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Abstract

Compositional model theory serves as an alternative approach to multidimensional probability distribution represen-
tation and processing. Every compositional model over a finite non-empty set of variablesN is uniquely defined by
its generating sequence – an ordered set of low-dimensionalprobability distributions. A generating sequence struc-
ture induces a system of conditional independence statements overN valid for every multidimensional distribution
represented by a compositional model with this structure.

Theequivalence problemis how to characterise whether all independence statementsinduced by structureP are
induced by a second structureP′ and vice versa. This problem can be solved in several ways. A partial solution of
the so-calleddirect characterisationof an equivalence problem is represented here. We deduce anddescribe three
properties of equivalent structures invariant in a class ofequivalent structures. We call themcharacteristic properties
of equivalence.
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1. Introduction

The ability to represent and process multidimensional probability distributions is a necessary condition for the
application of probabilistic methods in artificial intelligence. Among the most popular approaches are the methods
based on graphical Markov models, e.g., Bayesian networks.The compositional models (see [1] or [4] for example)
represent an alternative approach to graphical Markov models.

A Bayesian network may be defined as a multidimensional distribution factorising with respect to an acyclic
directed graph, or it may alternatively be defined by its graph and an appropriate system of low-dimensionalcondi-
tional distributions. Similarly, a compositional model is defined as a multidimensional distribution assembled from
a sequence of low-dimensionalunconditional distributions, with the aid of anoperator of composition. We call the
sequence of low-dimensional distributions agenerating sequenceof the compositional model. The main advantage
of both approaches lies in the fact that low-dimensional distributions could easily be stored in a computer mem-
ory. However, computations on a multidimensional distribution that is split into many pieces may be exceptionally
complicated.

There are two main advantages to using compositional modelsas compared to Bayesian networks. First, com-
positional models explicitly express some marginals, whose computation in a Bayesian network may be demanding.
Secondly, no auxiliary graphical tool, such as a directed acyclic graph, is required in compositional models.

As stated above, a compositional model iscomposedfrom an ordered system of low-dimensional distributions
– the so-called generating sequence. The binaryoperator of compositionused during this process is basically a
normalised product of its parameters designed to create a probability distribution over the union of variables for
which the input distributions are defined. (See Definition 2.1.) While the model is put together,(un)conditional
independenciesare simultaneously introduced bythe structure of the generating sequence. For example, for a two-
dimensional distribution composed from two one-dimensional ones, the respective variables are independent.
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For the sake of clarity, astructure of a compositional model(a structure of its generating sequence in particular)
can be visualised by a tool called apersegram, and one can read the induced independencies directly usingthis tool.
We say that every structure (or its corresponding persegram) induces anindependence model– a list of (un)conditional
independence statements.

The equivalence problemis how to characterise whether an independence model induced by one structure is
identical with an independence model induced by another structure, and vice versa. Structures inducing the same
independence model are said to beequivalent. One can find two different approaches to solve this problem in other
probability models. First is the so calleddirect characterisation, which is based on several characteristic structure
properties sufficient to guarantee the equivalence. Second, a group of localtransformations preserving the indepen-
dence model can be found and two structures are equivalent ifthere is a sequence of these transformations from one
to the next.

This paper puts forth two major contributions in this area. First, we derive two characteristic properties of equiva-
lent structures which can later be used for direct characterisation of an equivalence problem. The second contribution
is presentation of a very special subset of the relevant structure – the so calledstructure core. It results from a very
new approach to sets of variables, where we distinguish whether the set istrivial or non-trivial in this structure. The
structure corecorresponds to the so-calledreduced persegrampublished in [6]. The local transformations preserving
an induced independence model (published in [7]) now seem tobe a very logical consequence of these properties.

2. Notation

Throughout the paper the symbolN will denote a non-empty finite set of finite-valuedvariables. The symbols
K,U,V,W,Z will be used for subsets ofN. |U | will denote the number of elements inU, that is, itscardinality.
Symbolsu, v,w, x, y, z denote variables as well as singletons{u}, {v}, {w}, {x}, {y}, {z}. Two set inclusion symbols are
used thorough the paper, namely⊂ and⊆. Whereas the symbol⊆ represents the usual (non-strict) case of inclusion,
the symbol⊂ is used for strict inclusion only. That means ifU ⊂ V thenV \ U , ∅.

All probability distributions of the variables fromN will be denoted by Greek letters (usuallyπ); thus forK ⊆ N,
we consider a distributionπ(K) which is defined on variablesK. If we work with several distributions, we distin-
guish between them by indices. For a probability distribution π(K) andU ⊆ K we denote the respectivemarginal
distributionπ(U) or π↓U .

For a probability distributionπ(N) and three disjoint subsetsU,V,Z ⊆ N such thatU , ∅ , V, we say that sets of
variablesU andV areconditionally independentgivenZ in π (in symbolU⊥⊥V|Z[π]) if

π↓U∪V∪Z(x) · π↓Z(x) = π↓U∪Z(x) · π↓V∪Z(x).

for all x ∈ × j∈U∪V∪ZX j . Observe that, ifZ = ∅, then the conditional independence coincides with unconditional
independence. The unconditional independence of variablesetsU andV in π is denoted byU⊥⊥V[π]

The keystone of Compositional Models is an operator of compositionB. It is used to compose low-dimensional
distributions to get a distribution of a higher dimension. The composition is described in the following definition.

Definition 2.1. For two arbitrary distributionsπ1(U) andπ2(V) their compositionis given by the formula

π1(U) B π2(V) =
π1(U)π2(V)
π2(U ∩ V)

if π1(U ∩ V)� π2(U ∩ V), otherwise the composition remains undefined.
The symbolπ1(K) � π2(K) means thatπ1(K) is dominatedby π2(K), which in its turn means (in the considered

finite setting)∀x ∈ × j∈KX j ; (π2(x) = 0 =⇒ π1(x) = 0). Moreover, if for any x∈ × j∈U∩VX j π2(x) = 0, then by
dominanceπ1(U ∩ V) � π2(U ∩ V) there is a product of two zeros in the numerator and we take0·0

0 = 0

The result of the composition (if defined) is a new distribution. We can iteratively repeat the process of composition
to obtain a multidimensional distribution. That is why the multidimensional distribution is called acompositional
model. Regarding the fact that the operatorB is neither commutative nor associative, we always apply theoperator
from left to right; e.g.,

π1(K1) B π2(K2) B . . .B πn(Kn) = (. . . (π1(K1) B π2(K2)) B . . .) B πn(Kn).
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Therefore, in order to construct such a model it is sufficient to determine a sequence of low-dimensional distribu-
tionsπ1, π2, . . . , πn – we call it agenerating sequence.

From now on, we consider a generating sequenceπ1(K1), π2(K2), . . . , πn(Kn) such thatπ1(K1)B π2(K2) B . . .

Bπn(Kn) is defined. Therefore, whenever distributionπi is used, we assume it is defined for variablesKi . A sequence
of setsK1, K2, . . . , Kn is calledmodel structureand it is denoted byP. If not specified otherwise,P = K1, . . . , Kn

where (K1∪ . . . ∪Kn) = N, and we say thatP is defined overN andKi ∈ P for everyi ∈ {1, . . . , n}. One may denoteKi

asKPi to emphasise thatKi ∈ P. In addition, each setKi can be divided into two disjoint parts with respect to model
structure. We denote themR(Ki) andS(Ki) :

R(Ki) = Ki\(K1 ∪ . . . ∪ Ki−1)

S(Ki) = Ki ∩ (K1 ∪ . . . ∪ Ki−1)

It has the following meaning:R(Ki) denotes the variables first occurring in the sequence (meaning from left to right).
S(Ki) denotes the variables which have already been used. Observe thatKi = R(Ki) ∪ S(Ki) . |P| denotes the number of
sets in the structure, i.e.,|P| = n for P = K1, . . . ,Kn.

As stated in the introduction, while a model is put together,a system of (un)conditional independencies is simul-
taneously introduced by the structure of the generating sequence.

Example 2.2. Let {u, v} = N, u , v. π1(u), π2(v) is a generating sequence of a compositional modelπ1 B π2. Then
u⊥⊥v[π1 B π2]. Indeed, by applying the operator of composition one gets

π1(u) B π2(v) =
π1(u)π2(v)
π2(∅)

= π1(u)π2(v),

which corresponds to the definition of independence of variables u and v.
Similarly, assume{u, v,w} = N are three distinct variablesπ1(u,w), andπ2(v,w) is a generating sequence of a

compositional modelπ1 B π2. Using Definition 2.1 we get

π1(u,w) B π2(v,w) =
π1(u,w)π2(v,w)

π2(w)
.

Then u⊥⊥v|w[π1 B π2] by the definition of conditional independence.

The more complex the model structure is, the more difficult the seeking of induced independencies is. Let us
note that the set of independencies induced by a structure isvalid for any compositional model with this structure
regardless the generating distributions’ properties. Obviously, one can read induced independencies directly from the
model structure. To increase the lucidity and readability of this text, we have decided to use a specific visualisation of
the structure, and we present the procedure for reading induced independencies using this tool.

2.1. Persegrams

It is well-known that one can read conditional independencerelations of a Bayesian network from its graph. A
similar technique has been developed for compositional models. An appropriate tool for this is apersegram– a
visualisation tool of the model structure.

Definition 2.3. Persegramof a structureP = K1,K2, . . . ,Kn is a table in which rows correspond to variables from
K1 ∪ K2 ∪ . . . ∪ Kn (in an arbitrary order) and columns to sets of variables Ki for all i ∈ {1, . . . , n}; ordering of
the columns corresponds to the structure ordering. A position in the table is marked if the respective set contains
the corresponding variable. Markers for the first occurrence of each variable (i.e., the leftmost markers in rows) are
box-markersand for other occurrences there arebullets.

Example 2.4. Let P = K1, . . . ,K5 be structure of a compositional model such that K1 = {u},K2 = {v,w},K3 =

{u, v, x},K4 = {w, x, y},K5 = {x, y, z}. Since the row ordering is not specified in Definition 2.3, thecorresponding
persegram can be visualised not only as in Figure 1a, but alsoin many other ways. See another persegram in
Figure 1b.
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Figure 1: Different persegrams belonging to one model structureP

Observe that bullets ini-th column correspond toS(KPi ) and box-markers toR(KPi ) .
To be able to simply handle characteristic properties of therespective structures and persegrams, we introduce a

function
] · [P: N → {1, . . . , n}

such that ]u[P returns the index of setKPi with the first appearance ofu in P for every variableu ∈ (KP1 ∪ . . . ∪ KPn ).
Hence, ]u[P= min{i : u ∈ KPi }. Due to the previously established notation, it can be said that KP]u[P

is a columnKPi
whereu ∈ R(KPi ) , i.e., ]u[P= i : u ∈ R(KPi ) . The symbolP may be omitted in ]u[P if the context is clear.

Example 2.5. Take the model structureP = K1, . . . ,K5 from Example 2.4. One can read the following properties
from both of its persegrams in Figure 1:]u[P= 1, ]v[P= 2, ]w[P= 2, ]x[P= 3, ]y[P= 4, ]z[P= 5, and

R(KP1) = {u} S(KP1) = ∅
R(KP2) = {v,w} S(KP2) = ∅
R(KP3) = {x} S(KP3) = {u, v}
R(KP4) = {y} S(KP4) = {w, x}
R(KP5) = {z} S(KP5) = {x, y}

Definition 2.6. For arbitrary variables u, v ∈ N and structureP over N we introduce a binary relation u�P v such
that u�P v if and only if]u[P≤]v[P. Moreover, we introduce the relation≺P: u ≺P v⇔]u[P<]v[P.

The following convention will be used throughout the paper:Given a structureP overN, setU ⊆ N and variable
v ∈ N, the termU ≺P v denotes thatu ≺P v for all u ∈ U. The symbolP may be omitted if the context is clear.

Example 2.7. Let K1, . . . ,K5 be the same model structure as in Example 2.4 again. According to the former definition
one can see that u≺ v � w ≺ x ≺ y ≺ z in both persegrams from Figure 1.

2.2. Induced models

In this section we shall demonstrate how to read induced conditional independence relations from a persegram rep-
resenting a structure of a compositional model. Such independencies are indicated by the absence of atrail connecting
relevant markers and avoiding otherswhich is defined below.

Definition 2.8. A sequence of markers m0, . . . ,mt of a persegram corresponding to structureP is called a Z-avoiding
trail (Z ⊆ KP1 ∪ . . . ∪ KP

|P|
) that connects m0 and mt if it meets the following five conditions:

0. m0 and mt do not correspond to a variable from Z
1. for each s= 1, . . . , t a couple(ms−1,ms) is either in the same row (i.e., horizontal connection) or inthe same

column (vertical connection);
2. each vertical connection must be adjacent to a box-marker;
3. no horizontal connection corresponds to a variable from Z;
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4. vertical and horizontal connections regularly alternate with the following possible exception: at most two
vertical connections may be in direct succession if their common adjacent marker is a box-marker of a variable
from Z;

If a Z-avoiding trail connects two box-markers corresponding to variables u and v, we say that thesevariables are
connected by a Z-avoiding trail. This situation will be denoted by u⊥⊥/v|Z[P].

By investigating Definition 2.8 further, the reader will findthat no condition of the definition is dependent on the
order of rows in the considered persegram. That would not be appropriate either, because all persegrams representing
the structure of a generating sequence are equivalent regardless of the row ordering. (See the definition of persegram -
Definition 2.3). Then the system ofZ-avoiding trails induced by a persegram can be obtained by any other persegram
of the considered structure. In the sense of the previous definition, all persegrams corresponding toP are equivalent.

Example 2.9. Consider a persegram visualising a structureP as it is depicted in Figure 2. There is a sequence of
markers in each part of it. In order to illustrate vertical and horizontal connections and to highlight the ordering,
each two consecutive markers are connected with a line.

There is a sequence of markers[K1, u], [K5, u], [K5, z] in Figure 2a. Considering Z= ∅, it forms a Z-avoiding trail
connecting u and z. However, considering Definition 2.8, this sequence avoids many other variables and Z may have
various content. In fact, Z can be any subset of{v,w, x, y}. Hence, u⊥⊥/v|Z[P] for any Z⊆ {v,w, x, y}.

K1 K2 K3 K4 K5

z

y

x

w

v

u

(a)P : u⊥⊥/z|∅, u⊥⊥/z|{v,w, x, y}

K1 K2 K3 K4 K5

z

y

x

w

v

u

(b) P : u⊥⊥/x|{z}, u⊥⊥/x|{v, z}

Figure 2: Different trails connectingu with some other variables

Similarly, the sequence of markers[K1, u], [K5, u], [K5, z], [K5, y], [K4, y], [K4,w], [K3,w], [K3, x] from Figure 2b
is a {z}-avoiding trail. Contrary to Figure 2a, one cannot replace zby any other variable. Otherwise, the 4th condition
from Definition 2.8 would be corrupted. However, the trail depicted in Figure 2b is{v, z}-avoiding too.

With the help ofZ-avoiding trails, the so-called(un)conditional (in)dependencies induced by a persegramare
introduced.

Definition 2.10. Consider a persegram corresponding to a structureP over N and three disjoint subsets U,V,Z ⊂ N
such that U , ∅ , V. The sets of variables U and V areconditionally independent givenZ in P (in symbol
U⊥⊥V|Z[P]), if no u ∈ U is connected with a v∈ V by a Z-avoiding trail. Otherwise U and V areconditionally
dependent given byZ in P, written U⊥⊥/V|Z[P].

The induced independence modelI(P) and theinduced dependence modelD(P) of structureP are defined as
follows:

I(P) = {〈U,V|Z〉 ∈ T (N); U⊥⊥V|Z[P]}

D(P) = {〈U,V|Z〉 ∈ T (N); U⊥⊥/V|Z[P]},

where the symbolT (N) denotes the class of all disjoint triplets over N:

T (N) = {〈U,V|Z〉 : U,V,Z ⊆ N,U , ∅ , V,U ∩ V = V ∩ Z = Z ∩ U = ∅}
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The concept of induced(in)dependencieslives up to expectations that there is a parallel between this and indepen-
dencies valid in any compositional model with the same structure. The connection between independence read from
a compositional model and from its persegram is elucidated by the following theorem. The proof can be found in [2].

Theorem 2.11.Consider a generating sequenceπ1(K1), . . . , πn(Kn), the corresponding structureP, and three disjoint
subsets U,V,Z ⊆ K1 ∪ . . . ∪ Kn such that U, ∅ , V. Then:

U⊥⊥V|Z[P] ⇒ U⊥⊥V|Z[π1 B . . .B πn].

It is important to realise that (analogously to the situation when Bayesian networks or decomposable models are
considered) one can be sure about the validity of the indicated independence relations for any distribution which is
represented by a compositional model with the given persegram (structure).

2.3. Other preliminaries

A trivial fact follows from Definition 2.8. It concerns variables appearing for the first time in the last column .
Before we introduce this fact in the form of a lemma, let us illustrate it with the help of the following example.

Example 2.12.Consider the persegram from Figure 3. I would like to show that there is no Z-avoiding trail connect-
ing z∈ R(K5) (first appearing in the last column) with w< K5 (not belonging to the last column) for Z= {u, v, y}. Let
us try to construct such a sequence of markers forming a Z-avoiding trail.

Three different sequences of markers are depicted in Figure 3. Let us summarise requirements necessary for these
sequences to be Z-avoiding trails:

• Consider the sequence of markers highlighted in Figure 3a: By the 3rd condition of Definition 2.8 (no horizontal
connection corresponds to a variable from Z), Z must not contain a variable y (y< Z).

• Figure 3b: Similarly, v< Z for the same reasons.

• Figure 3c: u, v < Z.

K1 K2 K3 K4 K5

z

y

x

w

v

u

(a)P : y ∈ Z

K1 K2 K3 K4 K5

z

y

x

w

v

u

(b)P : v ∈ Z

K1 K2 K3 K4 K5

z

y

x

w

v

u

(c) P : u, v ∈ Z

Figure 3: Different trails violating 3rd condition of Definition 2.8 ifZ = {u, v, y}.

Combining the restrictions on Z together, one gets the following corollary: By choosing Z= S(K5) = {u, v, y},
none of the above-discussed sequences forms a Z-avoiding trail since each of them contains a horizontal connection
corresponding to a variable from S(KP

|P|
) . These horizontal connections violating the 3rd conditionof Definition 2.8

are drawn by dotted lines. Since there is no other possible S(K5) -avoiding trail between w and z, w⊥⊥z|S(K5) holds due
to Definition 2.10.

Lemma 2.13. Consider a structureP = K1, . . . ,Kn and distinct variables u, v ∈ (K1 ∪ . . . ∪ Kn) such that u∈ R(Kn)
and v< Kn. Then u⊥⊥v|S(Kn) [P].
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Proof. Consider a persegram ofP. Sinceu belongs to the last column ofP (u ∈ KP
|P|

), every trail fromu has to begin
with a vertical connection inKn to a marker corresponding to a variable fromS(Kn) (otherwise, in a case where the
vertical connection connects two variables fromR(Kn) , the horizontal and vertical connections could not regularly
alternate). However, noS(Kn) -avoiding trail may contain a horizontal connection corresponding to a variable from
S(Kn), and such a trail must not contain any marker out of the last column. Sinceu < Kn, a trail representingu⊥⊥/v|S(Kn)
cannot exist; therefore,u⊥⊥v|S(Kn) [P] by Definition 2.10.

To simplify the following, we introduce the concept of thesubstructure induced by a set of variables. Unlike the
subgraph which contains exactly those variables that induce it, the substructure is usually defined for some superset.

Definition 2.14. A substructureof a structureP = K1, . . . , Kn induced by a set U⊆ (K1 ∪ . . .∪ Kn) is its minimal left
part containing all variables U.P[U] = K1, . . . ,Kmax{]u[:u∈U}

Persegram ofP[U] is created from persegram ofP by removing columns to the right of the one with the farthest
right box-marker corresponding to a variable fromU.

Remark 2.15. Observe that, given U and Z⊂ U, any sequence of markers forming a Z-avoiding trail in a persegram
ofP[U] forms a Z-avoiding trail in a persegram ofP.

Example 2.16. Consider a structureP = K1, . . . ,K5 from Example 2.4 again. Its corresponding persegram is in
Figure 4a. Suppose U= {u, x} holds. One can then find a persegram of the induced persegramP[U] in Figure 4b.
Observe thatP[U] is defined not only over{u, x}, but also over{v,w}.

K1 K2 K3 K4 K5

z

y

x

w

v

u

(a) Persegram ofP

K1 K2 K3

x

w

v

u

(b) Persegram of substructure

Figure 4: Visualisation of a structure and its substructurewhich is induced by{u, x}

The concept of an induced substructure brings one very important advantage. Searching ofZ-avoiding trails
connectingu with v in a persegram may be restricted to a persegram of its substructure induced only by{u, v} ∪ Z.

Lemma 2.17. Consider a persegram of structureP over N, u, v ∈ N, and Z ⊆ N \ {u, v}. If u⊥⊥/v|Z[P], then all
Z-avoiding trails connecting u with v are in the persegram ofits substructureP[{u, v} ∪ Z].

Proof. Assume that there is aZ-avoiding trail representingu⊥⊥/v|Z[P] containing markers out of the area defined by
P[{u, v} ∪ Z]. We show that ifZ-avoiding trail fromu leaves the area defined byP[{u, v} ∪ Z], then it cannot end up
in v which contradicts the assumption. To understand our way of thinking, the reader should have a careful look at
Figure 5b during the procedure.

Assume thatτ is aZ-avoiding trail representingu⊥⊥/v|Z[P] with a marker out ofP[{u, v} ∪ Z]. I.e. τ = m0, . . . ,mt

is a sequence of markers wherem0 corresponds tou. Let mi be the first marker in the sequenceτ such that it comes
out of the part of persegram corresponding toP[{u, v} ∪ Z]. Since it is the first marker in such a column, a horizontal
connection had to be used betweenmi−1 andmi and thereforemi has to be a bullet. By Definition 2.8, the trail now
has to continue with a vertical connection to a box-marker. Since this box-marker cannot correspond to any variable
from Z (it is out ofP[{u, v} ∪ Z]), one has to continue with a horizontal connection (by definition, to the right of the
box-marker (first marker in the row) – there is nothing on the left in the same row) to a bullet. Then we again make a
vertical connection to a box-marker which does not correspond to any variable fromZ, etc. From such a trailτ, there
is no return tov. Therefore such a trail cannot exist, which contradicts theassumption.
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Example 2.18. Let us illustrate the idea of proving Lemma 2.17. Consider the persegram from Figure 5, its corre-
sponding structureP, and Z= {x}. I am going to show that there is only one{x}-avoiding trail representing u⊥⊥/w|x.
One can find it in the area corresponding toP[{u,w, x}] in Figure 5a.

Let us try to create an x-avoiding trail from w to u containingmarkers out of the highlighted part corresponding
toP[{u,w, x}]. Such an experiment is depicted by the dotted line in Figure 5b.

K1 K2 K3 K4 K5

z

y

x

w

v

u

(a) The onlyx-avoiding trail connectingu with w.
It is located in the area induced by{u,w, x}

K1 K2 K3 K4 K5

z

y

x

w

v

u

(b) An attempt to create az-avoiding trail outside the
area corresponding to induced substructure.

Figure 5: Illustration of Lemma 2.17

Let us start in the box-marker(K2,w) and continue out ofP[{u,w, x}] into (K4,w). To satisfy Definition 2.8 of a
Z-avoiding trail, one has to continue with a vertical connection to a box-marker. (The only possible box-marker is
(K4, y)). Since y< Z, then by the 4th condition of Definition 2.8 one has to continue with a horizontal connection (to
the right – there is nothing left of any box-marker), etc. Since there is no box-marker corresponding to Z outside of
P[{u,w, x}], the trail moves away from u. Since there is no return for sucha trail, it cannot exist.

Lemma 2.17 basically means that, if we are interested in relation u⊥⊥v|Z[P], we may focus only on the subperseg-
ramP[{u, v} ∪ Z]. This observation is summarised in the following corollary.

Corollary 2.19. LetP be a persegram over N and u, v ∈ N, Z⊆ N \ {u, v}. Then

u⊥⊥v|Z [P[{u, v} ∪ Z]] ⇔ u⊥⊥v|Z [P].

Proof. The proof is a trivial consequence of Lemma 2.17 and Remark 2.15.

3. Equivalence problem

By the equivalence problem we understand how to recognise whether two given structuresP,P′ over the same set
of variablesN induce the same independence model (I(P) = I(P′)). A very readable overview of the solution to this
problem using Bayesian networks may be found in [3].

It is of special importance to have a simple rule to recognisethat two structures are equivalent in this sense (the
notion of a rule simplicity may differ when considering whether people or a computer will use it), and an easy way to
convertP intoP′ in terms of some elementary operations on structures. Theseissues are addressed in [5], [6] and [7].
Another very important aspect is the ability to generate allstructures which are equivalent to a given structure.

We only focus on one part of the equivalence problem in this paper. We introduce and describe two properties
of a model structure which are characteristics of a class of equivalent structures. This means that they are necessary
to guarantee the equivalence of different structures. They include the so-calledconnection setandF-condition set.
However, as discussed at the end of this section, theconnection setis not as easily verifiable in cases involving
more complex structures; therefore, we introduce another property based on the connection set – the so-calledcore
inclusion, which has very interesting consequences.

Definition 3.1. StructuresP,P′ (over the same variable set N) are calledindependence equivalent, if they induce the
same independence modelI(P) = I(P′).
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Remark 3.2. One may easily see that the above-mentioned definition couldbe formulated using a dependence model
instead. StructuresP,P′ (over the same variable set N) are independence equivalent iffD(P) = D(P′). This alterna-
tive is primarily used in most proofs.

Example 3.3. 1. Consider two simple structuresP1,P
′
1 over{u, v} as they are depicted in Figure 6 by correspond-

ing persegrams. Since there is no possible vertical connection in both persegrams, there can be no Z-avoiding
trail for any Z in these persegrams. Therefore u⊥⊥v|∅ in bothP1 andP′1. HenceI(P1) = I(P′1) = {〈u, v|∅〉}.
The corresponding structures are independence equivalent.

K1 K2

u

v

(a)P1

K1 K2

u

v

(b) P′1

Figure 6: Persegrams of two equivalent structures

2. On the other hand, structures with the same sets (Ki ∈ P2⇔ Ki ∈ P
′
2) in a different ordering are not equivalent.

Let N = {u, v,w} and consider the following structuresP2,P
′
2 visualised in Figure 7. Observe that u⊥⊥v|∅[P2]

but u⊥⊥/v|∅[P′2]. On the contrary, u⊥⊥/v|w[P2] and u⊥⊥/v|w[P′2]. The set ordering is important.

K1 K2 K3

u

v

w

(a)P2

K1 K2 K3

u

v

w

(b)P′2

Figure 7: Persegrams of two non-equivalent structures

Recall that each Z-avoiding trail contains one or several vertical connections. However, contrary to the persegram
from Figure 7b, there is no possible vertical connection between markers corresponding to variablesu, v in the perseg-
ram from Figure 7a. That is why these structures are not equivalent. One of the characteristic properties is based on
this observation.

3.1. Characteristic properties

Now, step by step, we deduce two structural properties necessary for independence equivalence of the respec-
tive structures: theconnection setand the so-calledF-condition setnecessary for independence equivalence of the
underlying structures. The proof of sufficiency of these properties is not included in this paper.

3.1.1. Connection set
Two structures are equivalent if and only if they induce the same dependence models. The dependence relation

is represented by aZ-avoiding trail in the corresponding persegram. Thus, in case of two equivalent structures, one
should be able to create the same set ofZ-avoiding trails including the elementary ones that are composed only of two
markers – one vertical connection.

It turns out that the set of vertical connections is just the characteristic property of a class of equivalent persegrams.

Definition 3.4. Consider a structureP = K1, . . .Kn and two distinct variables u, v ∈ (K1 ∪ . . .∪ Kn). We say that u, v
are connectedin P (u↔P v) iff u ∈ KP]v[ or v ∈ KP]u[ . The set of all pairsE(P) = {〈u, v〉 : u, v ∈ N, u↔P v} is called a
connection setofP.

9



Remark 3.5. The previous definition basically means that u, v areconnectedinP iff there is a column in its persegram
containing markers of both variables and at least one of themis a box-marker. It means that u↔ v corresponds to
vertical connection from Definition 2.8.

The following convention will be used throughout the paper:Given variablew ∈ N, U ⊆ N \ {w} and a structureP
overN, the termU ↔P w denotes thatu↔P w for everyu ∈ U. The symbolPmay be omitted if the context is clear.

For purposes of the following text, one should realise that whenu ↔P v, there is an obvious parallel between
ordering of variablesu, v and content of respective columnsK]u[ ,K]v[. It is summarised in the following trivial lemma.

Lemma 3.6. LetP = K1, . . . ,Kn be a structure and u, v ∈ (K1 ∪ . . . ∪ Kn) two distinct variables. Then

u �P v and u↔P v⇔ u ∈ KP]v[ .

Proof. The lemma is a trivial consequence of Definition 3.4.

Observe thatu ∈ S(KP]v[) in the previous lemma in case of strict versionu ≺P v.

Example 3.7. Consider three different structuresP2,P
′
2,P3 depicted in Figure 8.

K1 K2 K3

u

v

w

(a)P2

K1 K2 K3

u

v

w

(b)P′2

K1 K2

u

v

w

(c)P3

Figure 8: Connections in different persegrams

One can read the following relations using persegrams from Figure 8:
P2 : {u, v} ↔P2 w E(P2) = {〈u,w〉, 〈v,w〉}
P′2 : u↔P′2 w, v↔P′2 w, u↔P′2 v E(P′2) = {〈u,w〉, 〈v,w〉, 〈u, v〉}
P3 : u↔P3 w, v↔P3 w E(P3) = {〈u,w〉, 〈v,w〉} = E(P2)

As previously stated, the connectionu↔ v corresponds to the existence of a vertical connection between markers
corresponding tou, v. Therefore, if there is a connection between two variables,then there is a simple trail connecting
the corresponding variables. Since the trail contains no other markers, it isZ-avoiding for anyZ such thatZ ⊆ N\{u, v}.

Let us introduce the following specific notation, which allows us to express more than one dependence statement
by a single term. Given a structureP over N, distinct variablesu, v ∈ N and a subsetU ⊆ N \ {u, v}, the symbol
u⊥⊥/v| + U[P] will be interpreted as the following:

u⊥⊥/v| + U[P] ≡ ∀W such thatU ⊆W ⊆ N \ {u, v} one hasu⊥⊥/v|W[P].

In words,u andv are (conditionally) dependent inP given any superset ofU. If U is empty, we write∗ instead of+∅.

u⊥⊥/v| ∗ [P] ≡ ∀W such thatW ⊆ N \ {u, v} u⊥⊥/v|W[P].

Lemma 3.8. Consider a structureP. If for two distinct variables u↔P v, then u⊥⊥/v| ∗ [P].

Proof. Without affecting the generality, supposeu �P v. Then by Lemma 3.6,u ∈ K]v[ . The sequence of markers
[K]v[ , u], [K]v[ , v] is a W-avoiding trail for anyW ⊆ N \ {u, v}. Henceu⊥⊥/v| ∗ [P].

As shown bellow, one can prove that theconnection setis one of the characteristics common to all equivalent
structures using this lemma. That is,E(P) is a characteristic property of all the structures from anyequivalent class.

Lemma 3.9. LetP be a structure over N. Then for any two distinct variables u, v ∈ N such that u�P v,

u < S(K]v[) ∧ u⊥⊥v|S(K]v[) [P] ⇔ u =P v.
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Proof. ⇒ Supposeu⊥⊥v|S(K]v[) [P] andu↔P v. This, however, contradicts Lemma 3.8, which asserts thatu⊥⊥/v| ∗ [P]
and thereforeu⊥⊥/v|S(K]v[) [P] as well.

⇐ Supposeu =P v. This excludesu ∈ S(K]v[) . Thus, assumeu < S(K]v[) and u⊥⊥/v|S(K]v[) [P]. Sinceu �P v,
andS(K]v[) ≺P v, then according to Lemma 2.13u⊥⊥v|S(K]v[) [P[v]]. By corollary 2.19u⊥⊥v|S(K]v[) [P], which
contradicts the assumptions.

Interestingly, notice that while a more general implication u⊥⊥v|+S(K]v[)[P] ⇒ u = v holds, the opposite one does
not. One can find a counterexample of the opposite generalisation in the second part of the following example:

Example 3.10.LetP be a structure with a persegram from Figure 9. Since u=P v then u⊥⊥v|S(K]v[)[P] by Lemma 3.9.
Let us check whether there is an S(K]v[) -avoiding trail in Figure 9a. We may restrict the searching area to an induced
substructureP[{u, v} ∪ S(K]v[) ] = P[v] by Corollary 2.19. The area corresponding to this substructure is highlighted.
Since the only sequence of markers connecting u, v contains a horizontal connection corresponding to a variable from
S(K]v[) , there is no S(K]v[) -avoiding trail in the persegram ofP[v]. Thus, u⊥⊥v|S(K]v[) [P] by Corollary 2.19.

K]u[ K]v[ K]z[

z

v

u

(a) u⊥⊥v|S(K]v[)

K]u[ K]v[ K]z[

z

v

u

(b) u⊥⊥/v| + S(K]v[)

Figure 9: A contra-example that Lemma 3.9 cannot be generalised.

One can easily find an example that u= v ; u⊥⊥v|+S(K]v[)[P] in Figure 9b. It is enough to realise that{z}∪S(K]v[)
is just a special case of+S(K]v[) .

With the help of the previous lemma, one can prove the following important assertion.

Lemma 3.11. LetP be a structure over N and u, v ∈ N two distinct variables. Then

u↔P v⇔ u⊥⊥/v| ∗ [P].

Proof. By Lemma 3.8, it will be enough to prove the implication (⇐). Suppose for contradiction thatu⊥⊥/v| ∗ [P]
andu =P v; one can assume without loss of generality thatu ≺P v. Then Lemma 3.9 leads to contradiction, since
u⊥⊥v|S(K]v[) .

Corollary 3.12. LetP,P′ be two structures over N. IfI(P) = I(P′) thenE(P) = E(P′).

Remark 3.13. Compositional model is, in fact, a multidimensional probability distribution and, as such, it can be
represented by a Bayesian network as well. If one uses the conversion algorithm from the [1], then the structure of a
created Bayesian network G(N,E) - acyclic directed graph (dag) - induces the same independence model as the input
compositional model structureP. Moreover, theconnectiondefined above corresponds precisely to the edge of the
corresponding dag in case of the mentioned algorithm. I.e. u↔P v ⇔ u → v in G or u← v in G. This gives un
a check that our conclusions are correct. Indeed, the set of connectionsE(P) (sometimes denoted as askeleton) is a
characteristic property of all dags equivalent with G by [3].

Example 3.14. In Example 3.3 the equivalence of different structures was discussed. The first two (P1,P
′
1) were

equivalent, the second two (P2,P
′
2) were not. Let us look at that example again in the light of theprevious corollary.
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1. LetP1,P
′
1 be two simple structures depicted in Figure 6.

One may easily see thatE(P1) = E(P′1) = ∅. The equalityI(P1) = I(P′1) = {〈u, v|∅〉}was shown in Example 3.3.

2. On the other hand, consider structuresP2,P
′
2 depicted in Figure 7. Notice that the corresponding connections

are highlighted by arrows in Figures 8a and 8b. Due to Example3.3 the reader knows thatI(P2) , I(P′2).
SinceE(P′2) = E(P2) ∪ {〈u, v〉}, the reason for non-equivalence is obvious now.

3. Consider structureP2 depicted in Figure 8a again. Is there any structure not equivalent withP2 but inducing the
same connection set? Indeed, for an example see structureP3 depicted in Figure 8c. Observe that u⊥⊥/v|w[P2]
but u⊥⊥v|w[P3]. Hence,I(P3) , I(P2) whileE(P3) = E(P2).

The 3rd part of Example 3.14 illustrates the fact that the same connection sets condition is necessary but not
sufficient to guarantee the equivalence of respective structures. Therefore it is necessary to find an additional property
invariant through a class of equivalent structures.

3.1.2. F condition set
We know that structuresP2,P3 from the 3rd part of Example 3.14 are not equivalent despite the fact thatE(P2) =

E(P3). Considering relation�P, every structure induces a partial ordering of variables. One can easily verify that
u ≺P2 v ≺P2 w while u �P3 w ≺P3 v. The induced variable ordering is different for non-equivalent structures. May the
ordering of variables be some kind of characteristic property? Definitely not in this simple way: See Figure 6, where
I(P1) = I(P′1) while u ≺P1 v andu �P′1 v.

It follows that two structures may induce different orderings of variables despite being equivalent. However, if we
are only interested in the ordering of groups of specially connected variables, we obtain another property characteristic
for a class of equivalent structures. This property is basedon the so-calledF conditiondefined below.

Definition 3.15. Consider a structureP over N and three disjoint variables u, v,w ∈ N. We say that the triplet〈u, v|w〉
is F-conditionif

{u, v} ≺P w, {u, v} ↔P w, and u=P v.

It is denoted by u≺↔w�↔v[P]. The set of triplesF (P) = {〈u, v|w〉 : u≺↔w�↔v[P]} is calledF-condition setinduced byP.

The reason for calling the above-defined condition F-condition is very prosaic. Consider, for example, the structure
P depicted in Figure 10. The reader can easily verify thatu≺↔ w�↔ v[P] . Observe thatw-avoiding trail connecting
box-markers ofu andv evokes a mirror image of letter F.

An example of F-condition can be found inP2 depicted in Figure 8a, whereu≺↔w�↔v[P2]. There is no F-condition
in P2′ (Figure 8b) andP3 (Figure 8c).

Remark 3.16. Lemma 3.6 says that conditions u≺P w and u↔P w are equivalent to u∈ S(KP]w[). With regards to
this, the previous definition may be reformulated in the following way:Let P be a structure overN andu, v,w ∈ N.
F-conditionu≺↔w�↔v[P] is a triplet of variables〈u, v|w〉 such thatu, v ∈ S(KP]w[) andu =P v.

We have already shown that possessing the sameconnection setsis a necessary condition for equivalence of given
structures. Therefore, when comparing two equivalent structures, theconnection setmay be considered as fixed. Now
we show that the F-condition set is another characteristic property of a class of equivalent structures.

Lemma 3.17. If three distinct variables u, v,w ∈ N satisfy{u, v} ↔P w and u=P v in a structureP over N, then

u≺↔w�↔v[P] ⇔ u⊥⊥/v| + w[P].

Proof. ⇒ Supposeu≺↔w�↔ v[P]. Thenu, v ∈ S(KP]w[) by Remark 3.16. As one can see in Figure 10, the sequence of
markers [K]u[ , u], [K]w[ , u], [K]w[ ,w], [K]w[ , v], [K]v[ , v] is a W-avoiding trail for everyW ⊆ N \ {u, v} such that
w ∈W. Hence,u⊥⊥/v|W[P] for every such aW, which can be written asu⊥⊥/v| + w[P].
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K]u[ K]v[ K]w[

w

v

u

Figure 10:u⊥⊥/v| + w

⇐ To prove sufficiency by contradiction, assume thatu⊥⊥/v| + w[P] and notu≺↔ w�↔ v[P], which means that either
u �P w or v �P w. Assume without loss of generalityu ≺P v (equality may be omitted sinceu =P v) and
hence,v �P w. However, we may only consider the strict casev �P w. Indeed, otherwisev ∈ R(K]w[) and
u↔P v which contradicts with the lemma assumption thatu =P v. The factv �P w implies thatw ∈ S(KP]v[) by
assumptionw↔P v and Lemma 3.6. Since we assume thatu =P v, thenu⊥⊥v|S(K]v[) [P] by Lemma 3.9. This,
however, contradicts withu⊥⊥/v| + w[P].

Corollary 3.18. LetP,P′ be two structures over N. IfI(P) = I(P′) thenF (P) = F (P′).

Remark 3.19. It has been mentioned in Remark 3.13 that there is an algorithm in [1] that enables us to create a
dag G that induces the same independence model as a structureP - i.e. I(P) = I(G). Moreover, each edge in G
corresponds to a connection fromP. Note that there is an edge u↔ v in G if and only if u→ v or u← v in G. Since
arrow orientation is given by relation≺P (if u ≺P v and u↔P v then u→ v in G) in the conversion algorithm, then
each F-condition defined above implies animmorality (vee-triple) in the respective dag G. Recall that ewe say that
distinct nodes u, v,w form an immorality in a dag G= (N,E) if u→ w in G, v→ w in G, and u=G v.

We have derived two properties necessary for independence equivalence of given structures:same connection and
F-condition sets. However, are these properties also sufficient to guarantee the equivalence of respective structures?
Let us simply say that the answer is positive. However, sincethe goal of this paper is to present necessary conditions
for equivalence of structures, we will not need this assertion here, and therefore we will not present its rather complex
proof.

3.2. Column approach

One may disclose a possible non-equivalence of given structures with the help of characteristic properties intro-
duced in the previous section. A problem arises when the considered structures are more complex and the rule of
same connection setsis not so easily verifiable. It would be of special importanceto have a rule concerning particular
sets defining the structure instead of connections.

Is there such a condition? To cope with this question, we needthe following definition.

Definition 3.20. Let P = K1, . . . ,Kn be a structure. A set Ki is a non-trivial columniff R(Ki) is non-empty set.
Otherwise it is atrivial columnofP. The symbol ntriv(P) denotes the set of all non-trivial columns inP. (ntriv(P) =
{Ki ∈ P : R(Ki) , ∅})

Definition 3.21. LetP = K1, . . . ,Kn be a structure and U⊆ (K1 ∪ . . . ∪ Kn). The set U isnon-trivial inP iff there is
a Ki ∈ P such that U⊆ Ki and R(Ki) ∩ U , ∅. Otherwise the set U istrivial in P.

Remark 3.22. Observe that, since R(KPi ) , ∅ for nontrivial KPi , it is obvious that ntriv(P) ≤ |N|.

The following lemma proves that the set of mutually connected variables takes an important role in the structure.
It is a consequence of Lemma 3.6.
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Lemma 3.23. Let U be a non-empty set of mutually connected variables inP (u↔P u′ for all u, u′ ∈ U). Then U is
a non-trivial set inP.

Proof. Chooseu ∈ U such thatu �P u′ for all otheru′ ∈ U. This choice is always possible and ensures thatU ⊆ KP]u[ .

Indeed,u ↔P u′ by assumption and thereforeu′ ∈ KP]u[ by Lemma 3.6 for allu′ ∈ U \ {u}. Sinceu ∈ R(K]u[) by
definition of function ]· [P, thenU is a non-trivial set inP by Definition 3.21.

With the help of the previous lemma, one can prove the following interesting assertion concerning non-trivial sets
and class of independence equivalent structures.

Lemma 3.24. If a set of variables U is non-trivial in a structureP, then it is non-trivial in every structure equivalent
withP.

Proof. Assume thatP′ andP are equivalent. ThenE(P) = E(P′) andF (P) = F (P′) according to Corollaries 3.12
and 3.18. The non-triviality ofU implies the existence of a columnKP]w[ such thatw ∈ U andU ⊆ KP]w[ . Thenu �P w
andu ↔P w for all u ∈ (U \ {w}) by Lemma 3.6. LetM ⊆ U be a maximal subset of mutually connected variables
in P such that bothR(KP]w[) ∩ U ⊆ M andM ↔P u for all u ∈ U \ M. PutV = U \ M. Observe that not onlyM , ∅

(w ∈ M) but alsoV ≺P w. Indeed, suppose that∃v ∈ V such thatv �P w. Thenv ∈ R(KP]w[) by definition ofw, which
contradicts the choice ofM. One can distinguish two cases:V = ∅ andV , ∅.

If V = ∅ thenU = M is a set of mutually connected variables inP′ by E(P) = E(P′). ThereforeU is non-trivial
in P′ by Lemma 3.23.

Suppose nowV , ∅. SinceM is a set of mutually connected variables inP′ byE(P) = E(P′), thenM is non-trivial
by Lemma 3.23 inP′ and therefore∃m ∈ M such thatM ⊆ KP

′

]m[ . The next step is to prove thatV ⊂ KP
′

]m[ as well.

Assume for a contradiction that∃v ∈ V such thatv < KP
′

]m[ . There existsv′ ∈ V \ {v} such thatv′ =P v (otherwise
v ∈ M). Considering the factV ≺P w and{v, v′} ↔P w, we getv≺↔w�↔v′[P] andv≺↔w�↔v′[P′] by F (P) = F (P′). The
fact thatw ∈ M ⊆ KP

′

]m[ impliesw �P′ m by Lemma 3.6. Together withv ≺P′ w (because ofv≺↔w�↔ v′[P′]), it follows

thatv ≺P′ m. Moreover,v↔P′ mby definition ofM and Corollary 3.12, and thereforev ∈ KP
′

]m[ by Lemma 3.6, which
contradicts the assumption.

Hence,V ⊂ KP
′

]m[ . ThusU = V ∪ M ⊆ KP
′

]m[ andm ∈ R(KP
′

]m[) which guarantees the non-triviality ofU in P′ by
Definition 3.21.

Observe that there is a close relationship between non-trivial columns and non-trivial sets of variables. In fact, an
arbitrary non-trivial columnKP is a non-trivial setU = KP as well.

Lemma 3.25. Having fixed structureP, the maximal non-trivial sets (with respect to inclusion) in P coincide with
maximal sets in ntriv(P) (with respect to inclusion), that is maximal columns with atleast one box-marker.

Proof. To prove this lemma it is enough to realise that every non-trivial columnKi ∈ ntriv(P) represents a non-trivial
set of variablesU = Ki at the same time. Similarly, an existence of some non-trivial setU implies the existence of a
non-trivial columnKP such thatU ⊆ KP by Definition 3.21.

Suppose for a contradiction the existence of a maximal non-trivial columnK (which coincides with a non-trivial
setU) and some non-trivial setV such thatU ⊂ V. The non-triviality ofV implies the existence ofK′ ∈ ntriv(P) such
thatV ⊆ K′. ThenK ⊂ K′ which contradicts the fact thatK is maximal non-trivial column with respect to inclusion.
In particular, every maximal non-trivial column is a maximal non-trivial set.

Similarly consider a maximal non-trivial setU. SinceU is non-trivial then there exists a non-trivial columnKi

whereU ⊆ Ki by assumption. There exists a maximal non-trivial columnK j with Ki ⊆ K j (possiblyi = j). Thus,
U ⊆ K j . As K j is a non-trivial set, necessarilyU = K j for otherwiseU is not maximal (non-trivial set). ThusU
coincides with a maximal column.

Definition 3.26. For a structureP, its strong coreC∗(P) is the set of maximal non-trivial columns with respect to
inclusion. (C∗(P) = {Ki ∈ ntriv(P) : @K j ∈ ntriv(P) such that Ki ⊂ K j}.)

Observe that, for a given structureP, its strong coreC∗(P) does not contain any trivial columns fromP. C∗(P) ⊆
ntriv(P)
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Corollary 3.27. LetP be a structure over N. ThenC∗(P) = C∗(P′) for every equivalent structureP′.

Proof. Since by Lemma 3.24 non-trivial sets are same for equivalentstructures, the classes of maximal non-trivial
sets in them coincide. Thus maximal non-trivial columns (byLemma 3.25) in them coincide.

Remark 3.28. Unlike the previously discussed invariants in Remarks 3.13and 3.19, this characteristic property does
not correspond to any standard characteristics of equivalent dags. Still, given the definition,strong structure core
could correspond to a set of maximal families induced by corresponding G= (N,E). Note that by family f am(u) we
understand the set u∪ pa(u) where pa(u) = {v ∈ N : (v→ u) ∈ E}.

Recall that one can generate all dags which are equivalent toa given one with the help of the so calledlegal
arrow reversal. By alegal arrow reversalwe understand the change of dag G into dag G′ by replacement of an arrow
u → v (in G) by u← v (in G′) under the condition that paG(u) ∪ u = paG(v). If f amG(v) = V = paG(u) ∪ {u, v}
belongs to maximal families (with respect to inclusion) then it belongs to maximal families in G′ as well. Indeed, since
paG′ (u) = paG(u) ∪ v then f amG′ (u) = V. Since no other arrow changes, then all other families remain the same and
then V belongs to maximal families in G′ and in all other equivalent dags.

Remark 3.29. Based on work with a variety of equivalent structures, it appears that thestrong coredefinition could
be modified. The new definition of the core would then be as follows: For a structureP, its weak coreC(P) is a set of
Ki ∈ ntriv(P) such that Ki , S(K j) for every Kj ∈ ntriv(P).

Note that the extended weak core also includes not only strong core but also all the columns that are not sharp
subsets of another non-trivial column. However, we are not able to give a simple clear proof that the weak core is
another characteristic of structure equivalence.

4. Conclusion

This paper started with a brief introduction on how to read unconditional independencies induced by a structure of
a compositional model. We then introduced, step by step, several properties necessary for independence equivalence
of the relevant structures of compositional models: Two structures, if equivalent, must have the sameconnection sets
andF-condition sets. Since it is difficult to verify the existence of the sameconnection setin more complex structures,
we apply a new approach based on structure columns.

Based on this, we understand a column with a box-marker as anon-trivial set of variables and we have shown that
every non-trivial set in one structure has to be non-trivialin all structures equivalent with it. Columns that have to
be in all persegrams of equivalent structures are calledstructure core. This offers a powerful tool for determining the
possible non-equivalence of given structures.

Acknowledgements

This work was supported by National Science Foundation of the Czech Republic under Grants No. ICC/08/E010,
and 201/09/1891, and by Ministry of Education under Grants No. 1M0572 and 2C06019.
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