in an example below) that the composition p Mk does not exist. Therefore, we

will assume that k #K>L dominates p #K>L and the right composition of these two

distributions is given by the formula

p Mk ¼
pk

k #K>L
:

Since we assume p #K>L p k #K>L, if for any x [ XL<K k #K>Lðx #K>LÞ ¼ 0, then both

pðx #KÞ and kðx #LÞ equal 0, too. Hence, there is a product of two zeros in the numerator of

this formula and we, quite naturally, take

0:0

0
¼ 0:

If K > L ¼ Y, then k #K>L ¼ 1, and the formula degenerates to a simple product of p and k

(obviously, since in this case p #K>L ¼ k #K>L ¼ 1, the condition pðxK>LÞp kðxK>LÞ holds

true).

International Journal of General Systems 627
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Let us stress that the expression p Mk remains undefined in the case that

p #L>K p k #K>L.

Thus, the formal definition of the operator M is as follows.

Definition 3.1. For two arbitrary distributions pðKÞ and kðLÞ, for which p #K>L p k #K>L,

their right composition is, for each x [ XðL<KÞ, given by the following formula:

ðp MkÞðxÞ ¼
pðx #KÞkðx #LÞ

k #K>Lðx #K>LÞ
:

In a case where p #K>L p k #K>L, the composition remains undefined.

The following simple assertion answers the question: what is the result of composition

of two distributions?

Lemma 3.2. Let p and k be probability distributions from PðKÞ and PðLÞ, respectively.

If p #L>K p k #L>K (i.e. if p Mk is defined), then p Mk is a probability distribution from

PðL<KÞðpÞ, i.e. it is a probability distribution and its marginal distribution for variables XK

equals p:

ðp M kÞ#K ¼ p:

Proof. To show that p M k is a probability distribution fromPðL<KÞ, we have to show thatX
y[XK<L

ðp MkÞðyÞ ¼ 1:

Therefore, to prove the whole assertion it is enough to show its second part; that is, to show

that for x [ XK ;

ðp MkÞ#KðxÞ ¼
X

y[XK<L:y #K¼x

ðp MkÞðyÞ ¼ pðxÞ;

because then the required equality is guaranteed by the fact that pðKÞ is a probability

distribution.

X
y[XK<L:y #K¼x

ðp MkÞðyÞ ¼
X

y[XK<L:y #K¼x

pðy #KÞkðy #LÞ

k #K>Lðy #K>LÞ
¼

X
y[XK<L:y #K¼x

pðxÞkðy #LÞ

k #K>Lðx #K>LÞ

¼
pðxÞ

k #K>Lðx #K>LÞ

X
z[XL:z #K>L¼x #K>L

kðzÞ ¼ pðxÞ:

Moreover, due to the assumption

p #K>L p k #K>L;

if k #K>Lðx #K>LÞ ¼ 0, then also pðxÞ ¼ 0, and we defined p Mk ¼ 0 in these points.

Therefore, ðp MkÞ#KðxÞ ¼ pðxÞ for all x [ XK , which finishes the proof. A

Example 3.3. Let us illustrate difficulties which can occur when p #L>K p k #K>L, using a

simple example.
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Consider the distributions pðx1; x2Þ and kðx2; x3Þ given in Table 1, for which

pðx2 ¼ 0Þ . 0 and kðx2 ¼ 0Þ ¼ 0.

If the composition of these two distributions was computed according to the expression

ðp M kÞðx1; x2; x3Þ ¼
pðx1; x2Þkðx2; x3Þ

k #{2}ðx2Þ
;

for all ðx1; x2; x3Þ [ X{1;2;3}, the reader could easily see that, for any ðx1; x2; x3Þ,

pðx1; x2Þkðx2; x3Þ ¼ 0;

since for x2 ¼ 1 pðx2; x3Þ ¼ 0, and for x2 ¼ 0 kðx1; x2Þ ¼ 0.

Notice also that it can easily happen that p Mn is well defined, whereas n M p remains

undefined. For this, consider the distribution n from Table 2 and p from Table 1.

Computation of p Mn and n Mp is in Table 3.

Analogously to M, we can also introduce the operator of left composition.

Definition 3.4. For two arbitrary distributions pðKÞ and kðLÞ, for which k #K>L p p #K>L,

their left composition for each x [ XðL<KÞ is given by the following formula:

ðp N kÞðxÞ ¼
pðx #KÞkðx #LÞ

p #K>Lðx #K>LÞ
:

In a case where k #K>L p p #K>L, the composition remains undefined.

The reader most likely noticed that p M k ¼ kN p, so it seems quite unnecessary to

introduce two operators. The advantage of having both of them will become fully apparent

in the second part of this paper, where multidimensional models will be studied.

Nevertheless, let us reiterate here that either of the expressions pðKÞ MkðLÞ and

pðKÞN kðLÞ, if defined, is a probability distribution of variables XK<L. Let us now begin

discussing properties of these composed distributions.

Table 1. Probability distributions p and k.

p x1 ¼ 0 x1 ¼ 1

x2 ¼ 0 1
2

1
2

x2 ¼ 1 0 0

k x3 ¼ 0 x3 ¼ 1

x2 ¼ 0 0 0
x2 ¼ 1 1

2
1
2

Table 2. Uniform probability distribution n.

n x1 ¼ 0 x1 ¼ 1

x2 ¼ 0 1
4

1
4

x2 ¼ 1 1
4

1
4
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4. Composition of consistent distributions (commutativity)

The following assertion presents a trivial but rather important property.

Lemma 4.1. For any pðKÞ and M , K, p ¼ p #M Mp.

Proof. First, realize that this composition is always defined. The assertion then directly

follows from the definition

p #M Mp ¼
p #Mp

p #M
¼ p: A

Definition 4.2. We say that distributions pðKÞ and kðLÞ are consistent if

p ðK>LÞ ¼ k ðK>LÞ:

Remark 4.3. Notice that if K > L ¼ Y, the distributions p and k are always consistent.

Directly from the definition of the operators N and M, we also get the following trivial

assertion.

Lemma 4.4. If pðKÞ and kðLÞ are consistent distributions, then p M k ¼ p N k. If either

p #K>L p k #K>L or k #K>L p p #K>L, then the reverse implication also holds true,

p M k ¼ pN k¼)p #K>L ¼ k #K>L:

Proof. If p and k are consistent, then

p M k ¼
pk

k #K>L
¼

pk

p #K>L
¼ p N k:

To prove the other side of the equivalence, assume p M k ¼ pN k. Since we also

assume that either p #K>L p k #K>L or k #K>L p p #K>L, meaning that either p M k or

p N k is defined, and since these compositions equal each other, both of them must be

defined. Using Lemma 3.2 twice and then the assumed equivalence, one gets

p #K>L ¼ ðp M kÞ#K>L ¼ ðk M pÞ#K>L ¼ k #K>L: A

Table 3. Computation of pM n and nM p.

x1 x2 x3 pMn nMp

0 0 0 1
2
· 1
2
¼ 1

4
1
4
· 1
2
¼ 1

8

0 0 1 1
2
· 1
2
¼ 1

4
1
4
· 1
2
¼ 1

8

0 1 0 0 · 1
2
¼ 0 1

4
· 0
0
¼?

0 1 1 0 · 1
2
¼ 0 1

4
· 0
0
¼?

1 0 0 1
2
· 1
2
¼ 1

4
1
4
· 1
2
¼ 1

8

1 0 1 1
2
· 1
2
¼ 1

4
1
4
· 1
2
¼ 1

8

1 1 0 0 · 1
2
¼ 0 1

4
· 0
0
¼?

1 1 1 0 · 1
2
¼ 0 1

4
· 0
0
¼?
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5. Basic properties

In this section, a number of basic properties of operators of composition are presented.

Some of them are quite intuitive and help us to understand more complex properties

necessary for multidimensional model construction; some are rather technical and will be

used to simplify proofs in subsequent sections.

5.1 Dominance

Lemma 5.1. Let K # L # N. For any probability distributions p [ PðKÞ and k [ PðLÞ

such that pp k #K , the relation

p M kp k

holds true, and for any n [ PðLÞðpÞ;

np k()np p M k:

Proof. The assertion follows from the definition of the operator M; which can, under the

given assumption, be written as

p M k ¼
pk

k #K
:

From this formula, it is obvious that for any x [ XL;

kðxÞ ¼ 0¼)ðp M kÞðxÞ ¼ 0;

which proves that p M kp k.

Analogously, let n [ PðLÞðpÞ be dominated by k. Consider an x [ XL for which

ðp M kÞðxÞ ¼
pðx #KÞkðxÞ

k #Kðx #KÞ
¼ 0:

That means that either pðx #KÞ ¼ 0 or kðxÞ ¼ 0 (or both). If pðx #KÞ ¼ 0, then n #Kðx #KÞ ¼ 0

as n #K ¼ p, because n [ PLðpÞ. Therefore, also nðxÞ ¼ 0. On the other hand, if kðxÞ ¼ 0,

then nðxÞ ¼ 0, because n is dominated by k. This proves that

np k¼)np p M k:

The opposite implication,

np p M k¼)np k;

follows immediately from the first part of the proof due to transitivity of dominance

np p M k and p M kp k¼)np k: A

5.2 Conditional independence

As said above, application of the operator of composition introduces conditional

independence among the variables. The exact meaning of this statement is expressed by

the following simple, but important, assertion.
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Lemma 5.2. Let nðK < LÞ ¼ pðKÞ M kðLÞ be defined and KnL – Y – LnK. Then

XKnL n XLnK jXK>L½n�.

Proof. To prove this assertion, we have to show that for n ¼ p M k;

nðxÞn #K>Lðx #K>LÞ ¼ n #Kðx #KÞn #Lðx #LÞ ð2Þ

for all x [ XK<L. If, for x [ XK<L, k #K>Lðx #K>LÞ ¼ 0, then also p #K>Lðx #K>LÞ ¼ 0

(because n is defined only when p #K>L p k #K>L), and therefore, also n #K>Lðx #K>LÞ ¼ 0

(and thus n #Kðx #KÞ ¼ n #Lðx #LÞ ¼ nðxÞ ¼ 0, too). From this, we immediately get that

equality (2) holds, because both its sides equal 0.

Consider now such x [ XK<L that k
#K>Lðx #K>LÞ . 0. Lemma 3.2 says that n #Kðx #KÞ ¼

pðx #KÞ. Let us compute n #Lðx #LÞ:

n #Lðx #LÞ ¼
X

y[XK<L:y #L¼x #L

pðy #KÞkðy #LÞ

k #K>Lðy #K>LÞ
¼

kðx #LÞ

k #K>Lðx #K>LÞ

X
y[XK<L:y #L¼x #L

pðy #KÞ

¼
kðx #LÞp #K>Lðx #K>LÞ

k #K>Lðx #K>LÞ
:

Therefore,

n #Kðx #KÞn #Lðx #LÞ ¼
pðx #KÞkðx #LÞp #K>Lðx #K>LÞ

k #K>Lðx #K>LÞ
;

where

pðx #KÞkðx #LÞ

k #K>Lðx #K>LÞ
¼ nðxÞ

from the definition of operator M, and p #K>Lðx #K>LÞ ¼ n #K>Lðx #K>LÞ due to Lemma 3.2.

So we get n #Kn #L ¼ nn #K>L. A

Corollary 5.3. Consider a distribution pðKÞ and two subsets L;M , K such that

LnM – Y, MnL – Y. Then

XLnM n XMnLjXL>M½p� () p #L<M ¼ p #L Mp #M:

Proof. First notice that p #L Mp #M is always defined, because the marginal distributions

from this expression are consistent.

If p #L<M ¼ p #L Mp #M , then validity of the required independence follows from the

preceding Lemma 5.2; therefore, we have only to show that if p #L<M ·p #L>M ¼ p #L ·p #M

(which is a definition of the conditional independence in question), then also

p #L<M ¼ p #L Mp #M . But this is trivial, as

p #L Mp #M ¼
p #L ·p #M

p #L>M
¼

p #L<M ·p #L>M

p #L>M
¼ p #L<M :

All the above modifications are correct because, if for some x p #L>Mðx #L>MÞ ¼ 0, then also

p #Lðx #LÞ ¼ p #Mðx #MÞ ¼ p #L<Mðx #L<MÞ ¼ 0 (recall that we defined 0:0=0 ¼ 0). A
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5.3 Shannon entropy

It is well known that the conditional independence of variables introduced by the operator

of composition is closely connected with the fact that the composed distribution achieves

maximal Shannon entropy,1 as expressed in the following assertion (its proof is based on a

simple technique that can be found in any textbook on information theory). Recall first that

it follows directly from Lemmas 3.2 and 4.4 that for consistent distributions pðKÞ and

kðLÞ, their composition p M k is their common extension from PðK<LÞ, i.e.

p M k [ PðK<LÞð{p; k}Þ} ¼ PðK<LÞðpÞ}>PðK<LÞðkÞ}:

Theorem 5.4. If probability distributions pðKÞ and kðLÞ are consistent, then

Hðp M kÞ ¼ HðpÞ þ HðkÞ2 Hðk #K>LÞ;

and

p M k ¼ arg max
n[PðK<LÞð{p;k}Þ

HðnÞ:

Proof. The first part of the proof is trivial

Hðp M kÞ ¼ 2
X

x[XK<L

ðpM kÞðxÞ.0

ðp M kÞðxÞlogðp M kÞðxÞ

¼ 2
X

x[XK<L

ðpM kÞðxÞ.0

ðp M kÞðxÞlogpðx #KÞ2
X

x[XK<L

ðpMkÞðxÞ.0

ðp M kÞðxÞlogkðx #LÞ

þ
X

x[XK<L

ðpMkÞðxÞ.0

ðp M tkÞðxÞlogkðx #K>LÞ ¼ HðpÞ þ HðkÞ2 Hðk #K>LÞ;

because both p and k are marginal to p M k (this holds due to consistency of p and k, and

Lemmas 4.4 and 3.2).

Now, let us compute the Shannon entropy for an arbitrary distribution

n [ PðK<LÞð{p; k}Þ.

HðnÞ ¼ 2
X

x[XK<L

nðxÞ.0

nðxÞlognðxÞ ¼ 2
X

x[XK<L

nðxÞ.0

nðxÞlog
n #Kðx #KÞn #Lðx #LÞnðxÞn #K>Lðx #K>LÞ

n #K>Lðx #K>LÞn #Kðx #KÞn #Lðx #LÞ

¼ 2
X

x[XK<L

nðxÞ.0

nðxÞlogn #Kðx #KÞ2
X

x[XK<L

nðxÞ.0

nðxÞlogn #Lðx #LÞ

þ
X

x[XK<L

nðxÞ.0

nðxÞlogn #K>Lð#K>LÞ2
X

x[XK<L

nðxÞ.0

nðxÞlog
nðxÞn #K>Lðx #K>LÞ

n #Kðx #KÞn #Lðx #LÞ

¼ Hðn #KÞ þ Hðn #LÞ2 Hðn #K>LÞ2MInðXKnL;XLnK jXK>LÞ

¼ HðpÞ þ HðkÞ2 Hðk #K>LÞ2MInðXKnL;XLnK jXK>LÞ

¼ Hðp M kÞ2MInðXKnL;XLnK jXK>LÞ;
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where MInðXKnL;XLnK jXK>LÞ is conditional mutual information (see, e.g. Gallager

1968), which is known to always be non-negative (and equal to 0 if and only if

XKnL n XLnK jXK>Lj½n�, i.e. when n ¼ p M k). A

Remark 5.5. In this context, the reader should realize that the equality

Hðp M kÞ ¼ HðpÞ þ HðkÞ2 Hðk #K>LÞ

is guaranteed only for consistent distributions. As we shall see from the following

example, in a case where p and k are inconsistent, the entropy of their composition can be

lower or higher than this sum.

Example 5.6. Consider distribution k from Table 4.

Taking the binary logarithm for computation of the Shannon entropy, we get

HðkÞ2 Hðk #{1}Þ ¼
3

2
2 1 ¼

1

2
:

Let us compute entropy values for the distributions p M k and p̂ M k, where

pðx1 ¼ 0Þ ¼ p̂ðx1 ¼ 1Þ ¼ 0:1 and pðx1 ¼ 1Þ ¼ p̂ðx1 ¼ 0Þ ¼ 0:9. These composed

distributions are shown in Table 5 and their entropy values equal

Hðp M kÞ ¼ 0 log2 0þ 0:1 log2 0:1þ 0:45 log2 0:45þ 0:45 log2 0:45 ¼ 1:369;

Hðp̂ M kÞ ¼ 0 log2 0þ 0:9 log2 0:9þ 0:05 log2 0:05þ 0:05 log2 0:05 ¼ 0:569;

which certainly differ from

HðpÞ þ HðkÞ2 Hðk #{1}Þ ¼ Hðp̂Þ þ HðkÞ2 Hðk #{1}Þ ¼ 0:469þ 0:5 ¼ 0:969:

To make the situation even more complicated, let us mention that it may happen that

the equality

HðpðKÞ M kðLÞÞ ¼ HðpðKÞÞ þ HðkðLÞÞ2 Hðk #K>LÞ

holds even in the case of inconsistent distributions. For simplicity, consider uniform

distribution k̂ðx1; x2Þ ¼ 0:25. Then

Hðk̂Þ2 Hðk̂ #{1}Þ ¼ 22 1 ¼ 1;

Table 4. Probability distribution k.

k x1 ¼ 0 x1 ¼ 1

x2 ¼ 0 0 1
4

x2 ¼ 1 1
2

1
4
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and for nðx1Þ;

Hðn M k̂Þ ¼22 ·
nðx1 ¼ 0Þ

2
log

nðx1 ¼ 0Þ

2

� �
2 2 ·

nðx1 ¼ 1Þ

2
log

nðx1 ¼ 1Þ

2

� �
¼2nðx1 ¼ 0Þððlognðx1 ¼ 0ÞÞ2 1Þ2 nðx1 ¼ 1Þððlognðx1 ¼ 1ÞÞ2 1Þ ¼ HðnÞ þ 1;

from which we immediately get that

Hðn M k̂Þ ¼ HðnÞ þ Hðk̂Þ2 Hðk̂ #{1}Þ

for any one-dimensional distribution n.

5.4 Basic exchange lemma

In many proofs, we will need the following important assertion. It is perhaps worth

mentioning that its proof would be quite simple for strictly positive distributions (namely,

all the compositions would be defined); however, it holds even in the presented general

form.

Lemma 5.7. Consider three distributions pðKÞ; kðLÞ, and nðMÞ. If K $ ðL>MÞ, then

ðp M kÞ Mn ¼ ðp MnÞ M k: ð3Þ

Proof. First, let us show that the left-hand side expression in (3) is not defined iff

the right-hand side of this formula is not defined. From the definition of the operators,

we know that ðp M kÞ Mn is defined iff

p #K>L p k #K>L and ðp M kÞ#ðK<LÞ>M p n #ðK<LÞ>M:

Analogously, ðp M nÞ M k is defined iff

p #K>M p n #K>M and ðp M nÞ#ðK<MÞ>L p k #ðK<MÞ>L:

Under the given assumption K $ ðL>MÞ, these two conditions coincide because

ððK < LÞ>MÞ ¼ ðK >MÞ and ððK <MÞ> LÞ ¼ ðK > LÞ; ð4Þ

Table 5. Probability distributions pMk and p̂Mk.

pMk x1 ¼ 0 x1 ¼ 1

x2 ¼ 0 0 0:45
x2 ¼ 1 0:1 0:45

p̂Mk x1 ¼ 0 x1 ¼ 1

x2 ¼ 0 0 0:05
x2 ¼ 1 0:9 0:05
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and

ðp M kÞ#ðK<LÞ>M ¼ p #K>M ;

ðp M nÞ#ðK<MÞ>L ¼ p #K>L:

Now, let us assume that both the expressions in formula (3) are defined. Because of

equalities (4), the expressions

ðp M kÞ M n ¼
pkn

k #K>Ln #M>ðK<LÞ
;

ðp MnÞ M k ¼
pkn

n #K>Mk #L>ðK<MÞ
;

are equivalent to each other, which finishes the proof. A

5.5 Marginalization

Example 5.8. Quite often we have to compute a marginal from a distribution defined as a

composition of oligodimensional distributions. Therefore, it is important to realize that

generally for pðKÞ, kðLÞ, and M , K < L;

ðp M kÞ#M – p #K>M M k #L>M : ð5Þ

To illustrate a situation when equality in formula (5) does not hold, consider

composition p M k of distributions from Table 6 and its marginal distribution

ðp M kÞ#{1;3}, which is depicted in Table 7. At first glance, we see that variables X1 and

X3 are not independent for this marginal distribution. Therefore,

ðpðx1; x2Þ M kðx2; x3ÞÞ
#{1;3} – ðpðx1; x2ÞÞ

#{1} M ðkðx2; x3ÞÞ
#{3} ¼ p #{1}ðx1Þ M k #{3}ðx3Þ

¼ p #{1}ðx1Þ ·k
#{3}ðx3Þ:

Nevertheless, as it will be formulated in Lemma 5.10, in special situations the equality

in expression (5) holds. Before presenting this assertion, let us formulate a simpler, more

specific, assertion.

Lemma 5.9. Consider two distributions pðKÞ, kðLÞ, and M # N such that

K < L $ M $ K. Then

ðp M kÞ#M ¼ p M k #L>M:

Table 6. Probability distributions p and k.

p x1 ¼ 0 x1 ¼ 1

x2 ¼ 0 1
2

0

x2 ¼ 1 0 1
2

k x3 ¼ 0 x3 ¼ 1

x2 ¼ 0 1
2

0

x2 ¼ 1 0 1
2
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Proof. Let us first mention that both p M k and p M k #L>M are not defined iff

p #K>L p k #K>L. So, to prove the assertion, we can restrict our considerations to a case

when p M k is defined. Let us compute (for x [ XM)

ðp M kÞ#MðxÞ ¼
X

y[XK<L:y #M¼x

pðy #KÞkðy #LÞ

k #K>Lðy #K>LÞ
¼

pðx #KÞ

k #K>Lðx #K>LÞ

X
y[XK<L:y #M¼x

kðy #LÞ

¼
pðx #KÞk #L>Mðx #L>MÞ

k #K>Lðx #K>LÞ
¼ ðp M k #L>MÞðxÞ: A

Lemma 5.10. Let K; L;M # N. If K < L $ M $ K > L, then for any probability

distributions pðKÞ and kðLÞ, ðp M kÞ#M ¼ p #K>M M k #L>M .

Proof. Let us compute the required marginal distribution in two steps. In the first step, we

will employ Lemma 5.9, then Lemma 4.1 and finally Lemma 5.7:

ðp M kÞ#K<M ¼ p M k #L>M ¼ ðp #K>L MpÞ M k #L>M ¼ ðp #K>L M k #L>MÞ Mp:

The last expression will be further marginalized with the help of Lemma 5.9 and

afterwards the final form will be received with application of Lemma 5.7 and Lemma 4.1.

ðp M kÞ#M ¼ ðp #K>L M k #L>MÞ M p
� �#M

¼ ðp #K>L M k #L>MÞ M p #K>M

¼ ðp #K>L M p #K>MÞ M k #L>M ¼ p #K>M M k #L>M: A

The following assertion shows that any composition of two distributions can be

expressed as a composition of two consistent distributions, each of which is defined for the

same group of variables as the original ones. A

Lemma 5.11. Let p [ PðKÞ and k [ PðLÞ. If p M k is defined, then

p M k ¼ p M ðp M kÞ#L:

Proof. The assertion is a trivial consequence of the next, more general assertion. A

Lemma 5.12. Let p [ PðKÞ and k [ PðLÞ. If p M k is defined and L # M # K < L, then

p M k ¼ p M ðp M kÞ#M : ð6Þ

Proof. First, notice that if p M k is defined, then also p M ðp M kÞ#M is defined (namely,

p and ðp M kÞ#M are consistent). The required equality (6) follows immediately from

Table 7. Marginal ðpMkÞ#{1;3} of a composed distribution.

ðpMkÞ#{1;3} x1 ¼ 0 x1 ¼ 1

x3 ¼ 0 1
2

0

x3 ¼ 1 0 1
2
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Lemmas 5.10, 4.4, 5.7, and 4.1:

p Mðp M kÞ#M ¼p Mðp #K>M M kÞ ¼ ðp #K>M M kÞ Mp¼ ðp #K>M MpÞ M k¼p M k: A

6. I-geometry of composition operators

This section is based on the results of Csiszár (1975), and therefore, we use also his

terminology (such as the term I-geometry in the section title or using Kullback–Leibler

divergence ‘Div’ as a ‘measure’ of distance).

Definition 6.1. Consider any p [ PðLÞ and an arbitrary subset Q of PðLÞ. Distribution

k ¼ arg min
n[Q

DivðnkpÞ

is called an I-projection of p into Q.

According to this definition, I-projection is a distribution from Q , PðLÞ, which is, in a

sense, closest to p. As a measure of distance, we take the Kullback–Leibler divergence2

DivðkkpÞ ¼

P
x[XL:kðxÞ.0

kðxÞlog kðxÞ
pðxÞ

if kp p;

þ1 otherwise:

8<
:

Generally, it may happen that for given p and Q, the I-projection does not exist.

However, considering Q to be a set of distributions with given marginal(s), which is

always a convex compact set of distributions, the existence and uniqueness of the

I-projection are guaranteed just by the existence of one n [ Q for which DivðnkpÞ is

finite. Instructions for finding this I-projection are given by the following assertion.

Theorem 6.2. Let K # L # N. For arbitrary probability distributions p [ PðKÞ and k [
PðLÞ such that pp k #K , p M k is the I-projection of k into PðLÞðpÞ (Figure 2). Moreover,

DivðnkkÞ ¼ Divðnkp M kÞ þ Divðp M kkkÞ

for any n [ PðLÞðpÞ.

Figure 2. I-projection of k into PðLÞðpÞ.
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Proof. p M k [ PðLÞðpÞ and, since p M kp k (this holds due to Lemma 5.1), Divðp M

kkkÞ is finite. Therefore, the I-projection n* of k in PðLÞðpÞ must be dominated by k

(otherwise Divðn*kkÞ ¼ þ1 and n* cannot be an I-projection of k in PðLÞðpÞ).

Consider any n [ PðLÞðpÞ that is dominated by k. First, realize that, because of Lemma

5.1, np p M k. Therefore, we can compute

DivðnkkÞ ¼
X

x[XL:nðxÞ.0

nðxÞlog
nðxÞ

kðxÞ
¼

X
x[XL:nðxÞ.0

nðxÞlog
nðxÞ

ðp M kÞðxÞ

ðp M kÞðxÞ

kðxÞ

� �

¼ Divðnkp M kÞ þ
X

x[XL:nðxÞ.0

nðxÞlog
ðp M kÞðxÞ

kðxÞ

¼ Divðnkp M kÞ þ
X

x[XL:nðxÞ.0

nðxÞlog
pðx #KÞkðxÞ

k #Kðx #KÞkðxÞ

¼ Divðnkp M kÞ þ
X

z[XK :n #K ðzÞ.0

n #KðzÞlog
pðzÞ

k #KðzÞ

¼ Divðnkp M kÞ þ
X

z[XK :pðzÞ.0

pðzÞlog
pðzÞ

k #KðzÞ
¼ Divðnkp M kÞ þ Divðpkk #KÞ:

As it is known that the divergence Divðnkp M kÞ cannot be negative, DivðnkkÞ

achieves its minimum for n ¼ p M k (since Divðp M kkp M kÞ ¼ 0) and thus

Divðp M kkkÞ ¼ Divðpkk #KÞ:

The equality

DivðnkkÞ ¼ Divðnkp M kÞ þ Divðp M kkkÞ

also holds when np k because, according to Lemma 5.1, also np p M k, and, therefore,

both DivðnkkÞ and Divðnkp M kÞ equal þ1. A

7. Associativity

Having a binary operator, mathematicians usually ask questions regarding its

mathematical properties like commutativity, associativity, and idempotence. Up to now,

we have shown that composition is commutative only for consistent distributions

(cf. Lemma 4.4). The idempotence of composition follows immediately from Lemma 3.2,

because from this assertion one can see that

p M p ¼ p Np ¼ p:

In this section, we will show that composition is generally not associative, but,

similarly to commutativity, associativity holds under some special conditions.

The importance of the operators of composition stems from the fact that they can form

multidimensional distributions from a system of oligodimensional (low-dimensional)

distributions. When these operators are iteratively applied to a sequence of distributions,

the result, if defined, is a multidimensional distribution. This resulting distribution is

defined for all the variables which appear among the arguments of at least one distribution
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from the considered sequence. And it is this iterative application of operators, together

with the fact that they are neither commutative nor associative, that led us to define two

operators M and N .

Let us start this section with an example, in which we will show that generally

(a) ðp M kÞ Mn – p M ðk MnÞ,

(b) ðp M kÞ Mn – ðp M nÞ M k,

(c) ðp M kÞ Mn – ðp N kÞN n, and

(d) ðp M kÞN n – ðp N nÞN k.

Nevertheless, let us keep in mind that the equality in these expressions may occur in

special situations. For example, when all the distributions p; k; and n are uniform, then all

the expressions result in a uniform distribution, too.

Example 7.1. Suppose all the expressions appearing in this example are defined.

(a) Consider

ðpðx1Þ M kðx2ÞÞ Mnðx1; x2Þ ¼ pðx1Þkðx2Þ; ð7Þ

which evidently differs from

pðx1Þ M ðkðx2Þ Mnðx1; x2ÞÞ ¼
pðx1Þðkðx2Þnðx1jx2ÞÞP

y[X1

kðx2Þnðyjx2Þ
: ð8Þ

Namely, in (7), the variables X1 and X2 are independent; X1 n X2½ðp M kÞ M n�, which

need not be generally true for (8). To see it, take an example, where both pðx1Þ and kðx2Þ

are uniform distributions and nð0; 0Þ ¼ nð1; 1Þ ¼ 1=2 and nð0; 1Þ ¼ nð1; 0Þ ¼ 0. In this

case, both the marginal distributions nðx1Þ and nðx2Þ are uniform and, therefore, p and n, as

well as k and n, are consistent. Therefore (due to Lemma 4.4), p Mn ¼ p N n ¼ n and

also k Mn ¼ kN n ¼ n. From this, we get

p M ðkN nÞ ¼ p M n ¼ p N n ¼ n;

which obviously differs from p M k. As a product of two one-dimensional uniform

distributions, the latter is a uniform distribution, too.

(b) To illustrate the second inequality, consider three one-dimensional distributions

pðx1Þ, kðx2Þ, and nðx2Þ, such that kðx2Þ – nðx2Þ. Then

ðpðx1Þ M kðx2ÞÞ Mnðx2Þ ¼ pðx1Þkðx2Þ – pðx1Þnðx2Þ ¼ ðpðx1Þ Mnðx2ÞÞ M kðx2Þ:

(c) Consider three distributions pðxÞ, kðxÞ, and nðxÞ for which pðxÞ – nðxÞ. Then

ðpðxÞ M kðxÞÞ MnðxÞ ¼ pðxÞ – nðxÞ ¼ ðpðxÞN kðxÞÞN nðxÞ:
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(d) Consider again distributions pðxÞ, kðxÞ, and nðxÞ, this time such that kðxÞ – nðxÞ.

Then it is clear that

ðpðxÞN kðxÞÞN nðxÞ ¼ nðxÞ – kðxÞ ¼ ðpðxÞN nðxÞÞN kðxÞ:

Let us start with the two most important assertions of this section. They formulate

sufficient conditions under which the associativity of M holds.

Theorem 7.2. Let pðKÞ, kðLÞ, and nðMÞ be distributions for which p M ðk MnÞ is defined.

If K $ ðL>MÞ, then

ðp M kÞ Mn ¼ p M ðk MnÞ ¼ ðnN kÞNp:

Proof. We begin by showing that under the given assumptions, ðp M kÞ Mn is also

defined. The fact that p M ðk MnÞ is defined enforces p #K>ðL<MÞ p ðk MnÞ#K>ðL<MÞ, from

which, due to Lemma 3.2, one gets that p #K>L p k #K>L, which guarantees that p M k is

defined.

So, it remains to also be shown that ðp M kÞ#M>ðK<LÞ p n #M>ðK<LÞ, which is under the

given assumptions regarding K equivalent to p #M>K p k #M>K . This follows from the

transitivity of the dominance. We have already said that p #K>ðL<MÞ p ðk MnÞ#K>ðL<MÞ,

because p M ðk MnÞ is defined, and ðk MnÞ#M p n due to Lemma 5.1.

The fact that under the given assumptions (see Lemma 5.10),

ðk MnÞ#K>ðL<MÞ ¼ k #K>L Mn #K>M ¼
k #K>L · n #K>M

n #L>M

will be used in the following computations:

p M ðk MnÞ ¼ p M
k · n

n #L>M

� �
¼

p · k · n

n #L>M · ðk MnÞ#K>ðL<MÞ
¼

p ·k · n

n #L>M
·

n #L>M

k #K>L · n #K>M

¼
p ·k

k #K>L
·

n

n #K>M
¼ ðp M kÞM n;

where the last modification is valid, because under the given assumption,

M > ðK < LÞ ¼ M > K: A

Theorem 7.3. Let pðKÞ, kðLÞ, and nðMÞ be distributions for which p M ðk MnÞ is defined.

If L $ ðK >MÞ, then

ðp M kÞ Mn ¼ p M ðk MnÞ ¼ ðnN kÞNp:

Proof. From the fact that p M ðk MnÞ is defined, one gets that k #L>M p n #L>M and

p #K>ðL<MÞ p ðk MnÞ#K>ðL<MÞ. However, assuming that L $ ðK >MÞ, we know that

K > ðL<MÞ ¼ K > L, and therefore, the latter dominance can be, in fact, expressed as

p #K>L p k #K>L (notice that ðk MnÞ#K>L ¼ k #K>L due to Lemma 3.2), which guarantees

that p M k is defined. Therefore, to show that ðp M kÞ Mn is defined, it is enough to prove

that ðp M kÞ#M>L p n #M>L (here, we used the fact that L $ ðK >MÞ implies

M > ðK < LÞ ¼ M > L). But this follows from the above-mentioned dominance k #L>M p

n #L>M and the dominance ðp M kÞ#L p k, guaranteed by Lemma 5.1 by the transitivity of
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dominance. So, we know that since p M ðk MnÞ is defined, ðp M kÞ Mn must be defined,

too.

To finish the proof, in the following computations, we will only employ the

definition of the operator of composition, equalities K > ðL<MÞ ¼ K > L and

M > ðK < LÞ ¼ M > L, and Lemma 3.2:

p M ðk MnÞ ¼
k · n

n #L>M
·

p

ðk MnÞ#K>ðL<MÞ
¼

p ·k · n

k #K>L · n #L>M

¼
p · k

k #K>L
·

n

n #M>ðK<LÞ
¼ ðp M kÞ Mn: A

Remark 7.4. If the readers expected that there would be a third theorem saying that

ðp M kÞ Mn ¼ p M ðk MnÞ under the assumption that M $ K > L, then we are afraid,

they will be disappointed. Going back to Example 7.1, in case (a) we presented a

counterexample to such an assertion.

Remark 7.5. Notice that it may happen that ðp M kÞ Mn is defined, while p M ðk MnÞ is

undefined for the same distributions, as an example of the following distributions shows:

pðxÞ ,
1

2
;
1

2
; 0

� �
; kðxÞ ,

1

3
;
1

3
;
1

3

� �
; nðxÞ ,

1

2
;
1

2
; 0

� �
:

(Hint: p M k ¼ p, p Mn ¼ p, and k Mn are undefined.)

8. Advanced exchange properties

The following simple assertion introduces a property that will be used in several proofs.

Lemma 8.1. Let pðKÞ and kðLÞ be distributions for which K > L # M # L, then

p M k ¼ ðp M k #MÞ M k:

Proof. Obviously, p M k is defined iff p M k #M is defined, and therefore, the assertion

trivially follows from Theorem 7.3 and Lemma 4.1:

ðp M k #MÞ M k ¼ p M ðk #M M kÞ ¼ p M k: A

In the rest of this section, we present some other lemmata that state under which

conditions one can change ordering of distributions when applying the operator of

composition twice. Nevertheless, associativity of the operator of composition will also be

discussed in the next section.

Lemma 8.2. If p and k are consistent, then for p(K), k(L), and n(M),

L $ ðK >MÞ)ðp M kÞ Mn ¼ ðp MnÞN k ¼ k M ðp MnÞ:

Proof. Again we start by showing that, under the given assumptions, (p Mk) Mn is

defined iff (p Mn)N k is defined.
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Since we assume that p and k are consistent, the former expression is defined

if and only if ðp M kÞ#M>ðK<LÞ p n #M>ðK<LÞ. Moreover, since L $ (K > M), then

M > (K < L) ¼ M > L, and therefore,

ðp M kÞ#M>ðK<LÞ ¼ ðp M kÞ#M>L ¼ ðpN kÞ#M>L ¼ k #M>L:

Thus, we get that (p Mk) Mn is defined iff

k #L>M p n #L>M: ð9Þ

Notice that because of the consistency of p and k, dominance (9) guarantees that

p Mn is also defined.

(p Mn)N k is defined iff p Mn is defined and

k #L>ðK<MÞ p ðp MnÞ#L>ðK<MÞ: ð10Þ

Since K > M # L > (K < M), we can apply Lemma 5.10 getting

ðp MnÞ#L>ðK<MÞ ¼ p #L>K Mn #L>M ¼ k #L>K Mn #L>M;

where the last equality follows from the consistency of p and k. Thus, we get that

dominance (10) is equivalent to

k #L>ðK<MÞ p k #L>K Mn #L>M;

from which the required dominance (9) is derived by the application of Lemma 5.1 and the

transitivity of dominance, which finishes the first part of the proof.

Now, it remains to be shown that (p Mk) Mn ¼ k M (p Mn) in a case where both

sides of the equality are defined. For this, in the following computations, we will,

respectively, use Theorem 7.3, consistency of p and k together with Lemma 4.4,

Lemma 5.7 and eventually Theorem 7.2.

ðp M kÞ Mn ¼ p M ðk MnÞ ¼ ðk MnÞ Mp ¼ ðk MpÞ Mn ¼ k M ðp MnÞ:

Lemma 8.3. Consider distributions p(K), k(L), and n(M). If p and n are consistent, then

K $ ðL>MÞ)ðp M kÞ Mn ¼ ðp M kÞN n:

Proof. This assertion is almost obvious. Both expressions (p Mk) Mn and (p Mk)N n are

not defined if p Mk is undefined (i.e. if p #K>L p k #K>LÞ:
In a case where p Mk is defined, then, under the given assumptions

M > ðK < LÞ ¼ M > K, we get that ðp M kÞ#M>ðK<LÞ ¼ p #M>K ¼ n #M>K , and therefore,

p Mk and n are consistent. Therefore, both expressions (p Mk) Mn and (p Mk)N n are

defined and equivalent to each other (due to Lemma 4.4). A

Lemma 8.4. Let k(L) and n(M) be consistent. If, for p(K), the expression

(pN n)N k is defined, then

M $ ðK > LÞ)ðpN kÞN n ¼ ðpN nÞN k:
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Proof. Assuming that ðpN nÞN k is defined, we know that pN n is defined, and therefore,

n #K>M p p #K>M: ð11Þ

The other expression ðpN kÞN n is defined iff kK>L p pK>L, which is, due to the

given assumptions, equivalent to

n #K>L p p #K>L; ð12Þ

and

n #M>ðK<LÞ p ðpN kÞ#M>ðK<LÞ: ð13Þ

However, (11))(12) is obvious and the dominance (13) can be reformulated, using

the equivalence following from Lemma 5.10, the given assumptions and the definition of

the operators

ðpN kÞ#M>ðK<LÞ ¼ p #M>K N k #M>L ¼ p #M>K N n #M>L ¼ n #M>L Mp #M>K

into an equivalent form

n #M>L ¼ n #M>ðK<LÞ p n #M>L Mp #M>K ¼ n #M>L;

which always holds. So, we have shown that if ðpN nÞN k is defined, then ðpN kÞN n is

also defined.

Now let us start proving that if the respective expressions are defined, they are equal to

each other. For this, we will use the definitions of the operators of composition, Theorems

7.2 and 7.3, and Lemma 4.4.

ðpN kÞN n ¼ n M ðk MpÞ ¼ ðn M kÞ Mp ¼ ðk MnÞ Mp ¼ k M ðn MpÞ

¼ ðpN nÞN k: A

Lemma 8.5. If M $ ðK > LÞ, then for pðKÞ; kðLÞ and nðMÞ,

ðpN kÞN n ¼ ððpN nÞN kÞN n ð14Þ

holds true if the right-hand side of the formula is defined.

Proof. Knowing that ððpN nÞN kÞN n is defined, ðpN nÞN k must be defined, too, and,

due to preceding Lemma 8.4, ðpN nÞN k ¼ ðpN kÞN n. Therefore,

ððpN nÞN kÞN n ¼ ððpN kÞN nÞN n ¼ n M ððpN kÞN nÞ ¼ ðpN kÞN n;

where the last modification is simply an application of Lemma 4.1. A

9. Anticipating operator

In this section, we will introduce and study the properties of another operator, which will

define a special type of composition of two distributions.
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D
ow

nl
oa

de
d 

by
 [

R
ad

im
 J

ir
ou

se
k]

 a
t 2

1:
19

 0
8 

Ju
ly

 2
01

1 



Definition 9.1. Consider an arbitrary subset K , N and two distributions kðLÞ and nðMÞ.

Their anticipating composition is given by the formula:

kjMKn ¼ ðn #ðKnLÞ>M ·kÞ Mn:

The operator jMK will be called an anticipating operator of composition.

Remark 9.2. Notice that this operator is parameterized by an index set, which is the main

difference with respect to the previously defined operators M and N . In Theorem 9.4, we

will articulate the main purpose for which this operator is introduced. Namely, operator M

can be substituted by an anticipating operator simultaneously with changing the ordering

of operations. The purpose of the parameter K will be intuitively explained in Remark 9.8.

Remark 9.3. It should be stressed that since the anticipating operator is defined with the

help of the operator of right composition, it may happen that the result remains undefined.

It follows immediately from the respective definitions that k jMKn is defined iff k Mn is

defined, i.e. if k #L>M p n #L>M . Moreover, notice that distribution k jMKn, if defined, is

defined for the same set of variables as the distribution k Mn, and that

ðkðLÞjMKnðMÞÞ#L ¼ kðLÞ.

Theorem 9.4. If pðKÞ, kðLÞ, and nðMÞ are such that p M ðk jMKnÞ is defined, then

ðp M kÞ Mn ¼ p M ðk jMKnÞ:

To prove this theorem, we need the following simple auxiliary assertion.

Lemma 9.5. Consider distributions pðKÞ and kðLÞ. If p #M p n #M for M # KnL, then

p M k ¼ p M ðn #M ·kÞ;

if any of the expressions is defined.

Proof. In the following computations, everything is correct, because we assume p #M p

n #M (i.e. if there is a zero in a denominator, then there are at least two zeroes in the

respective numerator and the result is considered to be zero):

p M ðn #M ·kÞ ¼
p · n #M ·k

ðn #M ·kÞ#K>ðL<MÞ
¼

p · n #M ·k

n #M ·k #K>L
¼

p ·k

k #K>L
¼ p M k:

A

Proof of Theorem 9.4. Assume that p M ðk jMKnÞ is defined. It means that

p #K>ðL<MÞ p ðk jMKnÞ
#K>ðL<MÞ; ð15Þ

and, as a consequence of the fact that dominance also holds for the respective marginal

distributions, p #K>L p k #K>L. This guarantees that p M k is defined.

Let us now show by contradiction that ðp M kÞ Mnmust also be defined. Assume it is

not. It means that there exists x [ XK<L<M such that nðx #MÞ ¼ 0 and simultaneously
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ðp M kÞðx #K<LÞ . 0 (and thus also kðx #LÞ . 0), but this contradicts our assumption that

k jMKn is defined.

Now, knowing that ðp M kÞ Mn is defined, we can apply Lemma 9.5, getting

ðp M kÞ Mn ¼ ðp M ðn #M ·kÞÞ Mn:

This enables us to complete the proof by applying Theorem 7.3:

p M ðk jMKnÞ ¼ p M ððn #M ·kÞ MnÞ ¼ ðp M ðn #M ·kÞÞ Mn ¼ ðp M kÞ Mn: A

Remark 9.6. Notice that, in the same way as Theorems 7.2 and 7.3, the assertion does not

claim that the equality holds true when ðp M kÞ Mn is defined. This is because it may also

happen here that ðp M kÞ Mn is defined and p M ðk jMKnÞ is not. The reader can show it

with the distributions p; k; and n from Remark 7.5.

Remark 9.7. It should be noted here that the computational complexity of the composition

k jMKn does not differ substantially from the complexity of the computation of k Mn. It

follows, namely, from the fact that both of these distributions are of the same

dimensionality; and both are defined for variables XL<M . In other words, in both cases, we

have to compute the same number of probability values.

Remark 9.8. As we have already noted above, the operator is parameterized by the index

set K. The purpose of the operator is, namely, to compose the distributions (in our case

distributions k and n), but to simultaneously introduce the necessary independence of

variables XðKnLÞ>M and XL that would otherwise be omitted. If we want to compose

distributions k and n before p is considered, we have to ‘anticipate’ the independence

which was originally introduced by the previous operator. This also explains why the

operator jM Kn is called an anticipating operator.

Example 9.9. As stated previously, the specific purpose of the anticipating operator is to

introduce the necessary conditional independence that would otherwise be omitted.

To illustrate the point, let us consider three distributions pðx1Þ; kðx2Þ; and nðx1; x2Þ for
which pðx1Þ M kðx2Þð Þ Mnðx1; x2Þ ¼ pðx1Þkðx2Þ. If we used the operator M instead ofjMK ,

we would get

pðx1Þ M kðx2Þ Mnðx1; x2Þ
� �

¼
pðx1Þðkðx2Þnðx1jx2ÞÞP

y[X1

kðx2Þnðyjx2Þ
;

which evidently differs from pðx1Þkðx2Þ, because p M ðk MnÞ inherits the dependence of

variables X1 and X2 from n. Nevertheless, considering

pðx1Þ M kðx2ÞjM {1}n ðx1; x2Þ
� �

¼ pðx1Þ M nðx1Þkðx2Þ Mnðx1; x2Þ
� �

¼ pðx1Þ Mnðx1Þkðx2Þ ¼ pðx1Þkðx2Þ;

we get the desired result.
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Perhaps it is also worth mentioning that, in this example, kðx2Þ jM {1}nðx1; x2Þ ¼

nðx1Þkðx2Þ is not a marginal distribution of the resulting ðpðx1Þ M kðx2ÞÞ Mnðx1; x2Þ.

Example 9.10. Let us present another, slightly more complex, example illustrating the

application of the anticipating operator. This time consider distributions

pðx1; x2; x3; x4Þ; kðx2; x3; x5Þ; and nðx3; x4; x6Þ. In this case, according to Theorem 9.4,

pðx1; x2; x3; x4Þ M kðx2; x3; x5Þ
� �

Mnðx3; x4; x6Þ

¼ pðx1; x2; x3; x4Þ M kðx2; x3; x5Þ jM {1;2;3;4}
n ðx3; x4; x6Þ

� �
:

According to the definition of the anticipating operator, the expression in parentheses equals

nðx4Þkðx2; x3; x5Þ Mnðx3; x4; x6Þ ¼ nðx4Þkðx2; x3; x5Þnðx6jx3; x4Þ: ð16Þ

The readermost likely notices that, thanks to the anticipating operator, nðx6jx3; x4Þ appears in
this formula, which is exactly the form at which n occurs in

pðx1; x2; x3; x4Þ M kðx2; x3; x5Þ
� �

Mnðx3; x4; x6Þ

¼ pðx1; x2; x3; x4Þkðx5jx2; x3Þnðx6jx3; x4Þ:

Moreover, formula (16) allows for simple computation of the marginal required in the next

step:

kðx2; x3; x5Þ jM {1;2;3;4}nðx3; x4; x6Þ
� �# {2;3;4}

¼ nðx4Þkðx2; x3Þ:

Therefore,

pðx1; x2; x3; x4Þ M kðx2; x3; x5Þ jM {1;2;3;4}n ðx3; x4; x6Þ
� �

¼ pðx1; x2; x3; x4Þ
nðx4Þkðx2; x3; x5Þnðx6jx3; x4Þ

nðx4Þkðx2; x3Þ

¼ pðx1; x2; x3; x4Þkðx5jx2; x3Þnðx6jx3; x4Þ:

10. Generating sequences

Beginning with this section, the reader will learn how the operators of composition are

used to constructmultidimensional compositional models and about the properties of these

models. Therefore, it may be useful to summarize the most important properties of the

operators of composition that we studied in the previous sections.

. Composing two distributions, we can define a distribution of a higher

dimensionality than any of the original ones.

. One of the distributions is always a marginal of the composed distribution (for M it

is the first one and for N it is the second one).

. The operator is neither commutative nor associative. Nevertheless, there are special

situations under which both commutativity and associativity hold: the commu-

tativity holds for consistent distributions, and the associativity holds when the first

(or second) distribution is defined for the set of variables containing an intersection

of arguments of the remaining two distributions.
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. Operations of marginalization and composition commute only if the resulting

marginal distribution is defined for all variables which appear among the arguments

of both the original distributions.

. There are many ‘special situations’ under which an order of operators of

composition can be changed without influencing the resulting composed

distribution. Since we will use them quite often from now on, we present a list of

the most important assertions in Table 8.

To avoid some technical problems and the necessity of repeating some assumptions to

excess, let us make three important conventions.

In this and all the remaining sections, we will consider a system of n oligodimensional

distributions p1ðK1Þ, p2ðK2Þ; · · ·;pnðKnÞ. Therefore, whenever we speak about a

distribution pk, if not explicitly specified otherwise (usually in examples), the distribution

pk will always be assumed to be a distribution from PðKkÞ, which means it will be a

distribution pkðKkÞ. Thus, formulae p1 Mp2 M · · · Mpn and p1 Np2 N · · · Npn, if they

are defined, will determine the distributions of variables XK1<K2<· · ·<Kn
.

Our second convention pertains to the fact that (as we know from the preceding

sections) the operators of composition are neither commutative nor associative. To avoid

having to write too many parentheses in the formulae, in the rest of the paper, we will

apply the operators from left to right. Thus

p1 Mp2 Mp3 M · · · Mpn ¼ ð· · ·ððp1 Mp2Þ Mp3Þ M · · · MpnÞ;

and analogously also

p1 Np2 Np3 N · · · Npn ¼ ð· · ·ððp1 Np2ÞNp3ÞN · · · NpnÞ:

So the parentheses will be used only when we want to change this default ordering.

Therefore, to construct a multidimensional distribution, it is sufficient to determine a

sequence – we will call it a generating sequence – of oligodimensional distributions.

However, since generally

p1 Mp2 M · · · Mpn – p1 Np2 N · · · Npn;

it is necessary to determine which of the operators, M or N , is used for composition. If not

explicitly stated otherwise, we will usually consider operator M. This is because these two

operators, when applied iteratively to a generating sequence, substantially differ from a

computational point of view. To realize it, consider application of the kth operator in the

sequences p1 Mp2 M · · · Mpn and p1 Np2 N · · · Npn. In the former case, when

computing

p1 M · · · Mpkð Þ Mpkþ1 ¼
p1 M · · · Mpkð Þpkþ1

p
#Kkþ1>ðK1<· · ·<KkÞ
kþ1

;

one has to marginalize distribution pkþ1, which is assumed to be a low-dimensional

distribution. On the other hand, computation of

p1 N · · · Npkð ÞNpkþ1 ¼
p1 N · · · Npkð Þpkþ1

p1 N · · · Npkð Þ#Kkþ1>ðK1<· · ·<KkÞ
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Table 8. Survey of assertions enabling alteration of order of compositions.

Structural property Requirement on consistency Statement Reference

– –
ðpM kÞM n

¼ pM ðkjM KnÞ
Theorem 9.4

K $ ðL>MÞ –
ðpM kÞM n

¼ ðpM nÞM k
Lemma 5.7

p; n
ðpM kÞ M n

¼ ðpM kÞN n
Lemma 8.3

–
ðpM kÞM n

¼ pM ðkM nÞ
Theorem 7.2

L $ ðK >MÞ p; k
ðpM kÞM n

¼ ðpM nÞN k
Lemma 8.2

–
ðpM kÞM n

¼ pM ðkM nÞ
Theorem 7.3

M $ ðK > LÞ k; n
ðp N kÞN n

¼ ðp N nÞN k
Lemma 8.4

–
ðp N kÞN n

¼ ððpN nÞN kÞN n
Lemma 8.5
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can only be done when computation of

p1 N · · · Npkð Þ#Kkþ1>ðK1<· · ·<KkÞ

is tractable; since the distribution p1 N · · · Npkð Þ can be of a very high dimension, its

marginalization may become computationally expensive.

The third aforementioned convention is of a rather technical nature. The reader may

have noticed that in the previous sections, we spent a substantial part of some of the

proofs clarifying situations when the result of composition is not defined. Since in the

remaining part of the paper we are interested in a construction of multidimensional

models, it is quite natural that we will always assume that all the models we speak about

are well defined.

10.1 Perfect sequences

Not all generating sequences are equally efficient in their representations of

multidimensional distributions. Among them, so-called perfect sequences hold an

important position (Jiroušek 1997).

Definition 10.1. A generating sequence of probability distributions p1;p2; · · ·;pn is

called perfect if p1 M · · · Mpn is defined and

p1 Mp2 ¼ p1 Np2;

p1 Mp2 Mp3 ¼ p1 Np2 Np3;

..

.

p1 Mp2 M · · · Mpn ¼ p1 Np2 N · · · Npn:

From this definition, one can hardly see the importance of perfect sequences. This

importance becomes clearer from the characterization theorem that follows. First,

however, let us present a technical property, which, being an immediate consequence of an

inductive application of Lemma 4.4, is presented without a proof.

Lemma 10.2. A sequence p1;p2; · · ·;pn is perfect if and only if the pairs of distributions

ðp1 M · · · Mpm21Þ and pm are consistent for all m ¼ 2; 3; · · ·; n.

Theorem 10.3. A sequence of distributions p1;p2; · · ·;pn is perfect iff all the distributions

from this sequence are marginals of the distribution ðp1 Mp2 M · · · MpnÞ:

Proof. The fact that all distributions pk from a perfect sequence are marginals of ðp1 M

p2 M · · · MpnÞ follows from the fact that ðp1 M · · · MpkÞ is marginal to ðp1 M · · · MpnÞ

and pk is marginal to ðp1 N · · · NpkÞ (see Lemma 3.2).

Suppose that for all k ¼ 1; · · ·; n, pk are marginal distributions of ðp1 M · · · MpnÞ. It

means that all the distributions from the sequence are pairwise consistent, and that each pk

is consistent with any marginal distribution of ðp1 M · · · MpnÞ. Therefore, p1 and p2 are

consistent, and due to Lemma 4.4

p1 Mp2 ¼ p1 Np2:
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Since p1 Mp2 is marginal to ðp1 M · · · MpnÞ (Lemma 3.2), it must be consistent with p3,

too. Using Lemma 4.4 again, we get

p1 Mp2 Mp3 ¼ p1 Np2 Np3:

However, p1 Mp2 Mp3, being marginal to ðp1 M · · · MpnÞ, must also be consistent with

p4 and we can continue in this manner until we conclude that for all k ¼ 2; · · ·; n

p1 Mp2 M · · · Mpk ¼ p1 Np2 N · · · Npk: A

Example 10.4. The theorem presented above states that a model defined by a generating

sequence preserves all the given marginals iff the model is defined by a perfect sequence. If

the considered generating sequence is not perfect, then some of the marginal distributions

differ from the given ones. In this example, we show that a non-perfect generating

sequence need not preserve one-dimensional marginal distributions – even in the case

when the given oligodimensional distributions are pairwise consistent.

Consider distribution pðx1; x2; x3Þ from Table 9. It is obvious that three distributions

p #{1}; p #{2}, and p must be pairwise consistent. Let us deal with the distribution defined

by generating sequence p #{1}; p #{2}; and p, i.e. with the distribution

p #{1}ðx1Þ Mp #{2}ðx2Þ Mpðx1; x2; x3Þ:

Since both the considered one-dimensional marginal distributions p #{1} and p #{2} are

uniform, their composition p #{1} Mp #{2} is also uniform. Thus, it is an easy task to

compute distribution k ¼ p #{1}ðx1Þ Mp #{2}ðx2Þ Mpðx1; x2; x3Þ, which is shown in

Table 10.

Summing up entries in the rows of Tables 9 and 10, we get the respective one-

dimensional marginal distributions p #{3} and k #{3}, respectively, from which we see that

these distributions are different:

p #{3}ðx3 ¼ 0Þ ¼ 0:5; p #{3}ðx3 ¼ 1Þ ¼ 0:2; p #{3}ðx3 ¼ 2Þ ¼ 0:3;

k #{3}ðx3 ¼ 0Þ ¼ 13
24
; k #{3}ðx3 ¼ 1Þ ¼ 5

24
; k #{3}ðx3 ¼ 2Þ ¼ 6

24
:

Remark 10.5. What is the main message conveyed by the characterization Theorem 10.3?

Considering that low-dimensional distributions pk are carriers of local information, the

constructed multidimensional distribution, if it is a perfect sequence model, represents

global information, faithfully reflecting all of the local input. This is why we will be so

interested in perfect sequence models.

Table 9. Three-dimensional distribution.

x1 ¼ 0 x1 ¼ 1

p x2 ¼ 0 x2 ¼ 1 x2 ¼ 0 x2 ¼ 1

x3 ¼ 0 0:1 0:1 0:2 0:1
x3 ¼ 1 0:0 0:1 0:0 0:1
x3 ¼ 2 0:2 0:0 0:0 0:1
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Remark 10.6. From Theorem 10.3 and the definition of a perfect sequence, it is obvious

that for perfect sequence p1; · · ·;pn; all the distributions pk (k ¼ 1; · · ·; n) are marginals of

p1 N · · ·Npn. It should, however, be stressed that, as we will show in the following

example, it does not mean that if all p1; · · ·;pn are marginal to p1 N · · · Npn that the

considered sequence is perfect.

Example 10.7. Consider a sequence p1ðx1; x2Þ;p2ðx2; x3Þ;p3ðx3; x4Þ and assume it is

perfect. Thus, we know that all p1; p2; and p3 are marginal distributions of p1 Mp2 M

p3 ¼ p1 Np2 Np3 and all three distributions p1; p2; and p3 are pairwise consistent.

Since {2; 3} . {1; 2}> {3; 4}, we can apply Lemma 8.2, from which we get

p1 Mp2 Mp3 ¼ p1 Mp3 Np2 ¼ p1 Np3 Np2:

(The last modification is possible because of Lemma 4.4.) Thus, we got that all p1; p2;
and p3 are also marginal distributions of p1 Np3 Np2.

Thequestion iswhether the sequencep1;p3;p2 is alsoperfect.UsingLemma10.2,wesee

it is perfect only if distributions p1 Mp3 and p2 are consistent. However, they are consistent

only when ðp1 Mp3Þ
#{2;3} ¼ p2, which generally need not be true, because

ðp1 Mp3Þ
#{2;3} ¼ p1 ·p3. Therefore, p1 Mp3 and p2 are consistent only when we consider

p2 to be a distribution of two independent variables (X2 n X3½p2�). We thus see that all

distributionsp1; p2; andp3 are marginals ofp1 Np3 Np2 and yet the sequencep1;p3;p2

need not be perfect.

Remark 10.8. Notice that when defining a perfect sequence, let alone a generating

sequence, we have not imposed any conditions on sets of variables for which the

distributions were defined. For example, considering a generating sequence where one

distribution is defined for a subset of variables of another distribution (i.e. Kj , Kk), is

fully sensible, and may provide some information about the distribution. If p #{1};p #{2};p
is a perfect sequence, it is quite obvious that

p #{1} Mp #{2} Mp ¼ p

(because all the elements of a perfect sequence are marginals of the resulting distribution,

and therefore, pmust be marginal to p #{1} Mp #{2} Mp). Nevertheless, it can happen that,

for some reason or another, it may be more advantageous to work with the model defined

by the perfect sequence than just with the distribution p. From this model, one can

immediately see that variables X1 and X2 are independent, which, not knowing the

numbers defining the distribution, one cannot say about distribution p. (In Jiroušek’s

Table 10. Distribution kðx1; x2; x3Þ ¼ p #{1}ðx1ÞM p #{2}ðx2ÞM pðx1; x2; x3Þ.

x1 ¼ 0 x1 ¼ 1

x2 ¼ 0 x2 ¼ 1 x2 ¼ 0 x2 ¼ 1

x3 ¼ 0 2
24

3
24

6
24

2
24

x3 ¼ 1 0 3
24

0 2
24

x3 ¼ 2 4
24

0 0 2
24
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(2008) paper, it was described how to read all the conditional independence relations from

a compositional model.)

10.2 Perfectization

The following assertion shows that each generating sequence (recall that we continually

assume that p1 M · · · Mpn is defined) can be transformed into a perfect sequence (it is,

in a way, a generalization of Lemma 5.11).

Theorem 10.9. For any generating sequence p1;p2; · · ·;pn, the sequence k1; k2; · · ·; kn
computed by the following process

k1 ¼ p1;

k2 ¼ k#K2>K1

1 Mp2;

k3 ¼ ðk1 M k2Þ
#K3>ðK1<K2Þ Mp3;

..

.

kn ¼ ðk1 M · · · M kn21Þ
#Kn>ðK1<· · ·<Kn21Þ Mpn

is perfect and

p1 M · · · Mpn ¼ k1 M · · · M kn:

Proof. The perfectness of the sequence k1; · · ·; kn follows immediately from Lemma 10.2

and from the definition of this sequence, as

k
#Ki>ðK1<· · ·<Ki21Þ
i ¼ ðk1 M · · · M ki21Þ

#Ki>ðK1<· · ·<Ki21Þ

yields consistency of ðk1 M · · · M ki21Þ and ki.

Let us prove that p1 M · · · Mpn ¼ k1 M · · · M kn by mathematical induction. Since

p1 ¼ k1 by definition, it is enough to show that p1 M · · · Mpi ¼ k1 M · · · M ki implies

also p1 M · · · Mpiþ1 ¼ k1 M · · · M kiþ1. In the following computations, we will use the

fact that, due to Lemma 5.10,

ðk1 M · · · M kiÞ
#Kiþ1>ðK1<· · ·KiÞ Mpiþ1 ¼ ððk1 M · · · M kiÞ Mpiþ1Þ

#Kiþ1 ;

and afterwards we will employ Lemma 5.11.

k1 M · · · M kiþ1 ¼ k1 M · · · M ki M ððk1 M · · · M kiÞ
#Kiþ1>ðK1<· · ·KiÞ Mpiþ1Þ

¼ k1 M · · · M ki M ðk1 M · · · M kiÞ Mpiþ1

� �# Kiþ1

¼ k1 M · · · M ki Mpiþ1 ¼ p1 M · · · Mpi Mpiþ1: A

Remark 10.10. From the theoretical point of view, the process of perfectization described

by Theorem 10.9 is simple. Unfortunately, it is not valid from the point of view

of computational complexity. The process requires marginalization of models, which

are distributions, represented by generating sequences. As we have already said, this

problem is not be studied in this paper but it may be computationally very expensive

(Jiroušek 2000).
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10.3 Running intersection property

Having a generating sequence, one should apply Lemma 10.2 to verify whether the

sequence is perfect or not. Unfortunately, it may happen that this verification is not easy.

Nevertheless, in some special situations, one can see the answer immediately. For

example, the reader can easily prove that an arbitrary sequence of uniform distributions is

perfect. More important situations in which verification of perfectness is simple are

described in Lemma 10.13. It is, in fact, just a reformulation of a classical result of Kellerer

(1964) into the language of this paper. To formulate it, let us recall an important concept

that is not new to the reader familiar with decomposable models (see, e.g. Pearl 1988).

Definition 10.11. A sequence of sets K1;K2; · · ·;Kn is said to meet a running intersection

property (RIP, in the sections that follow), if

;i ¼ 2; · · ·; n ’jð1 # j , iÞ Ki >
[i21

k¼1

Kk

 !
# Kj

 !
:

In the field of graphical Markov models, the notion of a RIP is quite frequent.

Therefore, it is not surprising that we will also meet with it several times in the following

text, and we will also use the following famous property (which follows, for example,

from the properties of acyclic hypergraphs).

Lemma 10.12. If a sequence of sets K1;K2; · · ·;Kn meets RIP, then for each ‘ [
{1; 2; · · ·; n} there exists a permutation i1; i2; · · ·; in such that ‘ ¼ i1 and Ki1 ;Ki2 ; · · ·;Kin

meets RIP, too.

Lemma 10.13. If p1;p2; · · ·;pn is a sequence of pairwise consistent oligodimensional

probability distributions such that K1; · · ·;Kn meets RIP, then this sequence is perfect.

Proof. The proof is performed by mathematical induction. Since we assume that all the

distributions are pairwise consistent, p1 Mp2 ¼ p1 Np2, and the sequence p1;p2 is

perfect. Therefore, assuming that the assertion is valid for m2 1, the proof will be finished

by showing it holds also for m.

Consider pairwise consistent p1;p2; · · ·;pm, for which K1;K2; · · ·;Km meets RIP and

p1;p2; · · ·;pm21 is perfect. Thus to show that p1;p2; · · ·;pm is perfect, it is enough to

show that ðp1 M · · · Mpm21Þ and pm are consistent.

Since K1; · · ·;Kn meets RIP, Km > ðK1 < · · ·< Km21Þmust be a subset of Kk for some

k # m2 1. Therefore, Km > ðK1 < · · ·< Km21Þ ¼ Km > Kk. The assumption of

induction says that, due to Theorem 10.3, all p‘ (1 # ‘ , m) are marginal to p1 M

· · · Mpm21 and thus

ðp1 M · · · Mpm21Þ
#Km>ðK1<· · ·<Km21Þ ¼ p#Km>Kk

k ¼ p # Km>Kk

m ;

where the last equality follows from the fact that pk and pm are assumed to be consistent.

Thus, we have shown that ðp1 M · · · Mpm21Þ and pm are consistent, which finishes the

proof. A

10.4 Shannon entropy

If a generating sequence p1;p2; · · ·;pn (with n . 1) is perfect, then it can always be

reordered in a way that its permutation pi1 ;pi2 ; · · ·;pin is also perfect. Trivially,
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if p1;p2;p3; · · ·;pn is perfect, then p2;p1;p3; · · ·;pn must be perfect, too. To be able to

show that all such perfect sequences define the same multidimensional distribution, we

will need the following assertion proving that perfect sequence models always achieve

maximum entropy, in a certain sense (it is, in fact, a generalization of Theorem 5.4).

Theorem 10.14. Denote J ¼ p1;p2; · · ·;pnf g a system of probability distributions. If the

sequence p1;p2; · · ·;pn is perfect, then

Hðp1 Mp2 M · · · MpnÞ $ HðkÞ;

for any k [ PðK1<· · ·<KnÞðJÞ ¼
\n
i¼1

PðK1<· · ·<KnÞðpiÞ:

Proof. To make the following computations more transparent, assume that N ¼

K1 < · · ·< Kn and for each i ¼ 1; · · ·; n, denote Si ¼ Ki > ðK1 < · · ·< Ki21Þ (naturally

S1 ¼ Y). Using this, we can compute (the summation is performed only over those points x

or y for which the respective probabilities are positive)

Hðp1 Mp2 M · · · MpnÞ ¼ 2
P

x[XN

ðp1 M · · · MpnÞðxÞlogðp1 M · · · MpnÞðxÞ

¼ 2
P

x[XN

ðp1 M · · · MpnÞðxÞlog
Yn
i¼1

piðx
#Ki Þ

p#Si
i ðx #Si Þ

¼ 2
Xn
i¼1

X
x[XN

ðp1 M · · · MpnÞðxÞlog
piðx

#KiÞ

p#Si
i ðx #SiÞ

¼ 2
Xn
i¼1

X
y[XKi

ðp1 M · · · MpnÞ
#KiðyÞlog

piðyÞ

p#Si
i ðy #SiÞ

¼ 2
Xn
i¼1

X
y[XKi

piðyÞlog
piðyÞ

p#Si
i ðy #Si Þ

·
p#KinSi
i ðy #KinSiÞ

p#KinSi
i ðy #KinSiÞ

 !

¼
Xn
i¼1

Hðp#KinSi
i Þ2MIpi

ðXSi ;XKinSi Þ
� �

;

where the next to last modification is possible, because p1; · · ·;pn is perfect, and therefore,

pi is a marginal distribution of p1 M · · · Mpn. The expression

MIpi
ðXSi ;XKinSiÞ ¼

X
y[XKi

piðyÞlog
piðyÞ

p#Si
i ðy #SiÞ ·p#KinSi

i ðy #KinSi Þ

is the well-known mutual information between groups of variables XSi and XKinSi

for distribution pi (in the previous section, we mentioned the fact that it is always

non-negative (see, e.g. Gallager 1968).

Let us now compute the Shannon entropy of an arbitrary distribution

k [ PðK1<· · ·<KnÞðJÞ. For this, we will utilize the fact that for x [ XN such that kðxÞ . 0

the following equality holds

kðxÞ ¼ k #K1 ðx #K1Þ ·
k #K1<K2 ðx #K1<K2Þ

k #K1 ðx #K1 Þ
· · · · ·

k #K1<· · ·<Kn ðx #K1<· · ·<KnÞ

k #K1<· · ·<Kn21 ðx #K1<· · ·<Kn21 Þ
:
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Therefore,

HðkÞ ¼ 2
P

x[XN

kðxÞlogkðxÞ ¼ 2
P

x[XN

kðxÞlog
Yn
i¼1

k #K1<· · ·<Ki ðx #K1<· · ·<KiÞ

k #K1<· · ·<Ki21 ðx #K1<· · ·<Ki21Þ

¼ 2
Xn
i¼1

X
x[XN

kðxÞlog
k #K1<· · ·<Kiðx #K1<· · ·<KiÞ

k #K1<· · ·<Ki21 ðx #K1<· · ·<Ki21 Þ
·
k #KinSi ðx #KinSiÞ

k #KinSi ðx #KinSiÞ

� �

¼
Xn
i¼1

Hðk #KinSiÞ2MIkðXK1<· · ·<Ki21
;XKinSi Þ

� �
:

Now, we apply the famous property of mutual information (Gallager 1968) saying that it is

monotonous in the sense that

MIkðXK1<· · ·<Ki21
;XKinSi Þ $ MIkðXSi ;XKinSiÞ;

and therefore, assuming that all pis are marginal to k, we get that MIkðXSi ;XKinSiÞ ¼

MIpi
ðXSi ;XKinSiÞ and Hðk #KinSi Þ ¼ Hðp#KinSi

i Þ, and therefore, also

HðkÞ #
Xn
i¼1

Hðp#KinSi
i Þ2MIpi

ðXSi ;XKinSi Þ
� �

¼ Hðp1 Mp2 M · · · MpnÞ:
A

10.5 Uniqueness

Now, we are ready to prove an important assertion claiming that if a system of low-

dimensional distributions can form a perfect sequence, it defines (as a perfect sequence) a

unique distribution.

Theorem 10.15. If a sequence p1;p2; · · ·;pn and its permutation pi1 ;pi2 ; · · ·;pin are both

perfect, then

p1 Mp2 M · · · Mpn ¼ pi1 Mpi2 M · · · Mpin :

Proof. Applying previous Theorem 10.14 to both of these sequences, we see that

Hðp1 Mp2 M · · · MpnÞ ¼ Hðpi1 Mpi2 M · · · MpinÞ ¼ max

k[ >
n

i¼1
PðK1<· · ·<KnÞðpiÞ

HðkÞ:

Since the entropy is a continuous and strictly convex function on the convex and compact

set >n
i¼1 P

ðK1<· · ·<KnÞðpiÞ, it achieves its maximum at a single point and, therefore,

p1 Mp2 M · · · Mpn ¼ pi1 Mpi2 M · · · Mpin : A

Remark 10.16. Theorem 10.14 is only an implication; if there exists a perfect sequence

formed by the distributions from J ¼ p1;p2; · · ·;pnf g, then it achieves the maximum

Shannon entropy among the distributions from PðK1<· · ·<KnÞðJÞ. However, as can be

seen from the following example (which the author learned from Steffen Lauritzen),

it does not mean that the maximum entropy distribution from PðK1<· · ·<KnÞðJÞ must be a

compositional model.
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Example 10.17. It is not difficult to show that for two-dimensional distributions from

Table 11 there exists the only common extension – the distribution from Table 12.

(Hint: consider an arbitrary distribution having the given three marginals and show that

none of its probabilities can be greater than 1
6
, then all the couples of probabilities which

contribute to marginal probabilities equalling 2
6
– those, which are positive in Table 12 –

must equal 1
6
.) Therefore, this extension is also the maximum entropy extension.

Since all the considered two-dimensional distributions are positive, all possible

compositional models constructed from them must also be positive, which means that the

distribution from Table 12 cannot be obtained as a compositional model of distributions

from Table 11.

11. Commutable sets

This section is the exception proving the rule; here, we will be interested in generating

sequences whose distributions are connected by the operator of left composition.

Specifically, we will be interested in the sequences defining a unique distribution

regardless of their ordering. This is also the reason we deal with sets of distribution rather

than with their sequences – the ordering of the distributions is irrelevant.

Definition 11.1. A set of distributions {p1;p2; · · ·;pn} is said to be commutable if

p1 Np2 N · · · Npn is defined and

p1 Np2 N · · · Npn ¼ pi1 Npi2 N · · · Npin

for all permutations of indices i1; i2; · · ·; in.

Table 11. Two-dimensional distributions.

p1ðx1; x2Þ x1 ¼ 0 x1 ¼ 1

x2 ¼ 0 2
6

1
6

x2 ¼ 1 1
6

2
6

p2ðx1; x3Þ x1 ¼ 0 x1 ¼ 1

x3 ¼ 0 2
6

1
6

x3 ¼ 1 1
6

2
6

p3ðx2; x3Þ x2 ¼ 0 x2 ¼ 1

x3 ¼ 0 1
6

2
6

x3 ¼ 1 2
6

1
6

Table 12. Extension of the distributions from Table 11.

x1 ¼ 0 x1 ¼ 1

x2 ¼ 0 x2 ¼ 1 x2 ¼ 0 x2 ¼ 1

x3 ¼ 0 1
6

1
6

0 1
6

x3 ¼ 1 1
6

0 1
6

1
6
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Let us start discussing properties of commutable sets of oligodimensional

distributions. First, two lemmata will be formulated that are almost direct consequences

of the definition. The first one states that as it is true for perfect sequences, it also holds that

all pis are marginal to p1 N · · · Npn for commutable sets.

Lemma 11.2. If {p1;p2; · · ·;pn} is a commutable set of probability distributions, then

p1 Np2 N · · · Npn [
\n
i¼1

PðK1<· · ·<KnÞðpiÞ;

which means that all of the distributions pis are marginals of p1 Np2 N · · · Npn.

Proof. The assertion is a direct consequence of the facts that for any j [ {1; 2; · · ·; n} there
are permutations i1; · · ·; in in which index j ¼ in is the last one, and thus, pj is a marginal of

the distribution pi1 Npi2 N · · · Npin (Lemma 3.2). A

Remark 11.3. The reader already knows (Remark 10.6) that the assertion expresses only a

necessary condition; and the opposite assertion does not hold. If this were the case, all

perfect sequences would form commutable sets, because for perfect sequences all

distributions pi are marginals of p1 Np2 N · · · Npn.

Example 11.4. Let us present a non-trivial example of a generating sequence which is not

perfect, and yet its distributions form a commutable set. Consider four distributions

p1; p2; p3; and p4, for which K1 ¼ {1; 2; 4}, K2 ¼ {2; 3; 5}, K3 ¼ {1; 3; 6}, and

K4 ¼ {1; 2; 3}. This situation is illustrated in Figure 3.

Let p4 be the distribution from Table 13, and all three remaining distributions

p1ðx1; x2; x4Þ; p2ðx2; x3; x5Þ; and p3ðx1; x3; x6Þ be uniform distributions of the respective

sets of variables. The reader can immediately see that the distributions are pairwise

consistent, because all their two-dimensional marginal distributions are uniform.

First, let us show that the considered distributions really form a commutable set.

Since p1; p2, and p3 are uniform, it is obvious that p1 Np2 Np3 is also the uniform

six-dimensional distribution. The same holds for any permutation of these three

distributions. Therefore,

p1 Np2 Np3 Np4 ¼ pi1 Npi2 Npi3 Npi4

Figure 3. Star-like system of sets.
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holds true for any permutation for which i4 ¼ 4. Now, applying Lemma 8.4 twice and

Lemma 4.4 once, we get

pi1 Npi2 Npi3 Npi4 ¼ pi1 Npi2 Npi4 Npi3 ¼ pi1 Npi4 Npi2 Npi3

¼ pi4 Npi1 Npi2 Npi3 :

Therefore, all permutations yield the same six-dimensional distribution.

Let us now show that the sequence p1;p2;p3;p4 is not perfect.

For uniform distributions p1; p2; and p3, the distribution p1 Np2 Np3 ¼

p1 Mp2 Mp3 is obviously also uniform. Since this distribution is from PðK1<K2<K3Þ,

and K4 , K1 < K2 < K3, we get that p1 Mp2 Mp3 Mp4 ¼ p1 Mp2 Mp3. Thus,

p1;p2;p3;p4 is not perfect, because p4 is not a marginal of p1 Mp2 Mp3 Mp4.

11.1 Star-like systems

Let us repeat once more that it may happen that all the distributions pi are marginals of

p1 Np2 N · · · Npn and still the sequence may neither be perfect (Example 11.4), nor the

corresponding set commutable (it will be shown for sequence p1;p2;p3;p5;p4 in

Example 11.14). In what follows, we will present sufficient conditions describing special

situations of perfect sequences and commutable sets, as well as examples illustrating the

described theoretical properties.

Lemma 11.5. Let {p1;p2; · · ·;pn} be a commutable set of distributions. When

Ki1 ;Ki2 ; · · ·;Kin meets RIP then the sequence pi1 ;pi2 ; · · ·;pin is perfect.

Proof. Lemma 11.2 guarantees the pairwise consistency of the distributions from

{p1;p2; · · ·;pn}. Therefore, the sequence pi1 ; · · ·;pin is perfect due to Lemma 10.13. A

As we shall see in the following theorem, it is not surprising that the set of distributions

from Example 11.4 is commutable. As a matter of fact, the system of the sets of variables

(or their indices) has a special structural property by which the commutability is

guaranteed.

Definition 11.6. A system of sets {K1;K2; · · ·;Kn} is called star-like if there exists an

index ‘ [ {1; 2; · · ·; n} such that for any couple of different indices i; j [ {1; 2; · · ·; n}
Ki > Kj # K‘. The set K‘ is called a centre of the system.

For examples of star-like systems of sets, see Figures 3–5. It is a trivial consequence of the

definition that any star-like system of sets can be ordered to meet RIP. In fact, any ordering

in which the centre of the system is at the first or second position meets RIP. Thus, if the

Table 13. Probability distribution p4.

x1 ¼ 0 x1 ¼ 1

p1 x2 ¼ 0 x2 ¼ 1 x2 ¼ 0 x2 ¼ 1

x3 ¼ 0 0 1
4

1
4

0

x3 ¼ 1 1
4

0 0 1
4
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system of sets K1;K2; · · ·;Kn is star-like, then the distributions p1;p2; · · ·;pn can be

reordered into a perfect sequence if they are pairwise consistent.

Theorem 11.7. If, for a set of pairwise consistent distributions {p1;p2; · · ·;pn}, the

system {K1;K2; · · ·;Kn} is star-like, then {p1;p2; · · ·;pn} is commutable.

Proof. We will show that any permutation pi1 ;pi2 ; · · ·;pin is either perfect, or may be

transformed into a perfect sequence pj1 ;pj2 ; · · ·;pjn in the way that

pi1 Npi2 N · · · Npin ¼ pj1 Npj2 N · · · Npjn :

Without loss of generality, assume that K1 is the centre, and consider an arbitrary

permutation i1; i2; · · ·in. Let 1 ¼ ik. Apparently, if k # 2, the sequence Ki1 ;Ki2 ; · · ·;Kin

meets RIP. If k . 2, we can apply Lemma 8.4 (ðk2 2Þ times), getting

ðpi1 N · · · Npik22
ÞNpik21

Npik ¼ ðpi1 N · · · Npik22
ÞNpik Npik21

¼ · · · ¼ pi1 NNpik Npi2 N · · · Npik21
:

Thus, we see that pi1 N · · · Npin equals pj1 N · · · Npjn , where the sequence Kj1 ; · · ·;Kjn

meets RIP. Therefore, due to Lemma 10.13 and Theorem 10.15, for all permutations

i1; i2; · · ·in, the expressions pi1 N · · · Npin define the same multidimensional distribution,

which means that {p1;p2; · · ·;pn} is commutable. A

Figure 4. Strongly decomposable star-like system of sets.

Figure 5. Star-like system of seven sets.
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The previous theorem presents a structural condition under which a set of pairwise

consistent distributions is commutable. The same property holds also for other special

systems of sets of variables.

11.2 Strongly decomposable systems

Definition 11.8. A system of sets {K1;K2; · · ·;Kn} is called strongly decomposable if

each of its subsets can be ordered to meet RIP.

Example 11.9. First, notice that a star-like system in Figure 3 is not strongly

decomposable. As shown in Example 11.4, the system can be ordered to meet RIP, but

there is a subsystem (the reader can easily show that in this case it is the only one) –

K1;K2;K3 – which cannot be ordered to meet RIP.

Nevertheless, it does not mean that star-like systems are not strongly decomposable.

For example, the system of four sets in Figure 4 is star-like and simultaneously strongly

decomposable. In the next lemma, we shall prove that all strongly decomposable systems

can be ordered in the way that both the whole sequence K1;K2;K3; · · ·;Kn and its ‘suffix’

K2;K3; · · ·;Kn meet RIP. Let us first show that, although the assertion seems to be rather

simple, it is not so obvious.

Consider the system K1;K2;K3;K4 from Figure 4. The sequence K1;K2;K4;K3 meets

RIP, while sequence K2;K4;K3 does not. On the other hand, sequence K2;K1;K3 meets

RIP and sequence K4;K2;K1;K3 does not, although there exists a sequence meeting RIP

which starts with K4 (it is a sequence K4;K1;K2;K3).

Lemma 11.10. For any strongly decomposable system of sets K1;K2; · · ·;Kn and any

‘ [ {1; · · ·; n}, there exists a permutation of indices i1; i2; · · ·; in such that i1 ¼ ‘ and both

the sequences Ki1 ;Ki2 ;Ki3 ; · · ·;Kin and Ki2 ;Ki3 ; · · ·;Kin meet RIP.

Proof. Without loss of generality, assume ‘ ¼ 1. Let us start constructing the required

permutation from an arbitrary ordering of all sets starting with K1 and meeting RIP. Such

an ordering is guaranteed by Lemma 10.12. Let it be K1;K2; · · ·;Kn.

Now, startingwithKn wewill group the setsK2; · · ·;Kn into one or several clusters. At the

beginning, each of these sets forms one cluster.According toRIP, there exists jn , n such that

Kn > ðK1 < · · ·< Kn21Þ # Kjn :

If there are more such jn take the largest of them and, in case jn . 1, put Kn and Kjn into one

cluster. If jn ¼ 1, do nothing. Then consider ‘ ¼ n2 1; n2 2; · · ·; 2 and at each step find

(the largest) j‘ for which the RIP condition holds true, and, if the respective j‘ . 1, connect

the clusters holding K‘ and Kj‘ into one cluster.

After this process, we get a resulting partition of sets K2; · · ·;Kn into several, let us say

m, clusters. The set with the lowest index in a cluster will be, in this proof, called the

cluster representative. Having m clusters, we have a system of m representatives which

can be ordered to meet RIP, because we assume that K1;K2; · · ·;Kn is strongly

decomposable. Denote the RIP ordering of these cluster representatives Kj1 ;Kj2 ; · · ·;Kjm .

Similarly, we will also order the sets in each cluster to meet RIP; each of these orderings

must start with the cluster representative. Let such an ordering of sets from the kth cluster

be Kjk ;Kjk;2 ;Kjk;3 ; · · ·;Kjk;rðkÞ .
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Then the required permutation Ki1 ;Ki2 ; · · ·;Kin is the following:

K1;

Kj1 ;Kj1;2 ;Kj1;3 ; · · ·;Kj1;rð1Þ ;

Kj2 ;Kj2;2 ;Kj2;3 ; · · ·;Kj2;rð2Þ ;

Kj3 ;Kj3;2 ;Kj3;3 ; · · ·;Kj3;rð3Þ ;

..

.

Kjm ;Kjm;2 ;Kjm;3 ; · · ·;Kjm;rðmÞ :

What can be said about this construction? Apparently, the system K1;Kj1 ;Kj2 ; · · ·;Kjm

is a star-like system (its centre is K1). Another property, which can be seen from the

way clusters were constructed, is that an intersection of any two sets from different

clusters is contained in an intersection of the respective cluster representatives

(and therefore, also in K1). These two properties are sufficient to show that the two

required sequences meet RIP.

First, consider the shorter sequence Ki2 ;Ki3 ; · · ·;Kin and any k [ {2; 3; · · ·; n}. If Kik

is one of the cluster representatives, then the existence of j , k required by RIP condition

is guaranteed by the fact that the representatives have been ordered to meet RIP

(other ‘non-representative’ sets cannot interfere with this fact, because intersections of sets

from different clusters are contained in the intersections of the respective cluster

representatives). If Kik is a ‘non-representative’ set, then the existence of the needed j , k

follows from the fact that each cluster has been ordered to meet RIP (again, sets from other

clusters cannot interfere with it, because intersections of sets from different clusters are

contained in the intersection of the respective cluster representatives).

Considering the longer sequence Ki1 ;Ki2 ;Ki3 ; · · ·;Kin can change the way of seeking

for the indices ij required by RIP condition only when the cluster representatives are

considered. However, since K1;Kj1 ;Kj2 ; · · ·;Kjm is a star-like system, starting with K1,

which is a centre of the system, cannot spoil the validity of the RIP condition, because any

ordering of a star-like system starting with the centre meets RIP. A

Remark 11.11. At the beginning of Example 11.9, we mentioned that a star-like system

in Figure 3 is not strongly decomposable. The same also holds for the larger system in

Figure 5. It is easy to show that all star-like systems K1; · · ·;Kn can be ordered in such a

way that the full ordering and its ‘suffix’ ordering of length n2 1 meet RIP. Nevertheless,

Lemma 11.10 guarantees that for strongly decomposable systems there are many such

orderings; for each i ¼ 1; · · ·; n there exists at least one such ordering starting with Ki.

For star-like systems, this property holds for sequences at which the centre is at the second

position. For systems from Figures 3 and 5, no sequence starting with the centres K4 and

K1, respectively, meets this condition. Therefore, the proof of the following Theorem

11.12 cannot be applied to Theorem 11.7.

Theorem 11.12. If, for a set of pairwise consistent distributions {p1;p2; · · ·;pn}, the

system {K1;K2; · · ·;Kn} is strongly decomposable, then the considered set of distributions

is commutable.
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Proof. Assuming that {K1;K2; · · ·;Kn} is strongly decomposable, we will show that for

any permutation of indices i1; i2; · · ·; in

pi1 Npi2 N · · · Npin ¼ pj1 Mpj2 M · · · Mpjn ;

for some permutation j1; j2; · · ·; jn, for which Kj1 ;Kj2 ; · · ·;Kjn meets RIP. Then the

commutability of {p1;p2; · · ·;pn} will be a direct consequence of Lemma 10.13 and

Theorem 10.15.

Consider a permutation i1; i2; · · ·; in. If n ¼ 2, then, due to Lemma 4.4,

p1 Np2 ¼ p1 Mp2, and the required condition holds true. Therefore, applying

mathematical induction, it is enough to show the required property under the assumption

that it holds for n2 1.

Let us consider permutations of all indices starting with in. Due to Lemma 11.10, there

exists a permutation in; j1; · · ·; jn21 among them such that Kin ;Kj1 ; · · ·;Kjn21
and

Kj1 ; · · ·;Kjn21
meet RIP. We will show that

pi1 Npi2 N · · · Npin ¼ pin Mpi1 Mpi2 M · · · Mpin21
:

Applying the assumption of mathematical induction, we get

pi1 Npi2 N · · · Npin ¼ pin M ðpi1 Npi2 N · · · Npin21
Þ

¼ pin M ðpj1 Mpj2 M · · · Mpjn21
Þ

¼ pin M ððpj1 M · · · Mpjn22
Þ Mpjn21

Þ:

Since in; j1; · · ·; jn21 meets RIP,

Kjn21
> ðKin < Kj1 < · · ·< Kjn22

Þ

must be a subset of either Kin or ðKj1 < · · ·< Kjn22
Þ, or, in other words, either

Kin $ ððKj1 < · · ·< Kjn22
Þ> Kjn21

Þ

or

ðKj1 < · · ·< Kjn22
Þ $ ðKin > Kjn21

Þ

holds true. Therefore, applying either Theorem 7.2 or 7.3, respectively, we get

pin M ððpj1 M · · · Mpjn22
Þ Mpjn21

Þ ¼ pin M ðpj1 M · · · Mpjn22
Þ Mpjn21

¼ pin M ððpj1 M · · · Mpjn23
Þ Mpjn22

Þ Mpjn21
:

However, regarding that in; j1; · · ·; jn22 meets RIP, too, we can repeat the previous step,

getting

pin M ðpj1 Mpj2 M · · · Mpjn21
Þ ¼ pin M ðpj1 M · · · Mpjn23

Þ Mpjn22
Mpjn21

:

In this way, we can eliminate all parentheses, getting eventually that

pin M ðpj1 Mpj2 M · · · Mpjn21
Þ ¼ pin Mpj1 Mpj2 M · · · Mpjn21

;

which finishes the proof. A
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Remark 11.13. The reader familiar with the iterative proportional fitting procedure (IPFP)

(Deming and Stephan 1940) has certainly noticed a close relation of the studied

commutable sets with this famous computational procedure. In principle, this iterative

procedure is nothing else, but an infinite application of the operator of left composition

p1 Np2 N · · · Npn Np1 N · · · Npn Np1 N · · ·

Therefore, the commutable sets are exactly those for which IPFP converges after the first

cycle (n steps) regardless of the ordering of the distributions. This problem was studied by

Habermann (1974).

11.3 Examples

Example 11.14. From this example, which is by Vomlel (1999), it can be seen that the

assumption in the previous theorem cannot be weakened in the sense that instead of strong

decomposability of a system {K1;K2; · · ·;Kn}, one would assume just an existence of its

ordering meeting RIP. In fact, Vomlel used this example to refute Habermann’s conjecture

that if IPFP is applied to a set of distributions, which can be ordered in the way that

K1;K2; · · ·;Kn meets RIP, then the procedure converges in a finite number of steps

regardless of the ordering of the distributions.

Vomlel’s example considers five distributions p1; · · ·;p5 with a structure of variables

depicted in Figure 6. For the purpose of this example, we will consider: K1 ¼ {1; 2; 4},
K2 ¼ {2; 3}, K3 ¼ {1; 3}, K4 ¼ {4; 5}, and K5 ¼ {1; 2; 3}.

It is easy to show that although the sequence K1;K2;K3;K4;K5 does not meet RIP, it

can be reordered so that the RIP holds.

We will not repeat Vomlel’s computations here, but for the distributions in Tables 14

and 15, the reader can show that ðp1 Np2 Np3 Np4 Np5Þ
#{4} – p

#{4}
1 , which means that

this set of distributions is not commutable.

Example 11.15. Let us now highlight a substantial difference between perfect sequences

and commutable sets of probability distributions. For any perfect sequence p1; · · ·;pn, its

initial subsequence p1; · · ·;pk is again perfect. In contrast with this, from the following

example, we will see that there are commutable sets whose subsets are not commutable.

Consider again four distributions p1; p2; p3; and p4 with K1 ¼ {1; 2; 3},
K2 ¼ {1; 2; 4}, K3 ¼ {2; 3; 5}, and K4 ¼ {1; 3; 6}. Values of these distributions are

given in Table 16.

Figure 6. System of sets that can be ordered to meet RIP.
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To show that {p1;p2;p3;p4} is commutable, it is enough, due to Theorem 11.7, to

show that these distributions are pairwise consistent, which follows immediately from the

consistency of p1 with p2; p3, and p4 (see Table 17).

Now, we shall prove by contradiction that {p2;p3;p4} is not commutable. Assume

that {p2;p3;p4} forms a commutable set. Then, due to Lemma 11.2, all p2, p3, and p4 are

marginal to k ¼ p2 Np3 Np4. Therefore, under this assumption,

k #{2;3}ðx2 ¼ 0; x3 ¼ 0Þ ¼ p
#{2;3}
3 ðx2 ¼ 0; x3 ¼ 0Þ ¼ 1

3
;

k #{1;2;3}ðx1 ¼ 0; x2 ¼ 0; x3 ¼ 0Þ # p
#{1;3}
4 ðx1 ¼ 0; x3 ¼ 0Þ ¼ 1

6
;

k #{1;2;3}ðx1 ¼ 1; x2 ¼ 0; x3 ¼ 0Þ # p
#{1;2}
2 ðx1 ¼ 1; x2 ¼ 0Þ ¼ 1

6
;

and therefore, we are sure that

k #{1;2;3}ðx1 ¼ 0; x2 ¼ 0; x3 ¼ 0Þ ¼ k #{1;2;3}ðx1 ¼ 1; x2 ¼ 0; x3 ¼ 0Þ ¼
1

6
:

Table 14. Two-dimensional distributions.

p2ðx2; x3Þ x2 ¼ 0 x2 ¼ 1

x3 ¼ 0 1
3

1
6

x3 ¼ 1 1
6

1
3

p3ðx1; x3Þ x1 ¼ 0 x1 ¼ 1

x3 ¼ 0 1
6

1
3

x3 ¼ 1 1
3

1
6

p4ðx4; x5Þ x4 ¼ 0 x4 ¼ 1

x5 ¼ 0 1
2

0

x5 ¼ 1 0 1
2

Table 15. Three-dimensional distributions.

x1 ¼ 0 x1 ¼ 1

p1 x2 ¼ 0 x2 ¼ 1 x2 ¼ 0 x2 ¼ 1

x4 ¼ 0 1
9

0 1
6

1
9

x4 ¼ 1 2
9

1
6

0 2
9

x1 ¼ 0 n

p5 x2 ¼ 0 x2 ¼ 1 x2 ¼ 0 x2 ¼ 1

x3 ¼ 0 1
6

0 1
6

1
6

x3 ¼ 1 1
6

1
6

0 1
6
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Thus, because

k #{1;3}ðx1 ¼ 0; x3 ¼ 0Þ ¼ p
#{1;3}
4 ðx1 ¼ 0; x3 ¼ 0Þ ¼

1

6
;

we get

kðx1 ¼ 0; x2 ¼ 1; x3 ¼ 0Þ ¼ 0;

which contradicts with the obvious fact that p2 Np3 Np4 is strictly positive (namely, all

p2; p3; and p4 are positive). Therefore, {p2;p3;p4} cannot be commutable.

Table 16. Probability distributions p1;p2;p3; and p4.

x1 ¼ 0 x1 ¼ 1

p1 x2 ¼ 0 x2 ¼ 1 x2 ¼ 0 x2 ¼ 1

x3 ¼ 0 1
6

0 1
6

1
6

x3 ¼ 1 1
6

1
6

0 1
6

x4 ¼ 0 x4 ¼ 1

p2 x1 ¼ 0 x1 ¼ 1 x1 ¼ 0 x1 ¼ 1

x2 ¼ 0 1
6

1
12

1
6

1
12

x2 ¼ 1 1
12

1
6

1
12

1
6

x5 ¼ 0 x5 ¼ 1

p3 x3 ¼ 0 x3 ¼ 1 x3 ¼ 0 x3 ¼ 1

x2 ¼ 0 1
6

1
12

1
6

1
12

x2 ¼ 1 1
12

1
6

1
12

1
6

x6 ¼ 0 x6 ¼ 1

p4 x3 ¼ 0 x3 ¼ 1 x3 ¼ 0 x3 ¼ 1

x1 ¼ 0 1
12

1
6

1
12

1
6

x1 ¼ 1 1
6

1
12

1
6

1
12

Table 17. Two-dimensional marginal distributions of p1.

p
#{1;2}
1 ðx1; x2Þ x1 ¼ 0 x1 ¼ 1

x2 ¼ 0 2
6

1
6

x2 ¼ 1 1
6

2
6

p
#{1;3}
1 ðx1; x3Þ x1 ¼ 0 x1 ¼ 1

x3 ¼ 0 1
6

2
6

x3 ¼ 1 2
6

1
6

p
#{2;3}
1 ðx2; x3Þ x2 ¼ 0 x2 ¼ 1

x3 ¼ 0 2
6

1
6

x3 ¼ 1 1
6

2
6
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Example 11.16. Even if a subset of a commutable set is also commutable, it does not mean

that this commutable subset defines a distribution marginal to the distribution defined by

the larger commutable set. More exactly, if both {p1; · · ·;pn} and {p1; · · ·;pk} (for some

1 # k , n) are commutable, then it may happen that

ðp1 N · · · NpnÞ
ðK1<· · ·<KkÞ – p1 N · · · Npk:

An example of this situation is given by sets {p1;p2;p3;p4} and {p1;p2;p3} from

Example 11.4. Both of these sets are commutable and both define six-dimensional

distributions of variables X1;X2; · · ·;X6. While the distribution p1 Np2 Np3 is uniform,

the distribution

k ¼ p1 Np2 Np3 Np4

is the one for which

kðx1; x2; · · ·; x6Þ ¼

1
32

if x1 þ x2 þ x3 is odd;

0 otherwise:

(

Example 11.17. There may still be one more question regarding commutable sets of

distributions. All the examples of commutable sets presented up to now had one common

property: the distributions could be ordered in the way that the sequence was perfect.

The natural question arises whether there always exists an ordering of a commutable set

that forms a perfect sequence. As it will be shown in the following example, the answer to

this question is negative.

Consider three six-dimensional distributions of binary variables (with values {0; 1}),
each of which will be an independent product of three two-dimensional distributions

(to stress a symmetry in the model, we use double-digit indices):

p1ðx11; x12; x22; x23; x33; x34Þ ¼ mðx11; x12Þkðx22; x23Þmðx33; x34Þ;

p2ðx12; x13; x23; x24; x31; x32Þ ¼ kðx12; x13Þmðx23; x24Þmðx31; x32Þ;

p3ðx13; x14; x21; x22; x32; x33Þ ¼ mðx13; x14Þmðx21; x22Þkðx32; x33Þ;

where distribution m is a uniform distribution and

kðy; zÞ ¼

1
2

iff yþ z ¼ 1;

0 otherwise:

(

It is not difficult to show that distributions p1; p2; and p3 are pairwise consistent.

Distributions p1 and p3 share only variables x12 and x23, and both the respective two-

dimensional marginal distributions are uniform for this pair of variables. Similarly,

distributions p2 and p3 have common arguments x13 and x32, while p1 and p3 share x22
and x33. Again, all the respective two-dimensional marginal distributions are uniform.

Notice that in this case

p1 Np2 ¼ ðmðx11; x12ÞN kðx12; x13ÞÞðkðx22; x23ÞNmðx23; x24ÞÞðmðx33; x34ÞNmðx31; x32ÞÞ;
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and analogously

p1 Np2 Np3 ¼ ðmðx11; x12ÞN kðx12; x13ÞNmðx13; x14ÞÞ

ðkðx22; x23ÞNmðx23; x24ÞNmðx21; x22ÞÞ

ðmðx33; x34ÞNmðx31; x32ÞN kðx32; x33ÞÞ:

Thus, p1 Np2 Np3 is a product of three terms, each of which is a composition of three

two-dimensional distributions. Moreover, each of these terms is a composition of

distributions whose variables form a star-like system, and therefore, due to Theorem 11.7,

one can see that {p1;p2;p3} is commutable.

Now, we will show that pi1 ;pi2 ;pi3 is not perfect for any permutation i1; i2; i3.
However, since the situation is symmetric, in a sense (each distribution pi is a product of a

uniform distribution with k), we will show it just for p1;p2;p3.

Similarly to application of the operator of left composition, using operator M leads to a

product of three terms

p1 Mp2 Mp3 ¼ ðmðx11; x12Þ M kðx12; x13Þ Mmðx13; x14ÞÞ

ðkðx22; x23Þ Mmðx23; x24Þ Mmðx21; x22ÞÞ

ðmðx33; x34Þ Mmðx31; x32Þ M kðx32; x33ÞÞ:

From this, we see that ðp1 Mp2 Mp3Þ
#{32;33} is a uniform distribution, which is not true for

p3. This means that p3 cannot be a marginal distribution of p1 Mp2 Mp3, and therefore,

p1;p2;p3 is not perfect.

12. Flexible sequences

Consider a (perfect) sequence p1ðx1; x2Þ;p2ðx2; x3Þ;p3ðx3; x4Þ representing distribution

kðx1; x2; x3; x4Þ ¼ p1ðx1; x2Þ Mp2ðx2; x3Þ Mp3ðx3; x4Þ. Having a need to compute a

conditional probability kðx4jx1 ¼ aÞ, one can do it simply by marginalizing3

kðx2; x3; x4jx1 ¼ aÞ ¼ p1ðx2jx1 ¼ aÞ Mp2ðx2; x3Þ Mp3ðx3; x4Þ:

However, when the desire is to compute conditional distribution kðx1jx4 ¼ bÞ, the

situation becomes much more complicated. In this case, one cannot take advantage of the

fact that k is represented in the form of a compositional model; instead, one has to compute

the full four-dimensional distribution and only afterwards compute the required

conditional probability. In fact, this is the very problem of asymmetry which is for

Bayesian networks usually solved by application of the famous computational procedure

of local computations (Lauritzen and Spiegelhalter 1988) based on a transformation of a

Bayesian network into a decomposable model. And this is also the reason why we are

going to study flexible sequences, which may play for compositional models a role similar

to the one played by decomposable models for Bayesian networks.

At this point, we present only a couple of basic properties and examples illuminating

the relationship between flexible and perfect sequences. The first one shows that if a

generating sequence meets the condition of Lemma 10.13, this sequence is not only perfect

but also flexible. But first, we have to introduce the definition.
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Definition 12.1. A generating sequence p1;p2; · · ·;pn is called flexible if for all j [
K1 < · · ·< Kn there exists a permutation i1; i2; · · ·; in such that j [ Ki1 and

pi1 Mpi2 M · · · Mpin ¼ p1 Mp2 M · · · Mpn:

As we said above, flexible sequences are those, which can be reordered in many ways so

that each variable can appear among the arguments of the first distribution. It does not mean,

however, that each distribution appears at the beginning of the generating sequence. If this

were the case, flexible sequences would just form a subclass of perfect sequences (since each

distribution would be a marginal of the composed distribution – see Lemma 12.7).

Example 12.2. Obviously, any triplet of distributions p1ðx1; x2Þ; p2ðx1; x3Þ, and p3ðx2; x3Þ
for which p1 and p2 are consistent is flexible, since in this case

p1ðx1; x2Þ Mp2ðx1; x3Þ Mp3ðx2; x3Þ ¼ p2ðx1; x3Þ Mp1ðx1; x2Þ Mp3ðx2; x3Þ:

Let us stress that sequence p1;p2;p3, as well as sequence p2;p1;p3, is flexible regardless

of the values of distribution p3. Therefore, if

p3ðx2; x3Þ ¼ ðp1ðx1; x2Þ Mp2ðx1; x3ÞÞ
#{2;3};

then both p1;p2;p3 and p2;p1;p3 are also perfect, which is not true in the opposite case

because of Theorem 10.3. Thus, we see that not all flexible sequences are perfect.

It isalsoeasy toshowthat thereexistperfect sequenceswhicharenotflexible.Forexample,

the reader can show that the sequence k1; k2; k3 of distributions from Table 18 is perfect.

The fact that it is not flexible is a consequence of k3 M k1 – k1 M k2 M k3 – k3 M k2.

Obviously ðk3 M k1Þðx1 ¼ 1; x2 ¼ 0; x3 ¼ 1; x4 ¼ 1Þ . 0 and ðk1 M k2 M k3Þðx1 ¼ 1;
x2 ¼ 0; x3 ¼ 1; x4 ¼ 1Þ ¼ 0 and similarly ðk3 M k2Þðx1 ¼ 1; x2 ¼ 1; x3 ¼ 0; x4 ¼ 1Þ . 0

and ðk1 M k2 M k3Þðx1 ¼ 1; x2 ¼ 1; x3 ¼ 0; x4 ¼ 1Þ ¼ 0.

Lemma 12.3. If p1;p2; · · ·;pn is a sequence of pairwise consistent probability distributions

such that K1; · · ·;Kn meets RIP, then this sequence is flexible.

Table 18. Distributions k1; k2; and k3.

k1ðx1; x2Þ x2 ¼ 0 x2 ¼ 1

x1 ¼ 0 1
4

1
4

x1 ¼ 1 1
2

0

k2ðx1; x3Þ x3 ¼ 0 x3 ¼ 1

x1 ¼ 0 1
4

1
4

x1 ¼ 1 1
2

0

x2 ¼ 0 x2 ¼ 1

k3ðx2; x3; x4Þ x3 ¼ 0 x3 ¼ 1 x3 ¼ 0 x3 ¼ 1

x4 ¼ 0 5
8

0 0 1
8

x4 ¼ 1 0 1
8

1
8

0

International Journal of General Systems 669

D
ow

nl
oa

de
d 

by
 [

R
ad

im
 J

ir
ou

se
k]

 a
t 2

1:
19

 0
8 

Ju
ly

 2
01

1 



Proof. The assertion follows from the well-known fact that for all ‘ [ {1; 2; · · ·; n}, one
can find a permutation of K1; · · ·;Kn meeting RIP and starting with K‘. Then it is enough

to realize that, due to Lemma 10.13, all the RIP permutations yield perfect sequences,

which define the same multidimensional distribution according to Theorem 10.15. A

Remark 12.4. Notice that there exist non-trivial flexible sequences

p1ðxK1
Þ;p2ðxK2

Þ; · · ·;pnðxKn
Þ for which no permutation Ki1 ;Ki2 ; · · ·;Kin meets RIP –

see, e.g. Example 12.6. (Realize that any sequence of uniform distributions is flexible.)

Remark 12.5. It should be stressed that, when speaking about a flexible sequence, the

ordering of distributions is substantial in spite of the fact that it allows a number of

different reorderings not changing the resulting multidimensional distribution. Notice,

however, that one can create different flexible sequences from a system of distributions –

see the following example.

Example 12.6. Consider three pairwise consistent distributions

p1ðx1; x2Þ; p2ðx2; x3Þ; p3ðx3; x4Þf g, and assume that X2 n X3½p2�. Obviously, three sets

{1; 2}, {2; 3}, and {3; 4} can be ordered in 3! ¼ 6 ways, four of which meet RIP

1; 2f g 2; 3f g 3; 4f g; 2; 3f g 1; 2f g 3; 4f g;

2; 3f g 3; 4f g 1; 2f g; 3; 4f g 2; 3f g 1; 2f g;

All the corresponding sequences, which are perfect due to Lemma 10.13, define the same

distribution, and therefore, all of them are flexible. Nevertheless, the generating sequences

corresponding to the two remaining permutations

1; 2f g 3; 4f g 2; 3f g; 3; 4f g 1; 2f g 2; 3f g;

are also flexible (though not perfect! – to verify it show that p2 is not a marginal of the

resulting four-dimensional distribution), because both of them define the same distribution

p1 Mp3 Mp2 ¼ p3 Mp1 Mp2 ¼ p1 ·p3;

and each variable appears among the arguments of the first distribution in one of the

sequences. Thus we have shown that from the considered three distributions one can set up

two different four-dimensional distributions, each of which is defined by a flexible

sequence. Additionally, let us remark that the considered set {p1;p2;p3} is also

commutable defining the same distribution as the flexible perfect sequence p1;p2;p3.

On the other hand, flexible sequence p1;p3;p2 has a special property (which may seem

rather strange at first sight): its distributions form a commutable set {p1;p3;p2}, but this

set defines a distribution which differs from the distribution defined by the flexible

sequence p1;p3;p2,

p1 Np3 Np2 – p1 Mp3 Mp2:

The next assertion introduces a simple sufficient condition under which a flexible

sequence is also perfect.
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Lemma 12.7. If, for all i ¼ 1; · · ·; n of a flexible sequence p1; · · ·;pn, there exists an index

j [ KinðK1 < · · ·< Ki21 < Kiþ1 < · · ·< KnÞ;

then this sequence is perfect, too.

Proof. In other words, the assumption says that each set Ki contains at least one index

which is not included in any other set Kj. Therefore, the assumption of flexibility in this

case requires that for each pi there must exist a permutation of indices such that pi ¼ pi1

and pi1 M · · · Mpin ¼ p1 M · · · Mpn, and therefore, all pis are marginal distributions of

p1 M · · · Mpn. From this, perfectness of p1; · · ·;pn is guaranteed by Theorem 10.3. A

In the following example, we will show that the requirement for a generating sequence

to be both perfect and flexible is rather strong, and in many situations such sequences may

be simplified. In some ways, these sequences resemble the decomposable distributions,

and therefore, as previously stated, we will learn more about perfect flexible sequences in

Section 13.

Example 12.8. Consider a situation when K1 ¼ 1; 2f g; K2 ¼ 2; 3f g; K3 ¼ 3; 4f g;
K4 ¼ {1, 4, 5} (see Figure 7) and assume that the sequence

p1ðx1; x2Þ;p2ðx2; x3Þ;p3ðx3; x4Þ;p4ðx1; x4; x5Þ

is perfect and flexible. We will show that in this case at least one of the distributions p1,

p2, or p3 can be deleted without changing the distribution represented by this flexible

perfect sequence.

Since x5 appears among the arguments of only p4, due to the flexibility of the

considered sequence there must exist an ordering p4;pi1 ;pi2 ;pi3 such that

p4 Mpi1 Mpi2 Mpi3 ¼ p1 Mp2 Mp3 Mp4:

Whatever the permutation i1; i2; i3 is, Ki3 , K4 < Ki1 < Ki2 , and therefore, p4 Mpi1 M

pi2 Mpi3 ¼ p4 Mpi1 Mpi2 .

Now, it is an easy task to show that p4;pi1 ;pi2 is perfect and flexible. Perfectness is an

immediate consequence of the perfectness of the original sequence p1;p2;p3;p4 (all the

distributions are marginals of the distribution p1 Mp2 Mp3 Mp4 ¼ p4 Mpi1 Mpi2 ).

Regarding the flexibility, we will consider two separate situations. If i1 ¼ 2, then flexibility

Figure 7. System of index sets from Example 12.8.
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is guaranteed by the fact that K4 < K2 ¼ 1; 2; 3; 4; 5f g and p4 Mp2 Mpi2 ¼ p2 Mp4 M

pi2 because of consistency of p2 and p4 (Lemma 4.4). Moreover, in this situation

Ki2 , K4 < K2, and therefore, p4 Mp2 ¼ p4 Mp2 Mpi2 . If i1 – 2, then K4;Ki1 ;Ki2

meets RIP and the flexibility follows from Lemma 12.3.

13. Decomposable models

To make a complete list of the considered special cases, we cannot omit sequences

defining decomposable models. But the question ‘What are the sequences defining

decomposable models?’ is not as simple as it looks at first sight.

In the field of graphical Markov models, decomposable distributions are those which

factorize with respect to decomposable graphs, i.e. distributions n which are uniquely

given4 by a system of their marginal distributions n #L1 ; n #L2 ; · · ·; n #Lm such that the index

sets L1; L2; · · ·; Lm can be ordered to meet RIP. Therefore, it seems quite natural to define a

generating sequence pðK1Þ;pðK2Þ; · · ·;pðKnÞ to be decomposable, if the distributions are

pairwise consistent and K1;K2; · · ·;Kn meets RIP. Adopting this type of definition, we

would get a proper subclass of flexible perfect sequences. The fact that these sequences are

perfect and flexible follows from Lemmas 10.13 and 12.3. Obviously, there are flexible

perfect sequences pðK1Þ;pðK2Þ; · · ·;pðKnÞ for which K1;K2; · · ·;Kn does not meet RIP:

for example, sequence p1ðx1; x2Þ;p2ðx1; x3Þ;p3ðx2; x3Þ when p1 and p2 are consistent, and

p3 ¼ ðp1 Mp2Þ
#{2;3}. As another trivial example one can consider a sequence of uniform

distributions, which is also flexible perfect regardless whether the respective sequence

K1; · · ·;Kn meets RIP or not. This is why we propose the following, rather non-standard

definition.

Definition 13.1. A generating sequence p1ðK1Þ;p2ðK2Þ; · · ·;pnðKnÞ is called decom-

posable if there exists a generating sequence n1ðL1Þ; n2ðL2Þ; · · ·; nrðLrÞ such that each nk
(k ¼ 1; 2; · · ·; r) is a marginal of some p‘ (Lk # K‘, nk ¼ p

#ðLkÞ
‘ ),

p1 Mp2 M · · · Mpn ¼ n1 Mn2 M · · · Mnr;

and L1; L2; · · ·; Lr meets RIP.

Let us first illustrate the definition of decomposable sequences using two simple examples.

Example 13.2. In this example, we shall show that if p1ðx1; x2Þ;p2ðx3; x4Þ;p3ðx2; x4; x5Þ is
perfect, then it is also decomposable.

Applying Theorem 9.4 to the considered sequence, we obtain p1 Mp2 Mp3 ¼

p1 M ðp2jM {1;2}p3Þ. Due to the assumed perfectness of p1;p2;p3 both p
#{2}
1 and

p2 jM {1;2}p3

� �#{2}
¼ p

#{2}
3 p2 M p3

� �#{2}
¼ p

#{2}
3

equal to each other and therefore (cf. Lemma 4.4)

p1 M p2 M p3 ¼ p1 M p2 jM {1;2}p3

� �
¼ p2 jM {1;2}p3 M p1:

From this, we can see that

p1 M p2 M p3ð Þ#{2;3;4;5}¼ p2jM{1;2}p3 ¼ p
# 2f g
3 p2 M p3
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and therefore,p
# 2f g
3 p2 ¼ p1 M p2 M p3ð Þ#{2;3;4}. In this way, we have deduced a consistency

of p
# 2f g
3 p2 and p3 (both are marginals of p1 Mp2 Mp3), and therefore,

p
# 2f g
3 p2 M p3 ¼ p3 M p

# 2f g
3 p2 ¼ p3 M p2

(the last equality follows just from the definition of the operator M). Thus, based on

perfectness of p1 Mp2 Mp3, we have obtained that p1 Mp2 Mp3 ¼ p3 Mp2 Mp1. To

show thatp1;p2;p3 is decomposable, it is enough to realize anobvious fact that the index sets

corresponding to p3;p2;p1 (i.e. 2; 4; 5f g; 3; 4f g; 1; 2f g) meet RIP.

Example 13.3. This example presents a decomposable generating sequence that is neither

flexible nor perfect. Let distributions from Tables 19 and 20 form a generating sequence

p1;p2;p3;p4.

To verify that this sequence is not perfect, although all the distributions are pairwise

consistent, it is enough to employ Lemma 10.2, compute ðp1 Mp2 Mp3Þ
#{3;4} (see

Table 21), and compare it with p
# 3;4f g
4 . Moreover, it means that p4 is not a marginal of

p1 Mp2 Mp3 Mp4, from which one can deduce that p1;p2;p3;p4 is not flexible (notice,

namely, that the only distribution having X5 among its arguments is p4). Nevertheless, it is

not difficult to show that

p1 M p2 M p3 M p4 ¼ p1 M p2 M p3 M p
# 3;5f g
4

(we recommend the reader to do it; hint: notice that X5 n X4jX3½p4�) and therefore, the

sequence p1;p2;p3;p4 meets the condition of Definition 13.1.

Remark 13.4. The presented definition of decomposable sequences is so broad that it is

really difficult to deduce interesting results on them. The reader certainly noticed that to

show decomposability of the perfect sequence from Example 13.2, we showed that it was

also flexible. As a rule, most flexible perfect sequences are decomposable. It had been an

open problem for some time whether flexible perfect sequences exist which are not

decomposable. And this is the main non-trivial result of this section: to show that it really

is possible to find a perfect flexible sequence which is not decomposable.

Table 19. Probability distributions p1; p2; and p3 of Example 13.3.

p1ðx1; x2Þ x1 ¼ 0 x1 ¼ 1

x2 ¼ 0 1
6

2
6

x2 ¼ 1 2
6

1
6

p2ðx1; x3Þ x1 ¼ 0 x1 ¼ 1

x3 ¼ 0 1
4

1
4

x3 ¼ 1 1
4

1
4

p3ðx2; x4Þ x2 ¼ 0 x2 ¼ 1

x4 ¼ 0 1
2

0

x4 ¼ 1 0 1
2
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Example 13.5. Consider a sequence p1ðx1; x2Þ;p2ðx2; x3; x6Þ;p3ðx3; x4Þ;p4ðx1; x4; x5Þ (see
Figure 8) and assume it is perfect and flexible. First notice that p1 Mp2 Mp3

Mp4 ¼ p2 Mp1 Mp3 Mp4, because the first two distributions of any perfect sequence

maybe swapped.Then, since x5 appears among the arguments of onlyp4, due to theflexibility

of the considered sequence, there must exist an ordering p4;pi1 ;pi2 ;pi3 such that

p4 Mpi1 Mpi2 Mpi3 ¼ p1 Mp2 Mp3 Mp4:

If i1 ¼ 2, then p4 Mp2 ¼ p1 Mp2 Mp3 Mp4, and K4;K2 meets RIP. Similarly, if i2 ¼ 2,

then p4 Mpi1 Mp2 ¼ p1 Mp2 Mp3 Mp4, and K4;Ki1 ;K2 meets RIP. Therefore, these

situations resemble Example 12.8 – one or two distributions may be omitted without loss of

possibility to define the required distributionp1 Mp2 Mp3 Mp4. Therefore, these situations

cannot yield the required example and we have to analyze the situation when i3 ¼ 2, i.e. the

situation when

p4 Mp1 Mp3 Mp2 ¼ p2 Mp1 Mp3 Mp4: ð17Þ

(p4 Mp3 Mp1 ¼ p4 Mp1 Mp3 because of Lemma 5.7.) Denote the six-dimensional

distribution from (17) by n.

Application of Lemma 5.2 to p2 M p1 ¼ n ð 1; 2; 3; 6f gÞ yields X3;X6 n X1jX2½n�, and,

due to Lemma 2.3, also

X3 n X1jX2½n�:

Table 21. Probability distribution ðp1 M p2 M p3Þ
ð{3;4}Þ:

x3 ¼ 0 x3 ¼ 1

x4 ¼ 0 x4 ¼ 1 x4 ¼ 0 x4 ¼ 1

1
4

1
4

1
4

1
4

Table 20. Probability distribution p4 of Example 13.3.

x3 ¼ 0 x3 ¼ 1

p4 x4 ¼ 0 x4 ¼ 1 x4 ¼ 0 x4 ¼ 1

x5 ¼ 0 6
24

2
24

1
24

3
24

x5 ¼ 1 3
24

1
24

2
24

6
24

Figure 8. System of index sets from Example 13.5.
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From this independence, employing the well-known property of mutual information

(Gallager 1968), one gets MInðX1;X2Þ $ MInðX1;X3Þ and also MInðX2;X3Þ $

MInðX1;X3Þ. Analogously, from p2 Mp1 Mp3 ¼ n ð{1;2;3;4;6}Þ, we are getting

X4 n X1;X2;X6jX3, and therefore, also MInðX1;X3Þ $ MInðX1;X4Þ.

Considering now p4 Mp1 ¼ n ð{1;2;4;5}Þ and p4 Mp1 Mp3 ¼ n ð{1;2;3;4;5}Þ, we get,

in an analogic way, MInðX1;X4Þ $ MInðX2;X4Þ, MInðX2;X4Þ $ MInðX2;X3Þ, and

MInðX3;X4Þ $ MInðX2;X3Þ. Combining all six of these inequalities, one immediately

gets the following necessary condition that must hold true for a distribution n defined by

both generating sequences p2;p1;p3;p4 and p4;p1;p3;p2:

MInðX1;X2Þ $ MInðX1;X3Þ ¼ MInðX2;X3Þ ¼ MInðX1;X4Þ

¼ MInðX2;X4Þ # MInðX3;X4Þ:
ð18Þ

This is a rather strong condition, which is met, for example, when all these expressions for

mutual information equal 0, i.e. when variables X1;X2;X3;X4 are independent. In this

case, however, distribution n may be expressed just as a composition p2 Mp4 and we

would not get anything new in comparison with Example 12.8.

However, the inequalities (18) are also satisfied when

X1 n X4½p4� and X2 n X3½p2�; ð19Þ

and X2 and X4 are copies of X1 and X3, respectively, by which we understand that

p1ðx1; x2Þ ¼ 0 for x1 – x2;

p3ðx3; x4Þ ¼ 0 for x3 – x4:
ð20Þ

Thus, if distributions p1; p2; p3; and p4 are pairwise consistent and expressions (19) and

(20) hold true, the sequence p1;p2;p3;p4 is perfect and flexible (to prove it, verify that

both p2;p1;p3;p4 and p4;p1;p3;p2 satisfy conditions of Lemma 10.2). In addition to

this, if X6 n X2½p2�, X6 n X3½p2�, X5 n X1½p4�, and X5 n X4½p4�, then this sequence is

not decomposable. To show it, realize that the distribution p1 Mp2 Mp3 Mp4 is defined

only by the generating sequences, where either p2 or p4 is the last.

Remark 13.6. Perhaps the importance of flexible perfect sequences can be emphasized

even more by mentioning that the above presented example has its weak spot. We do not

know whether the inequalities (18) can be met by any types of distributions other than

those mentioned in the example: X1;X2;X3;X4 independent, or, distributions for which

(19) and (20) hold true. If not, we have to admit that the example is not fully convincing

because, although it does not meet conditions of Definition 13.1, the considered

distribution p1 Mp2 Mp3 Mp4 can be represented in a decomposable form. This is

because X2 and X4 are copies of X1 and X3, respectively, and therefore, we can see that

p1 Mp2 Mp3 Mp4 ¼ p2 M ðp1 Mp2 Mp3 Mp4Þ
#{2;3;5} Mp1 Mp3;

which is a sequence of distributions whose sets of arguments meet RIP. We see that the

dimensionality of new distributions (in fact, we consider only one new distribution,

namely ðp1 Mp2 Mp3 Mp4Þ
#{2;3;5}) is the same as the dimensionality of the original

distributions, but the necessary computations of ðp1 Mp2 Mp3 Mp4Þ
#{2;3;5} cannot be

performed locally.
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14. Summary

This survey paper summarizes basic theoretical properties on compositional models.

The first part of the paper introduces operators of composition and their properties, and the

second part shows how these operators are used for multidimensional probability

distribution representation. It is worth repeating that among all generating sequences,

perfect sequences play an important role, because they faithfully reflect the information

contained in the individual distributions from the generating sequence. This property is

important from the point of view of potential applications; when the individual

oligodimensional distributions pi represent pieces of local knowledge, then p1 Mp2 M

p3 M · · · Mpn is a proper representative of global knowledge. Though we have not dealt

with this question, decomposable sequences are most prosperous from a computational

point of view, although flexible perfect sequences seem to have almost equally

advantageous properties.
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Notes

1. HðnÞ denotes the Shannon entropy of n defined HðnÞ ¼ 2
P
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3. Notice that p1ðx2jx1 ¼ aÞ is a one-dimensional distribution of X2.
4. More precisely, n is a maximum entropy extension of the given system of its marginal

distributions.
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Jiroušek, R., 1998. Graph modelling without graphs. In: B. Bouchon-Meunier and R.R. Yager,
eds. Proceedings of the 7th international conference on information processing and
management of uncertainty in knowledge-based systems IPMU’98. Paris: Editions E.D.K.,
809–816.
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