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Abstract

Compositional model theory serves as an alternative apprimamultidimensional probability distribution represen
tation and processing. Every compositional model over &efimbn-empty set of variablé$ is uniquely defined by
its generating sequence — an ordered set of low-dimengwabhbility distributions. A generating sequence struc-
ture induces a system of conditional independence statsmogarN valid for every multidimensional distribution
represented by a compositional model with this structure.

The equivalence problens how to characterise whether all independence statenrehtsed by structur® are
induced by a second structufe and vice versa. This problem can be solved in several waysarfdapsolution of
the so-calledlirect characterisatiorof an equivalence problem is represented here. We deducdemudbe three
properties of equivalent structures invariant in a classopfivalent structures. We call thesharacteristic properties
of equivalence.

Keywords: Equivalence problem, compositional model, persegranracieristic properties

1. Introduction

The ability to represent and process multidimensional @iodlty distributions is a necessary condition for the
application of probabilistic methods in artificial intglénce. Among the most popular approaches are the methods
based on graphical Markov models, e.g., Bayesian netwditks.compositional models (see [1] or [4] for example)
represent an alternative approach to graphical Markov teode

A Bayesian network may be defined as a multidimensionalildigton factorising with respect to an acyclic
directed graph, or it may alternatively be defined by its rapd an appropriate system of low-dimensiccaidi-
tional distributions Similarly, a compositional model is defined as a multidisienal distribution assembled from
a sequence of low-dimensionahconditional distributionswith the aid of arpperator of compositionWe call the
sequence of low-dimensional distributiongenerating sequena& the compositional model. The main advantage
of both approaches lies in the fact that low-dimensiondritistions could easily be stored in a computer mem-
ory. However, computations on a multidimensional disttitiu that is split into many pieces may be exceptionally
complicated.

There are two main advantages to using compositional maeget®ompared to Bayesian networks. First, com-
positional models explicitly express some marginals, vehmsmputation in a Bayesian network may be demanding.
Secondly, no auxiliary graphical tool, such as a directgatlacgraph, is required in compositional models.

As stated above, a compositional modet@nposedrom an ordered system of low-dimensional distributions
— the so-called generating sequence. The bimgugrator of compositiorused during this process is basically a
normalised product of its parameters designed to creat®lapility distribution over the union of variables for
which the input distributions are defined. (See Definitioh.2.While the model is put togethefun)conditional
independencieare simultaneously introduced lilye structure of the generating sequen&er example, for a two-
dimensional distribution composed from two one-dimenai@mes, the respective variables are independent.
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For the sake of clarity, atructure of a compositional mod@ structure of its generating sequence in particular)
can be visualised by a tool calleparsegramand one can read the induced independencies directly thsmtpol.

We say that every structure (or its corresponding persegratuces afndependence modela list of (un)conditional
independence statements.

The equivalence problens how to characterise whether an independence model iddogene structure is
identical with an independence model induced by anothacstre, and vice versa. Structures inducing the same
independence model are said todmuivalent One can find two dierent approaches to solve this problem in other
probability models. First is the so callelirect characterisationwhich is based on several characteristic structure
properties sfficient to guarantee the equivalence. Second, a group of ti@eeformations preserving the indepen-
dence model can be found and two structures are equivaldari is a sequence of these transformations from one
to the next.

This paper puts forth two major contributions in this areiasti-we derive two characteristic properties of equiva-
lent structures which can later be used for direct charigetigon of an equivalence problem. The second contribution
is presentation of a very special subset of the relevanttsirel — the so calledtructure core It results from a very
new approach to sets of variables, where we distinguishtvenghe set irivial or non-trivial in this structure. The
structure corecorresponds to the so-calleeluced persegrampublished in [6]. The local transformations preserving
an induced independence model (published in [7]) now sedre tvery logical consequence of these properties.

2. Notation

Throughout the paper the symhdlwill denote a non-empty finite set of finite-valugdriables The symbols
K,U,V,W, Z will be used for subsets dfl. |U| will denote the number of elements i, that is, itscardinality.
Symbolsu, v, w, X, y, z denote variables as well as singletdog {v}, {w}, {x}, {y}, {z}. Two set inclusion symbols are
used thorough the paper, namelandc. Whereas the symbg represents the usual (non-strict) case of inclusion,
the symbolc is used for strict inclusion only. That meangjifc V thenV \ U # 0.

All probability distributions of the variables fromd will be denoted by Greek letters (usuadty, thus forK C N,
we consider a distribution(K) which is defined on variables. If we work with several distributions, we distin-
guish between them by indices. For a probability distrimutt(K) andU < K we denote the respectivaarginal
distributions(U) or z'V.

For a probability distributiomr(N) and three disjoint subset$ V, Z € N such that) # 0 # V, we say that sets of
variablesU andV areconditionally independergivenZ in r (in symbolU 1LV|Z[x]) if

ﬂ,LUUVUZ(X) A ﬂ'lZ(X) — n_lUuZ(X) . ﬂlVUZ(X).

for all x € XjeuuvuzX;. Observe that, iZ = 0, then the conditional independence coincides with undaodil
independence. The unconditional independence of varsgée) andV in x is denoted byJ 1 V[x]

The keystone of Compositional Models is an operator of casitipm . It is used to compose low-dimensional
distributions to get a distribution of a higher dimensioheTtcomposition is described in the following definition.

Definition 2.1. For two arbitrary distributionsr,(U) andz2(V) their compositioris given by the formula
my(U)ma(V)
m(UNV)
if 11(U N V) < m2(U NV), otherwise the composition remains undefined.
The symbofr1(K) < m2(K) means thair;(K) is dominatedoy 72(K), which in its turn means (in the considered

finite setting)¥x € XjekXj; (m2(X) = 0 = m1(X) = 0). Moreover, if for any Xe XjeunvXj m2(X) = 0, then by
dominancer;(U NV) <« mp(U N V) there is a product of two zeros in the numerator and we Pé@r(e 0

my(U) > ma(V) =

The result of the composition (if defined) is a new distribatiWe can iteratively repeat the process of composition
to obtain a multidimensional distribution. That is why theltidimensional distribution is called @mpositional
model Regarding the fact that the operatelis neither commutative nor associative, we always applyotierator
from left to right; e.g.,

m1(K1) > m2(K2) > ... > a(Kn) = (... (m1(K1) > m2(K2)) > ... .) & 7n(Kn).
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Therefore, in order to construct such a model it iffisient to determine a sequence of low-dimensional distribu-
tionsmy, 12, . ..,y — we call it agenerating sequence

From now on, we consider a generating sequent¢k;), m2(K2), ..., mn(Kn) such thatry(Ky)> m2(Kg) > ...
>mn(Kn) is defined. Therefore, whenever distributigris used, we assume it is defined for varialifgsA sequence
of setsKy, Ko, ..., K, is calledmodel structureand it is denoted byP. If not specified otherwise? = Ky, ..., Ky
where K1 U... UK,) = N, and we say tha® is defined oveN andK; € P for everyi € {1,...,n}. One may denotk;
as Kf’ to emphasise thd; € #. In addition, each se&K; can be divided into two disjoint parts with respect to model
structure. We denote theRK;) andSKj):

RK) = K\(KiU...UKj1)
SK) = Kin(Kiu...UKiy)

It has the following meaningRK;) denotes the variables first occurring in the sequence (mgédmom left to right).
SKj) denotes the variables which have already been used. GdetK; = RK) U SKj). |#| denotes the number of
sets in the structure, i.6®| = nfor P = Ky, ..., K.

As stated in the introduction, while a model is put togethesystem of (un)conditional independencies is simul-
taneously introduced by the structure of the generatingesecg.

Example 2.2. Let{u,v} = N, u# v. m1(u), m2(V) is a generating sequence of a compositional madet 7,. Then
uLviry > 7). Indeed, by applying the operator of composition one gets

my(U)ma(v)

m1(U) > (V) = T@ =

7T1(U)7T2(V),
which corresponds to the definition of independence of béetu and v.

Similarly, assuméu,v,w} = N are three distinct variables;(u, w), and (v, w) is a generating sequence of a
compositional modet; t> ,. Using Definition 2.1 we get

m1(u, Wya(v, W)

7T1(U, W) > 71'2(V, W) = 7T2(W)

Then uLviw[r > 72] by the definition of conditional independence.

The more complex the model structure is, the mof@dalilt the seeking of induced independencies is. Let us
note that the set of independencies induced by a structwadics for any compositional model with this structure
regardless the generating distributions’ properties.i@Qisly, one can read induced independencies directly flmam t
model structure. To increase the lucidity and readabilityis text, we have decided to use a specific visualisation of
the structure, and we present the procedure for reading@tlindependencies using this tool.

2.1. Persegrams

It is well-known that one can read conditional independeetations of a Bayesian network from its graph. A
similar technique has been developed for compositionalaisodAn appropriate tool for this is persegram- a
visualisation tool of the model structure.

Definition 2.3. Persegranof a structureP = Ky, Ky, ..., K, is a table in which rows correspond to variables from
K1 UKz U... UK, (in an arbitrary order) and columns to sets of variablesfir all i € {1,...,n}; ordering of

the columns corresponds to the structure ordering. A pmsiin the table is marked if the respective set contains
the corresponding variable. Markers for the first occurrerad each variable (i.e., the leftmost markers in rows) are
box-markersand for other occurrences there aballets

Example 2.4. LetP = Kg,...,Ks be structure of a compositional model such that K {u}, Ky, = {v,w},K3 =
{uv,x},Ks = {w,x,y},Ks = {X,y,2}. Since the row ordering is not specified in Definition 2.3, theresponding
persegram can be visualised not only as in Figure la, but alsmany other ways. See another persegram in
Figure 1b.



e 8 & < 2
E < n 8

Figure 1: Diferent persegrams belonging to one model strudture

Observe that bullets inth column correspond tﬁK,”) and box-markers tE(Kf’).
To be able to simply handle characteristic properties ofélspective structures and persegrams, we introduce a
function
] [p:N—={1,...,n}

such that§i[» returns the index of ser’ with the first appearance ofin # for every variableu € (Kf U...UK?).
Hence, U[»= min{i : u € K”}. Due to the previously established notation, it can be MdKﬁ[P is a columnK?”
whereu € RK/), i.e., u[p=i : ue RK"). The symbolP may be omitted inJ[» if the context is clear.

Example 2.5. Take the model structur® = Kj, ..., Ks from Example 2.4. One can read the following properties
from both of its persegrams in Figure lu[p= 1, ]V[p= 2, IWp= 2, [X[p= 3, IY[r= 4, ]4»= 5, and
RKD =fu KD =0

RK) ={vw} SK)) = 0
RKY) = {x SKj) =

RK) =tyy K} = {
RK) ={z KD =ix }

Definition 2.6. For arbitrary variables yv € N and structure” over N we introduce a binary relation g v such
that u<p v if and only ifju[s<]v[». Moreover, we introduce the relatioty: u <p v SU[p<]V[p.

The following convention will be used throughout the papg&iien a structuré overN, setU € N and variable
v e N, the termU <p v denotes that <p v for all u € U. The symbolP may be omitted if the context is clear.

Example 2.7.Let K, ..., Ks be the same model structure as in Example 2.4 again. Acaptditihe former definition
one can see thatd v < w < X < y < z in both persegrams from Figure 1.

2.2. Induced models

In this section we shall demonstrate how to read induceditiondl independence relations from a persegram rep-
resenting a structure of a compositional model. Such inaddpecies are indicated by the absencetadihconnecting
relevant markers and avoiding othesgich is defined below.

Definition 2.8. A sequence of markersgm. ., m; of a persegram corresponding to structyé?das called a Zavoiding
trail (Z Kf U...uU K;’)‘) that connects giand m if it meets the following five conditions:

0. my and m do not correspond to a variable from Z
1. for each s= 1,...,t a couple(ms_1, ms) is either in the same row (i.e., horizontal connection) ottie same
column (vertical connection);

2. each vertical connection must be adjacent to a box-marker;
3. no horizontal connection corresponds to a variable from Z;

4



4. vertical and horizontal connections regularly alternatéwthe following possible exception: at most two
vertical connections may be in direct succession if themammn adjacent marker is a box-marker of a variable
from Z;

If a Z-avoiding trail connects two box-markers correspargdio variables u and v, we say that thesgiables are
connected by a Z-avoiding traiThis situation will be denoted byw|Z[P].

By investigating Definition 2.8 further, the reader will fititat no condition of the definition is dependent on the
order of rows in the considered persegram. That would noppeogriate either, because all persegrams representing
the structure of a generating sequence are equivalentilegaof the row ordering. (See the definition of persegram -
Definition 2.3). Then the system gfavoiding trails induced by a persegram can be obtained pyter persegram
of the considered structure. In the sense of the previousitiefi, all persegrams corresponding®are equivalent.

Example 2.9. Consider a persegram visualising a struct@eas it is depicted in Figure 2. There is a sequence of
markers in each part of it. In order to illustrate vertical dmorizontal connections and to highlight the ordering,
each two consecutive markers are connected with a line.

There is a sequence of marké¢ks, u], [Ks, u], [Ks, Z] in Figure 2a. Considering Z 0, it forms a Z-avoiding trall
connecting u and z. However, considering Definition 2.& #eiquence avoids many other variables and Z may have
various content. In fact, Z can be any subsefwiv, x, y}. Hence, uviZ[P] for any ZC {v,w, X, y}.

()P : uyzo, uyziv,w, x,y} (b) P ulxi{z}, uyxiiv, z3

Figure 2: Diferent trails connecting with some other variables

Similarly, the sequence of markdis;, u], [Ks, U], [Ks, Z], [Ks, Y], [Ka, V], [Ka, W], [K3, W], [K3, X] from Figure 2b
is a{z}-avoiding trail. Contrary to Figure 2a, one cannot replackyany other variable. Otherwise, the 4th condition
from Definition 2.8 would be corrupted. However, the traipaied in Figure 2b iqv, z}-avoiding too.

With the help ofZ-avoiding trails, the so-calle(lin)conditional (in)dependencies induced by a persegaaen
introduced.

Definition 2.10. Consider a persegram corresponding to a struct@rever N and three disjoint subsets\WJZ c N
such that U# 0 # V. The sets of variables U and V aoenditionally independent giver in # (in symbol
ULV|Z[P)]), if no u € U is connected with a & V by a Z-avoiding trail. Otherwise U and V amonditionally
dependent given b¥ in P, written ULV|Z[#].
Theinduced independence modg{P) and theinduced dependence modB[(#) of structure® are defined as
follows:
I(P) = (U, V|Z) € T(N); ULV|Z[P]}

D(P) = KU, VI[Z) € T(N); ULV|Z[P]},

where the symbdi"(N) denotes the class of all disjoint triplets over N:

T(N)={U,VIZ) :UV,ZCNU£0+VUNV=VNnZ=ZnU =0}



The concept of induce(in)dependencids/es up to expectations that there is a parallel betweerathd indepen-
dencies valid in any compositional model with the same #tinec The connection between independence read from
a compositional model and from its persegram is elucidayatié following theorem. The proof can be found in [2].

Theorem 2.11.Consider a generating sequencgKi), .. ., mn(K,), the corresponding structug, and three disjoint
subsets WV, Z Cc Ky U... UK, suchthat U# 0 # V. Then:

ULViZ[P] = ULV|Z[r > ... > m).

It is important to realise that (analogously to the situatichen Bayesian networks or decomposable models are
considered) one can be sure about the validity of the inglitatdependence relations for any distribution which is
represented by a compositional model with the given peasedgstructure).

2.3. Other preliminaries

A trivial fact follows from Definition 2.8. It concerns vatites appearing for the first time in the last column .
Before we introduce this fact in the form of a lemma, let ussifate it with the help of the following example.

Example 2.12. Consider the persegram from Figure 3. | would like to show thare is no Z-avoiding trail connect-
ing ze RKy (first appearing in the last column) with w Ks (not belonging to the last column) forZ {u, v, y}. Let
us try to construct such a sequence of markers forming a Zdangptrail.

Three diferent sequences of markers are depicted in Figure 3. Letmsngurise requirements necessary for these
sequences to be Z-avoiding trails:

¢ Consider the sequence of markers highlighted in Figure 3eth® 3rd condition of Definition 2.8 (no horizontal
connection corresponds to a variable from Z), Z must nota&iord variable y (y¢ Z).

e Figure 3b: Similarly, v¢ Z for the same reasons.

e Figure 3c:uve¢ Z.

(b)P:vez ©)P:uvez

Figure 3: Diferent trails violating 3rd condition of Definition 2.84f = {u, v, y}.

Combining the restrictions on Z together, one gets the ¥aiig corollary: By choosing Z= Ky = {u,Vv,V},
none of the above-discussed sequences forms a Z-avoidihgjtice each of them contains a horizontal connection
corresponding to a variable fro 73). These horizontal connections violating the 3rd conditiéefinition 2.8
are drawn by dotted lines. Since there is no other possilg -Avoiding trail between w and z, w7 SKs) holds due
to Definition 2.10.

Lemma 2.13. Consider a structuré’ = Kq,..., K, and distinct variables w € (K; U ... U K;) such that ue RK))
and v¢ K,. Then uLviSKp [P].



Proof. Consider a persegram #f Sinceu belongs to the last column &f (u € Kf;)‘), every trail fromu has to begin
with a vertical connection if, to a marker corresponding to a variable fr&W,) (otherwise, in a case where the
vertical connection connects two variables fr&¥,) , the horizontal and vertical connections could not redyla
alternate). However, n8Ky) -avoiding trail may contain a horizontal connection cepending to a variable from
9K, and such a trail must not contain any marker out of the lalstnen. Sincau ¢ Ky, a trail representingiv{SKp)
cannot exist; therefore,Lv|SKp) [#] by Definition 2.10. O

To simplify the following, we introduce the concept of thgbstructure induced by a set of variablémlike the
subgraph which contains exactly those variables that iméythe substructure is usually defined for some superset.

Definition 2.14. A substructuref a structureP = Ky, ..., Ky induced by a set I (Ky U ... UK,) is its minimal left
part containing all variables UP[U] = Ky, ..., Kmaxjuueu;

Persegram oP[U] is created from persegram &by removing columns to the right of the one with the farthest
right box-marker corresponding to a variable from

Remark 2.15. Observe that, given U and Z U, any sequence of markers forming a Z-avoiding trail in asggram
of P[U] forms a Z-avoiding trail in a persegram &f.

Example 2.16. Consider a structure® = Kj,..., Ks from Example 2.4 again. Its corresponding persegram is in
Figure 4a. Suppose & {u, x} holds. One can then find a persegram of the induced persegfahin Figure 4b.
Observe thaf[U] is defined not only ovew, x}, but also ovefv, w}.

Ky Ky Ky

(a) Persegram ap (b) Persegram of substructure

Figure 4: Visualisation of a structure and its substructunéch is induced byu, x}

The concept of an induced substructure brings one very ifapbadvantage. Searching #favoiding trails
connectingu with v in a persegram may be restricted to a persegram of its sehstelinduced only byu, v} U Z.

Lemma 2.17. Consider a persegram of structuf@ over N, yv € N, and Z< N\ {u,v}. If ugviZ[P], then all
Z-avoiding trails connecting u with v are in the persegranit®tubstructure”[{u, v} U Z].

Proof. Assume that there is Z-avoiding trail representingv|Z[#] containing markers out of the area defined by
P[{u, v} U Z]. We show that ifZ-avoiding trail fromu leaves the area defined B{u, v} U Z], then it cannot end up
in v which contradicts the assumption. To understand our wakiioking, the reader should have a careful look at
Figure 5b during the procedure.

Assume that is aZ-avoiding trail representingiv|Z[P] with a marker out ofP[{u,v} U Z]. l.e. 7 = my, ..., m
is a sequence of markers wheng corresponds to. Letm; be the first marker in the sequencsuch that it comes
out of the part of persegram corresponding’{éu, v} U Z]. Since it is the first marker in such a column, a horizontal
connection had to be used betwean; andm and thereforen has to be a bullet. By Definition 2.8, the trail now
has to continue with a vertical connection to a box-markarcé&this box-marker cannot correspond to any variable
from Z (it is out of P[{u, v} U Z]), one has to continue with a horizontal connection (by dédin, to the right of the
box-marker (first marker in the row) — there is nothing on #féih the same row) to a bullet. Then we again make a
vertical connection to a box-marker which does not corredgo any variable fronZ, etc. From such a tratl, there
is no return tov. Therefore such a trail cannot exist, which contradictsassumption. O
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Example 2.18. Let us illustrate the idea of proving Lemma 2.17. Considergbrsegram from Figure 5, its corre-
sponding structure?, and Z= {x}. | am going to show that there is only ofxg-avoiding trail representing yw|x.
One can find it in the area correspondingfp{u, w, x}] in Figure 5a.

Let us try to create an x-avoiding trail from w to u containimgwrkers out of the highlighted part corresponding
to P[{u, w, x}]. Such an experiment is depicted by the dotted line in Fighre 5

(a) The onlyx-avoiding trail connecting with w. (b) An attempt to create zavoiding trail outside the
Itis located in the area induced fxy, w, x} area corresponding to induced substructure.

Figure 5: lllustration of Lemma 2.17

Let us start in the box-markéK,, w) and continue out oP[{u, w, X}] into (K4, w). To satisfy Definition 2.8 of a
Z-avoiding trail, one has to continue with a vertical contiec to a box-marker. (The only possible box-marker is
(K4, ¥)). Since y¢ Z, then by the 4th condition of Definition 2.8 one has to caiwith a horizontal connection (to
the right — there is nothing left of any box-marker), etc. c8ithere is no box-marker corresponding to Z outside of
P[{u, w, x}], the trail moves away from u. Since there is no return for suttail, it cannot exist.

Lemma 2.17 basically means that, if we are interested itioala_Lv|Z[#], we may focus only on the subperseg-
ram#[{u, v} U Z]. This observation is summarised in the following corollar

Corollary 2.19. Let® be a persegram over N andwe N, ZC N\ {u,v}. Then
uLviZ [P[{u,viU Z]] © uLviZ [P].

Proof. The proof is a trivial consequence of Lemma 2.17 and Remdik 2. O

3. Equivalence problem

By the equivalence problem we understand how to recognisghehtwo given structure®, £’ over the same set
of variablesN induce the same independence mod¢R) = 7 (#’)). A very readable overview of the solution to this
problem using Bayesian networks may be found in [3].

It is of special importance to have a simple rule to recogttia two structures are equivalent in this sense (the
notion of a rule simplicity may dier when considering whether people or a computer will usai)l an easy way to
convertP into #’ in terms of some elementary operations on structures. Tibgses are addressed in [5], [6] and [7].
Another very important aspect is the ability to generatstailctures which are equivalent to a given structure.

We only focus on one part of the equivalence problem in thjgepaWe introduce and describe two properties
of a model structure which are characteristics of a clasgjoivalent structures. This means that they are necessary
to guarantee the equivalence offdrent structures. They include the so-ca@tnection seandF-condition set
However, as discussed at the end of this sectionctinection sets not as easily verifiable in cases involving
more complex structures; therefore, we introduce anotragrgsty based on the connection set — the so-caited
inclusion which has very interesting consequences.

Definition 3.1. StructuresP, ' (over the same variable set N) are calliedlependence equivaleiiftthey induce the
same independence modéP) = 1 (#).



Remark 3.2. One may easily see that the above-mentioned definition deuldrmulated using a dependence model
instead. Structure®, ' (over the same variable set N) are independence equivgfed(®) = D(#’). This alterna-
tive is primarily used in most proofs.

Example 3.3. 1. Consider two simple structuré€®, #’; over{u, v} as they are depicted in Figure 6 by correspond-
ing persegrams. Since there is no possible vertical commeat both persegrams, there can be no Z-avoiding
trail for any Z in these persegrams. Thereforevj) in both?; and®’1. Hencel (P;) = I(P’1) = {u, v|0)}.
The corresponding structures are independence equivalent

Figure 6: Persegrams of two equivalent structures

2. Onthe other hand, structures with the same sef€(R, < K; € #’,) in a different ordering are not equivalent.
Let N = {u, v, w} and consider the following structur€®, #’, visualised in Figure 7. Observe thailw|0[P-]
but uivi@[#’,]. On the contrary, Wviw[P,] and wiviw[#’,]. The set ordering is important.

K, K K.

Figure 7: Persegrams of two non-equivalent structures

Recall that each Z-avoiding trail contains one or severdicad connections. However, contrary to the persegram
from Figure 7b, there is no possible vertical connectiomieen markers corresponding to variahlegin the perseg-
ram from Figure 7a. That is why these structures are not atgrit. One of the characteristic properties is based on
this observation.

3.1. Characteristic properties

Now, step by step, we deduce two structural properties sacg$or independence equivalence of the respec-
tive structures: theonnection seand the so-calle&-condition setnecessary for independence equivalence of the
underlying structures. The proof offfigiency of these properties is not included in this paper.

3.1.1. Connection set

Two structures are equivalent if and only if they induce tame dependence models. The dependence relation
is represented by Z-avoiding trail in the corresponding persegram. Thus, seaaf two equivalent structures, one
should be able to create the same s&t-afvoiding trails including the elementary ones that areposed only of two
markers — one vertical connection.

It turns out that the set of vertical connections is just tharacteristic property of a class of equivalent persegrams

Definition 3.4. Consider a structur® = Ky, ... K, and two distinct variables,w € (Ky U ... U K;). We say that v
are connectedn (U &p V) iffu e K]ﬁ[ orve K]’;[. The set of all pairS(P) = {(u,Vv) : u,ve N,u < v} is called a
connection sedf P.



Remark 3.5. The previous definition basically means that areconnectedh # iff there is a column in its persegram
containing markers of both variables and at least one of tieembox-marker. It means that« v corresponds to
vertical connection from Definition 2.8.

The following convention will be used throughout the paggiren variablev € N, U € N\ {w} and a structur@
overN, the termU <» w denotes that <4 wfor everyu € U. The symbolP may be omitted if the context is clear.

For purposes of the following text, one should realise thaému <4 v, there is an obvious parallel between
ordering of variables, v and content of respective columiig;, Kyy;. It is summarised in the following trivial lemma.

Lemma 3.6. LetP = Ky, ..., K, be a structure and,w € (K; U ... U K;) two distinct variables. Then
U<pvanduepve ue K]f’,[.
Proof. The lemmais a trivial consequence of Definition 3.4. O
Observe thati € S{Kﬁ) in the previous lemma in case of strict versiory V.

Example 3.7. Consider three gierent structure$,, ¥, 3 depicted in Figure 8.

LK Ky Kj LK Ky Ky

g < g

Figure 8: Connections in flerent persegrams

One can read the following relations using persegrams fraguie 8:

Po: (U, V) ©p, W E(P2) = {{u, w), (v, w)}
P, Uep W, Veop W, Uop V E(P5) = {{u, W), (v, W), (U, V)}
P3: Uop, W, Vop, W E(P3) = ({u, W), (v, W)} = E(P>)

As previously stated, the connectior- v corresponds to the existence of a vertical connection hetwearkers
corresponding to, v. Therefore, if there is a connection between two varialttes) there is a simple trail connecting
the corresponding variables. Since the trail contains heraharkers, it iZ-avoiding for anyZ such thaZ ¢ N\{u, v}.

Let us introduce the following specific notation, which alkus to express more than one dependence statement
by a single term. Given a structufeover N, distinct variableas, v € N and a subset) € N \ {u, v}, the symbol
u vl + U[P] will be interpreted as the following:

uivl + U[P] = YW such thatd € W € N\ {u, v} one hasuiiviW[#].
In words,u andv are (conditionally) dependent # given any superset &f. If U is empty, we write: instead of+0.
ulvl = [P] = YW such thaWW C N\ {u, v} uiviW[#].
Lemma 3.8. Consider a structuré®. If for two distinct variables u-¢ v, then ulv| = [P].

Proof. Without dfecting the generality, suppose<y v. Then by Lemma 3.6y € Kj;. The sequence of markers
[Kpp, ul, [Kyg, V] is aW-avoiding trail for anyW € N\ {u, v}. Henceu v| = [P]. O

As shown bellow, one can prove that tbennection seis one of the characteristics common to all equivalent
structures using this lemma. That&®) is a characteristic property of all the structures from aqyivalent class.

Lemma 3.9. Let® be a structure over N. Then for any two distinct variableg @ N such that u<p v,
ué¢ SK) A ULVISK[P] © usp V.
10



Proof. = SupposelLv|SKyy) [£] andu <4 v. This, however, contradicts Lemma 3.8, which assertstilgsit+ [P]
and thereforeifv|SKyy) [#] as well.

& Supposeu «»p V. This excludess € SKyy). Thus, assume ¢ SKj) andufviSKyy [P]. Sinceu <p v,
andSKjyy) <e v, then according to Lemma 2.18Lv|SKyy) [P[V]]. By corollary 2.19uLv|SKyy) [#], which
contradicts the assumptions.

O

Interestingly, notice that while a more general implicatiaLv| + SKj) [#] = u « v holds, the opposite one does
not. One can find a counterexample of the opposite gendraliga the second part of the following example:

Example 3.10.Let® be a structure with a persegram from Figure 9. Since:y v then uLv{SKj)[#] by Lemma 3.9.
Let us check whether there is afkf) -avoiding trail in Figure 9a. We may restrict the searchingato an induced
substructureP[{u, v} U SKy)] = P[V] by Corollary 2.19. The area corresponding to this substieis highlighted.
Since the only sequence of markers connectjrgantains a horizontal connection corresponding to a vialégrom

SKjv, there is no &) -avoiding trail in the persegram ¢®?[v]. Thus, uLviSK}) [#] by Corollary 2.19.

(8) uLVISKyy (b) uyv + SKyvp)

Figure 9: A contra-example that Lemma 3.9 cannot be geserli

One can easily find an example thats1v  uLv|+ SK))[#] in Figure 9b. Itis enough to realise thét} U SKjy)
is just a special case afSKjy).

With the help of the previous lemma, one can prove the folhgwimportant assertion.

Lemma 3.11. Let®P be a structure over N and u € N two distinct variables. Then
U e Ve Uy =[Pl

Proof. By Lemma 3.8, it will be enough to prove the implicatioa). Suppose for contradiction thatyv| = [P]
andu < Vv; one can assume without loss of generality that, v. Then Lemma 3.9 leads to contradiction, since

ULVISKy) - O
Corollary 3.12. Let®,#’ be two structures over N. #(P) = I(P’) then&E(P) = E(P').

Remark 3.13. Compositional model is, in fact, a multidimensional proligbdistribution and, as such, it can be
represented by a Bayesian network as well. If one uses thescsion algorithm from the [1], then the structure of a
created Bayesian network(@, E) - acyclic directed graph (dag) - induces the same indepecelerodel as the input
compositional model structur®. Moreover, theconnectiordefined above corresponds precisely to the edge of the
corresponding dag in case of the mentioned algorithm. l.esgpv & u — vin G or u« v in G. This gives un

a check that our conclusions are correct. Indeed, the sebphections£(P) (sometimes denoted askeleton is a
characteristic property of all dags equivalent with G by [3]

Example 3.14. In Example 3.3 the equivalence offdrent structures was discussed. The first t®g, f’1) were
equivalent, the second tw#4, #’,) were not. Let us look at that example again in the light offitevious corollary.

11



1. Let®1,P] be two simple structures depicted in Figure 6.
One may easily see th&(P;) = E(P7) = 0. The equalityl (P;) = 7(P7) = {{u, vi0)} was shown in Example 3.3.

2. On the other hand, consider structur®s, #’, depicted in Figure 7. Notice that the corresponding coniogst
are highlighted by arrows in Figures 8a and 8b. Due to Exanfpithe reader knows that(P,) # 7(P5).
SinceS(P5) = 8(P,) U {{u, vy}, the reason for non-equivalence is obvious now.

3. Consider structuré®, depicted in Figure 8a again. Is there any structure not eglgmt with?, but inducing the
same connection set? Indeed, for an example see struytudepicted in Figure 8c. Observe thatyw{P,]
but uLviw[Ps]. Hence I (P3) # I(P,) while E(P3) = E(P5).

The 3rd part of Example 3.14 illustrates the fact that theesaomnection sets condition is necessary but not
suficient to guarantee the equivalence of respective strutiiteerefore it is necessary to find an additional property
invariant through a class of equivalent structures.

3.1.2. F condition set

We know that structureB,, P53 from the 3rd part of Example 3.14 are not equivalent despédact that(®,) =
&E(P3). Considering relatioxyp, every structure induces a partial ordering of variablese ©an easily verify that
U <p, V <p, Wwhile u <p, W <p, v. The induced variable ordering isfifirent for non-equivalent structures. May the
ordering of variables be some kind of characteristic priyeDefinitely not in this simple way: See Figure 6, where
I(Py) = I(P1) while u <p, vandu >p, v.

It follows that two structures may inducefiirent orderings of variables despite being equivalent. élaw if we
are only interested in the ordering of groups of speciallyrexted variables, we obtain another property charatiteris
for a class of equivalent structures. This property is basethe so-called conditiondefined below.

Definition 3.15. Consider a structuré over N and three disjoint variableswu w € N. We say that the triplgt, viw)
is F-conditionif
{U,v} <p W, {U,V} <9 W, and U«sp V.

Itis denoted by 8 w=V[P]. The set of tripleg () = {(u, viw) : uRw=V[P]} is calledF-condition seinduced byP.

The reason for calling the above-defined condition F-camdis very prosaic. Consider, for example, the structure
% depicted in Figure 10. The reader can easily verify thatw s v[#] . Observe thatv-avoiding trail connecting
box-markers ofi andv evokes a mirror image of letter F.

An example of F-condition can be found# depicted in Figure 8a, whet®ws V[P,]. There is no F-condition
in P» (Figure 8b) andP; (Figure 8c).

Remark 3.16. Lemma 3.6 says that conditions< w and u<s W are equivalent to & S(K]ﬁ,). With regards to
this, the previous definition may be reformulated in theofeihg way:Let # be a structure oveX andu,v,w € N.

F-conditionuRw= V] is a triplet of variablegu, viw) such thau, v e S(K]’\:V[) andu <»p V.

We have already shown that possessing the sameection setis a necessary condition for equivalence of given
structures. Therefore, when comparing two equivalentgires, theeonnection semay be considered as fixed. Now
we show that the F-condition set is another characteristipgrty of a class of equivalent structures.

Lemma 3.17. If three distinct variables w, w € N satisfy{u, v} <» w and u«¢ Vv in a structure? over N, then
uRwWSV[P] & ulv| + wP].
Proof. = SupposaiRwS V[P]. Thenu,v e S{Kfv) by Remark 3.16. As one can see in Figure 10, the sequence of

markers Ky, ul, [Kpw, Ul, [Kywg, W1, [Kyug, VI, [Kyy, V] is @ W-avoiding trail for everyW € N\ {u, v} such that
w € W. HenceuviW[#] for every such aV, which can be written asiv| + w].

12



Figure 10:ultv| + w

< To prove stficiency by contradiction, assume thatv| + w[#] and notuR w V[P], which means that either
u>p Worv >» w. Assume without loss of generality < v (equality may be omitted sinae <»» V) and
henceyv > w. However, we may only consider the strict case» w. Indeed, otherwise € RKj.) and
u & vwhich contradicts with the lemma assumption that» v. The factv >» wimplies thatw S(K?l) by
assumptiow < vand Lemma 3.6. Since we assume thaty v, thenuLvISK;) [£] by Lemma 3.9. This,
however, contradicts witb v + w[P].
O

Corollary 3.18. Let®, %’ be two structures over N. K(P) = I(P’) thenF (P) = F (¥).

Remark 3.19. It has been mentioned in Remark 3.13 that there is an algoritih[1] that enables us to create a
dag G that induces the same independence model as a strRture. 7(P) = 7(G). Moreover, each edge in G
corresponds to a connection frofh Note that there is an edge« v in G if and only if u— v or u < vin G. Since
arrow orientation is given by relatiore (if u < v and u<s v then u— v in G) in the conversion algorithm, then
each F-condition defined above impliesiammorality (vee-triple) in the respective dag G. Recall that ewe say tha
distinct nodes wv, w form an immorality in adag G- (N,E) ifu > win G,v— win G, and usg V.

We have derived two properties necessary for independepieatence of given structuresame connection and
F-condition sets However, are these properties alsdiisient to guarantee the equivalence of respective struis2ure
Let us simply say that the answer is positive. However, stheeggoal of this paper is to present necessary conditions
for equivalence of structures, we will not need this assettiere, and therefore we will not present its rather complex
proof.

3.2. Column approach

One may disclose a possible non-equivalence of given stregtwvith the help of characteristic properties intro-
duced in the previous section. A problem arises when theidered structures are more complex and the rule of
same connection seisnot so easily verifiable. It would be of special importat@have a rule concerning particular
sets defining the structure instead of connections.

Is there such a condition? To cope with this question, we tieeébllowing definition.

Definition 3.20. Let P = Ky,...,K, be a structure. A set Kis a non-trivial columniff RKj is non-empty set.
Otherwise it is arivial columnof . The symbol ntrif?) denotes the set of all non-trivial columnsfn (ntriv(P) =
{Ki € #: RKj # 0})

Definition 3.21. Let®P = Ky, ..., K, be a structure and UL (Ky U ... U Ky). The set U ision-trivial in® iff there is
a K; € £ such that UC K; and RKj)) N U # 0. Otherwise the set U isivial in P.

Remark 3.22. Observe that, since(®) + 0 for nontrivial K”, it is obvious that ntrigP) < N|.

The following lemma proves that the set of mutually connget@riables takes an important role in the structure.
Itis a consequence of Lemma 3.6.
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Lemma 3.23. Let U be a non-empty set of mutually connected variablg3({a < U’ for allu,u’ € U). Then U is
a non-trivial set inP.

Proof. Chooseu € U such thau >4 U’ for all otheru’ € U. This choice is always possible and ensureslthat K]TJ[.
Indeed,u «» U by assumption and thereforé e Kﬁ[ by Lemma 3.6 for alu’ € U \ {u}. Sinceu € RKjy) by
definition of function | [, thenU is a non-trivial set i by Definition 3.21. O

With the help of the previous lemma, one can prove the foliguimteresting assertion concerning non-trivial sets
and class of independence equivalent structures.

Lemma 3.24. If a set of variables U is non-trivial in a structue, then it is non-trivial in every structure equivalent
with P.

Proof. Assume tha#’ and® are equivalent. The&(P) = E(P’) andF (P) = F (') according to Corollaries 3.12
and 3.18. The non-triviality df) implies the existence of a colu " such thatv e U andU ¢ Kfjv . Thenu <p W
andu < wforallu e (U \ {w}) by Lemma 3.6. LeM < U be a maximal subset of mutually connected variables
in # such that botIRK]?V’V[) NU c MandM o uforallue U\ M. PutV = U \ M. Observe that not onliyl # 0

(w e M) but alsoV <p w. Indeed, suppose that € V such thaw >» w. Thenv RK{CV[) by definition ofw, which
contradicts the choice dfl. One can distinguish two caség:= @ andV # 0.

If V =0thenU = M is a set of mutually connected variablesfhby E(P) = E(#’). Thereforel is non-trivial
in #” by Lemma 3.23.

Suppose nowW # 0. SinceM is a set of mutually connected variablegihby E(P) = E(P’), thenM is non-trivial
by Lemma 3.23 ir?’ and thereforéim € M such thatM C K]f];[. The next step is to prove th¥tc Kﬁ;[ as well.

Assume for a contradiction thal € V such that ¢ Kf]; . There exists’ € V \ {v} such that’ +»¢ v (otherwise
v e M). Considering the fadt < w and{v,V'} ¢ w, we getvRwV[P] andvRwV [P’] by F(P) = F(#’). The
factthatwe M C K]ﬁ’r'][ impliesw < mby Lemma 3.6. Together with <o w (because ofRwS Vv [#]), it follows
thatv < m. Moreovery <4 mby definition ofM and Corollary 3.12, and therefoves K]fr’][ by Lemma 3.6, which
contradicts the assumption.

Hence,V c KI.. ThusU = VUM ¢ K" andm € RK{,) which guarantees the non-triviality &f in #’ by

m - Im[

Definition 3.21. O

Observe that there is a close relationship between notadtcglumns and non-trivial sets of variables. In fact, an
arbitrary non-trivial columrk” is a non-trivial set) = K” as well.

Lemma 3.25. Having fixed structurg?, the maximal non-trivial sets (with respect to inclusiomy coincide with
maximal sets in ntri@@) (with respect to inclusion), that is maximal columns witteaist one box-marker.

Proof. To prove this lemma it is enough to realise that every nonarcolumnK; € ntriv(#) represents a non-trivial
set of variabled) = K| at the same time. Similarly, an existence of some non-tratlJ implies the existence of a
non-trivial columnk? such thaty ¢ K” by Definition 3.21.

Suppose for a contradiction the existence of a maximal nigialtcolumnK (which coincides with a non-trivial
setU) and some non-trivial s&t such thaty c V. The non-triviality ofV implies the existence df’ € ntriv(#) such
thatV C K’. ThenK c K’ which contradicts the fact th#t is maximal non-trivial column with respect to inclusion.
In particular, every maximal non-trivial column is a maximan-trivial set.

Similarly consider a maximal non-trivial sét. SinceU is non-trivial then there exists a non-trivial colurifin
whereU c K; by assumption. There exists a maximal non-trivial colugyrwith K; € K; (possiblyi = j). Thus,
U c K;. AsK;j is a non-trivial set, necessarily = K; for otherwiseU is not maximal (non-trivial set). Thud
coincides with a maximal column. O

Definition 3.26. For a structure®, its strong coreC*(#) is the set of maximal non-trivial columns with respect to
inclusion. C*(P) = {K; € ntriv(P) : #K; e ntriv(P) such that Kc K;}.)

Observe that, for a given structufk its strong core*(#) does not contain any trivial columns fragfh C*(P) C
ntriv(®)

14



Corollary 3.27. Let® be a structure over N. Ther(P) = C*(#’) for every equivalent structurg’.

Proof. Since by Lemma 3.24 non-trivial sets are same for equivanttures, the classes of maximal non-trivial
sets in them coincide. Thus maximal non-trivial columnsl(eynma 3.25) in them coincide. O

Remark 3.28. Unlike the previously discussed invariants in Remarks ari83.19, this characteristic property does
not correspond to any standard characteristics of equivatiags. Still, given the definitiolstrong structure core
could correspond to a set of maximal families induced byesponding G= (N, E). Note that by family faxu) we
understand the setw pa(u) where pdu) = {ve N : (v — u) € E}.

Recall that one can generate all dags which are equivalerat given one with the help of the so callkghal
arrow reversalBy alegal arrow reversalke understand the change of dag G into dddgo§ replacement of an arrow
u — Vv (in G) by u« v (in G) under the condition that pgu) U u = pag(V). If famg(v) = V = pas(u) U {u, v}
belongs to maximal families (with respect to inclusion)tfidelongs to maximal families in’Gs well. Indeed, since
pac (U) = pag(u) U v then fam, (u) = V. Since no other arrow changes, then all other families riartfze same and
then V belongs to maximal families iri @nd in all other equivalent dags.

Remark 3.29. Based on work with a variety of equivalent structures, itegug that thestrong coredefinition could
be modified. The new definition of the core would then be asaiell For a structureP, its weak coreC(P) is a set of
Ki € ntriv(P) such that K+ SK)) for every K e ntriv(P).

Note that the extended weak core also includes not onlygtrore but also all the columns that are not sharp
subsets of another non-trivial column. However, we are i &0 give a simple clear proof that the weak core is
another characteristic of structure equivalence.

4. Conclusion

This paper started with a brief introduction on how to readanditional independencies induced by a structure of
a compositional model. We then introduced, step by stegrakproperties necessary for independence equivalence
of the relevant structures of compositional models: Twodtires, if equivalent, must have the sarn@nection sets
andF-condition setsSince it is dificult to verify the existence of the sarnennection sein more complex structures,
we apply a new approach based on structure columns.

Based on this, we understand a column with a box-markenasdrivial set of variables and we have shown that
every non-trivial set in one structure has to be non-triiriagdll structures equivalent with it. Columns that have to
be in all persegrams of equivalent structures are caliedture core This dfers a powerful tool for determining the
possible non-equivalence of given structures.
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