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Abstract
Coalition games are generalized to semisimple MV-algebras. Coalitions are viewed as [0,1]-valued functions on a set of
players, which enables to express a degree of membership of a player in a coalition. Every game is a real-valued mapping
on a semisimple MV-algebra. The goal is to recover the so-called core: a set of final distributions of payoffs, which are
represented by measures on the MV-algebra. A class of sublinear games are shown to have a non-empty core and the core is
completely characterized in certain special cases. The interpretation of games on propositional formulas in Łukasiewicz logic
is introduced.
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1 Introduction

Foundations of cooperative game theory were laid by von Neumann and Morgenstern in [21]. They
developed mathematical models of cooperation in a social environment in which coalition formation
goes hand in hand with payoff negotiation at the level of individual players. Analyses of such games
are usually based only on payoff opportunities available to each coalition so that neither strategies nor
actions are associated with players.Acoalition game is specified by three components: a set of players,
a set of possible coalitions and a real mapping (so-called game) defined on the set of coalitions. An
unambiguous definition of coalition is made precise below in this article. Every coalition operates on
the assumption of maximizing profit (or minimizing loss) of its members, which is the amount that the
members of the coalition can jointly guarantee themselves disregarding the payoff opportunities of
other coalitions. There are many solution concepts for coalition games whose goal is to predict a final
distribution of payoffs in the game. This article deals only with a solution in the form of a core, which
counts among the most important concepts in cooperative game theory (see [16, Chapter 10–12] or
[20]). Roughly speaking, the core is a set containing any payoff distribution among all the players
that respects the basic criterion of collective rationality: no coalition will accept a payoff giving its
players less than they are jointly able to guarantee themselves by forming the coalition. Analogously,
when the game associates a loss with every coalition (instead of a profit), then its core consists of all
loss distributions such that none of them inflicts on members of some coalition a loss that actually
exceeds the one incurred by the coalition.

1.1 Games on various coalition structures

In the classical setting, a coalition game is determined by a finite set of n players together with a
set of all subsets of the n-player set and a set function. The set function assigns a real number to
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© The Author, 2009. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org
doi:10.1093/logcom/exp015

 Journal of Logic and Computation Advance Access published March 12, 2009



2 Core of Coalition Games

Figure 1. The set of all coalitions and its convex hull for three players

each coalition, which is any subset of the player set. This mathematical model captures faithfully
many real-life cooperative situations ranging from voting procedures to cost allocation problems.
Since solutions of these games involve combinatorial expressions, which are usually computationally
expedient for a large number of players, there is a need for more analytical approaches employing
functions of real variables in place of set functions. For instance, Owen [16, Chapter XII.2] considers
a particular extension of an n-player game to a real function defined on the multidimensional cube
[0,1]n. Figure 1 depicts the underlying geometrical idea: each set of players is identified with a
unique vertex of [0,1]n. Hence it makes sense to claim that the original game is extended to the
convex hull of all the coalitions. Interestingly, this ‘convexification’ technique pervades many areas
of game theory: for instance, it is a crucial idea involved in the proof of existence of a solution for
two person zero-sum games given by von Neumann and Morgenstern [16, Theorem II.4.1].

The n-player games modelled by real functions on [0,1]n became a standalone subject of study
in the work of Aubin [1, 2]. In this framework, each coalition is identified with a point from [0,1]n
in order to express a possibly partial degree of membership of a player in a coalition. On the
one hand, this interpretation is especially appealing if each player possess an initial endowment
(money, utility) that is to be apportioned among various projects. Then a coalition from [0,1]n
can be seen as a proportional specification of the amount invested by a player in the project.
This approach is used in [9]. On the other hand, it will be shown in Section 3.1 how the idea of
[0,1]-valued coalitions naturally fits in the framework of Łukasiewicz infinite-valued propositional
calculus.

Another stream of research in coalition game theory focused on games with a huge amount of
players, in which no individual player is able to influence the overall outcome. Such games arise
naturally as market models (for example, large mass of small investors on a stock market). Aumann
and Shapley studied in [3] a class of games with the continuum of players: the players are identified
with points from [0,1], the set of all possible coalitions is the set of all Borel subsets of [0,1]
and a game is a set function on Borel sets. In order to prove the existence of the so-called value
operator, which is an alternative solution concept in coalition game theory, Aumann and Shapley
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also generalized this model one step further and considered the coalition structure consisting of all
[0,1]-valued Borel measurable functions on the unit interval [3, Chapter IV].

Butnariu and Klement studied in [8] the existence of a value operator for games with infinitely
many players and particular subsets of [0,1]-valued coalitions (so called tribes). The most important
cases of these coalition structures correspond to ordered algebraic structures nowadays known as
σ -complete MV-algebras [10]. The existence of the value operator was recently carried over to σ -
complete MV-algebras and even more general algebras whose lattice reducts are σ -complete by
Avallone et al. in [4].

A question of Dan Butnariu was whether coalition game theory can be developed as a fully fledged
theory on MV-algebras. The main goal of this article is to show that this question can be answered in
the affirmative as far as the core solution is concerned. The essential tool is the concept of measures
on MV-algebras investigated by Mundici, Riečan, Weber and others [6, 15, 19]. In the framework
of this article, a coalition game will be a real function on an MV-algebra. Every coalition game is
associated with a (possibly empty) set of solutions, which is called a core. Elements of the core are
measures on the MV-algebra dominated by the game. The main results of the article (Theorem 1
together with Proposition 3) suggest among others this interpretation: the measures from the core are
those measures on the MV-algebra that are ‘tangential’ to a given game.

The article is structured as follows. Basic notions concerning MV-algebras and measures are
repeated in Section 2. In Section 3, precise definitions of game and core are given. Section 3.1
introduces an interpretation of games as functionals on formulas in Łukasiewicz logic and shows that
this idea fits properly into the process of ‘averaging’ the truth-value in Łukasiewicz logic originated
in [15]. The game-theoretic meaning of measures on MV-algebras and cores is discussed in detail
(Propositions 1 and 2). Theorem 1 provides a sufficient condition for non-emptiness of the core and
the subsequent results show how to construct such games and recover their core elements in special
cases.

2 Preliminary notions

In the article, we assume familiarity with basic definitions and results concerning MV-algebras
[10], which are the Lindenbaum algebras of Łukasiewicz logic. An MV-algebra M = (M,0,¬,⊕)
is an Abelian monoid (M,0,⊕) equipped with a unary involutive operation ¬ such that a⊕¬0=
¬0, and a⊕¬(a⊕¬b)=b⊕¬(b⊕¬a), for every a,b∈M. Define 1=¬0 and the operation a�b=
¬(¬a⊕¬b). By XM we denote the (non-empty) compact Hausdorff space of all maximal ideals
of M [10, Section 3.4]. Only semisimple MV-algebras are considered in this work: an MV-algebra
is semisimple iff it is isomorphic to an MV-algebra of [0,1]-valued continuous functions over the
maximal spectrum XM [10, Corollary 3.6.8]. Without loss of generality, elements of a semisimple
MV-algebra M are identified with continuous functions XM →[0,1]. Every semisimple MV-algebra
M can be thus viewed as a subset of the Banach space C(XM ) of all real-valued continuous functions
on the maximal spectrum XM endowed with the supremum norm ‖·‖. For every α∈R, a1,a2 ∈M,
the notations αa1 and a1 +a2 have their usual meaning in the linear space C(XM ). If a1,a2 ∈M are
such that a1 +a2 ∈M, then a1 ⊕a2 =a1 +a2. Similarly, when αa∈M for a non-negative integer α
and a∈M, then we have αa=a⊕···⊕a︸ ︷︷ ︸

α times

.

A partition in M is a pair ({a1,...,an},(α1,...,αn)), where a1,...,an ∈M and α1,...,αn are non-
negative integers such that α1a1 +···+αnan =1. This notion of partition is weaker than so-called
MV-partitions originally introduced by Marra in [13].



4 Core of Coalition Games

Real or [0,1]-valued additive functionals on M (known as ‘measures’ in [6] and ‘states’ in [19],
respectively) play a role of plausible solutions to a given game in the framework introduced in this
article. A measure m on an MV-algebra M is a mapping M →R such that

(i) m(a⊕b)=m(a)+m(b), for every a,b∈M with a�b=0,
(ii) sup{|m(a)| |a∈M}<+∞,

(iii) m(0)=0.

A state on M is a non-negative measure s with s(1)=1.

3 Games and cores

In the sequel we assume that a coalition structure is described by a semisimple MV-algebra.Acoalition
is consequently identified with a [0,1]-valued function a∈M on the maximal spectrum XM of M. The
set XM is viewed as a set of all players. The number a(x)∈[0,1] then captures a degree of membership
of the player x∈XM in the coalition a∈M.

The use of MV-algebras as coalition structures opens a unifying perspective on the extension
procedures discussed in Section 1.1. Indeed, the coalition structure consisting of the Boolean algebra
of all subsets of a finite player set gives rise to the finite direct product of standard MV-algebras by
taking the convex hull (Figure 1). In case of infinitely many players an analogous assertion applies
as well: the coalition structure of all Borel measurable subsets of [0,1] studied by Aumann and
Shapley ‘generates’ the MV-algebra of all [0,1]-valued Borel measurable functions on [0,1]. This
MV-algebra is the right convexification of the Borel subsets of the unit interval: the result of Butnariu
and Klement [8, Proposition 3.3] says that a σ -complete MV-algebra M of functions [0,1]→[0,1],
whose Boolean skeleton2 equals the set of characteristic functions of all Borel measurable subsets
of [0,1], is a convex subset of [0,1][0,1] if and only if it consists of all Borel measurable functions.

Definition 1
Let M be a semisimple MV-algebra. A game (on M) is a mapping v :M →R such that v(0)=0 and
sup{|v(a)| |a∈M}<+∞. By GM we denote the set of all games on M.

A game v is interpreted as a loss function. A number v(a) is thus the total loss incurred by the
players in the coalition a∈M as a result of their cooperation. The goal is to find a final distribution
of the loss among all the players by taking into account results of cooperation captured a priori by
the loss function v. Every distribution of loss is represented by some measure on an MV-algebra.
Although measures on MV-algebras are functions defined on the set of coalitions rather than on
the set of players, Proposition 1 below says that every distribution of loss among all the coalitions
induces a unique distribution of loss among the players. Moreover, a loss distributed in this way to
each coalition a∈M is precisely the mean value of the losses assigned to the individual players with
weights given by the membership degrees of all the players in a.

Proposition 1
If M is a semisimple MV-algebra and m is a non-zero measure on M, then there exists a unique
regular Borel measure µ on Borel sets of XM such that m(a)=∫

adµ, for every a∈M.

Proof. Assume first that the measure m is non-negative. Since m is non-zero we get m(1)>0. Put
s=m/m(1) and note that s is a state. Hence every non-negative measure is a positive multiple of a

2A Boolean skeleton of an MV-algebra M is a set of all idempotent (Boolean) elements of M [10, p. 29].
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unique state. The measure m is consequently represented by a uniquely determined non-negative Borel
measure m(1)µ. Indeed, the state s has integral representation with respect to a uniquely determined
regular Borel probability measure µ on XM (see [12, Corollary 29] or [17, Proposition 1.1]), which
yields

m(a)=m(1)s(a)=m(1)
∫

adµ=
∫

ad(m(1)µ)

for every a∈M.
Given an arbitrary measure m, employ [6, Theorem 3.1.3] to recover Jordan decomposition of the

measure m. Precisely, there exists a unique pair of non-negative measures m+,m− on M such that
m=m+−m−. Hence m(a)=m+(a)−m−(a)=∫

adµ+−∫
adµ− =∫

ad(µ+−µ−), where µ+,µ−
are uniquely determined non-negative Borel measures. The proof is finished by settingµ=µ+−µ−.

�

3.1 Games and Łukasiewicz logic

Łukasiewicz infinite-valued propositional logic (see [10, Chapter 4], for example) provides one way
of thinking about a gradual membership of players to coalitions. Formulas ϕ,ψ,... are constructed
from propositional variables A1,...,Ak by applying the standard rules known in Boolean logic. The
connectives are negation, disjunction and conjunction, which are denoted by ¬, ⊕ and �, respectively.
This is already a complete set of connectives so that, for instance, the implicationϕ→ψ can de defined
as ¬ϕ⊕ψ.The set of all formulas in propositional variables A1,...,Ak is denoted by Form(A1,...An).

The algebra of truth degrees of Łukasiewicz logic is the standard MV-algebra, which is
the unit interval [0,1] endowed with the operations ¬,⊕,� defined as follows: ¬a=1−a,
a⊕b=min {a+b,1}, a�b=max {a+b−1,0}. A valuation is a mapping V : Form(A1,...Ak)→
[0,1] such that V (¬ϕ)=1−V (ϕ), V (ϕ⊕ψ)=V (ϕ)⊕V (ψ) and V (ϕ�ψ)=V (ϕ)�V (ψ). Formulas
ϕ,ψ ∈Form(A1,...Ak) are called equivalent when V (ϕ)=V (ψ), for every valuation V . The
equivalence class of ϕ is denoted [ϕ]. The set of all such equivalence classes is an MV-algebra
Lk with the operations ¬[ϕ]=[¬ϕ], [ϕ]⊕[ψ]=[ϕ⊕ψ] and [ϕ]�[ψ]=[ϕ�ψ], for every ϕ,ψ ∈
Form(A1,...,Ak).

Let X be a set of elements interpreted as players. The propositional formulas in Form(A1,...,Ak)
can represent statements expressing a degree of player’s participation in certain social–economic
events. For example, ϕ can be ‘I am a minor shareholder of this company’ or ‘About 90% of my
investments are in hedge funds’. Every player x∈X then assigns to eachϕ∈Form(A1,...,Ak) a level to
which he/she conforms with the principle substantiated by the formula ϕ. Precisely, a player chooses
a unique valuation V so that the truth-value V (ϕ) represents this level of conformity. Assume that any
two players with the same level of conformity for each formula in Form(A1,...,Ak) are considered
to be identical. Since every valuation is uniquely determined by its restriction to the propositional
variables V �→V (A1,...,Ak)∈[0,1]k , every player is matched with a unique point xV from the k-
dimensional unit cube [0,1]k and vice versa. Let Vx be the valuation corresponding to x∈[0,1]k . Put
[ϕ](x)=Vx(ϕ), for every x∈[0,1]k . Hence the equivalence class [ϕ] of every ϕ∈Form(A1,...,Ak)
can be viewed as a function [0,1]k →[0,1] and, consequently, every level of conformity V (ϕ) can be
thought of as a degree of membership of the player xV to the coalition [ϕ]. If the player set X is large
enough, it can be identified with the whole cube [0,1]k . It is evident that any quantitative assessment
associated with the principle represented by ϕ must depend only on the semantical meaning of ϕ.
Hence a game is in accordance with Definition 1 any real mapping defined on the MV-algebra of
equivalence classes of all formulas. In the light of Proposition 1, any plausible loss distribution results
from averaging the losses over all valuations with respect to the truth-values of the formulas.
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A direct generalization of Theorem 4.6.9 from [10] shows that every MV-algebra is isomorphic to
the Lindenbaum algebra of some theory in Łukasiewicz logic as far as sufficiently many propositional
variables are appended to the alphabet. Thus although we deal with the whole class of semisimple
MV-algebras in this article, the above introduced logical meaning of coalitions is always preserved.

3.2 Core

One of the ways of ‘solving’ a game is to predict a final loss distribution among the players provided
the coalitions follow certain criteria of economical rationality. The concept of core is based on
two assumptions. First, the grand coalition 1∈M is formed and every final distribution of loss must
redistribute precisely the loss v(1). Second, every coalition will accept only a final loss distribution not
exceeding the loss generated by its members. Quoting Shapley [20, p. 11], ‘the core is the set of feasible
outcomes that cannot be improved upon by any coalition of players’. These principles motivate
the following definition, which carries over the concept of core on various coalition structures
(cf. [1, 3, 20]) to games on MV-algebras. Let MM denotes the set of all measures on M.

Definition 2
Let v be a game on a semisimple MV-algebra M. The core (of the game v) is a set

CM (v)={m∈MM |m(1)=v(1),m(a)≤v(a), for every a∈M \{1}}.

When the core of a game is empty, the coalitions are not able to arrive at an agreement concerning
the final distribution of loss.

Example 1
Let M be an MV-algebra containing at least three elements. Define

v(a)=
{

1, a=1,

0, otherwise,
a∈M.

In the game v the only coalition that in fact incurs loss is the grand coalition 1. Intuitively, no
distribution of the loss v(1) of the grand coalition among the other coalitions is jointly acceptable
since those coalitions realize no loss at all. The core of this game is empty: every element m∈CM (v)
is lower or equal to 0 on M \{1} while it must simultaneously satisfy m(1)=v(1)=1, which is
impossible.

The question of non-emptiness of the core is omnipresent in coalition game theory. This question
is highly non-trivial even for games on the MV-algebra that is in fact the set of all subsets of a
finite n-player set. Then the core is an intersection of a hyperplane with 2n −2 halfspaces in R

n,
which amounts to solving a large linear programming problem. If an MV-algebra is a direct product
of n standard MV-algebras then, a fortiori, checking the non-emptiness is hard as the core is an
intersection of uncountably many halfspaces and hyperplanes in R

n. Below we focus on the question
of non-emptiness for the whole class of semisimple MV-algebras. Moreover, it will be demonstrated
how the elements of core can be recovered in some special cases.

If M1
M ,M

2
M are two subsets of MM and α∈R, then their sum is M1

M +M2
M ={m1 +m2 |m1 ∈

M1
M ,m2 ∈M2

M} and the multiple of M1
M by α is αM1

M ={αm |m∈M1
M}. Given an automorphism π

of an MV-algebra M, a game v∈GM and a set G′
M ⊆GM , put πv=v◦π and πG′

M ={πv |v∈G′
M}.
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Proposition 2
Let M be a semisimple MV-algebra.

(i) For every game v∈GM the core CM (v) is a (possibly empty) closed convex subset of MM
endowed with the subspace product topology of R

M .

(ii) If v1,v2 ∈GM , then CM (v1)+CM (v2)⊆CM (v1 +v2).
(iii) If v∈GM and α>0, then CM (αv)=αCM (v).
(iv) If v∈GM and π is an automorphism of the MV-algebra M, then

CM (πv)=πCM (v).

(v) If v∈GM is such that CM (v) �=∅, then

v(1)= inf
{ n∑

i=1

αiv(ai) | ({ai}n
i=1,(αi)

n
i=1) is a partition in M

}
. (1)

(vi) If M has at least three elements and v∈MM , then CM (v)={v}.

Proof. (i) The core of every game v is the intersection of sets

{m∈MM |m(1)=v(1)}, {m∈MM |m(a)≤v(a)}, a∈M,

each of which is easily seen to be closed in R
M and convex. The property (ii) results from a routine

verification as well as the inclusion CM (αv)⊇αCM (v) in (iii). If α>0 and m∈CM (αv), then define
m′ =m/α. Since m′ ∈CM (v), this gives m=αm′ ∈αCM (v). In (iv) the inclusion CM (πv)⊇πCM (v)
follows from the definition. We will show that the reversed inclusion holds true. Let v∈GM and π
be an automorphism of M such that m∈CM (πv). Put m′ =π−1m. Then

m′(1)=m(π−1(1))=m(1)= (πv)(1)=v(1),

and for every a∈M \{1}, we have

m′(a)=m(π−1(a))≤ (πv)(π−1(a))=v(a).

Hence m′ ∈CM (v) and m=πm′ ∈πCM (v). In order to establish (v), consider an element m∈CM (v)
and a partition ({ai}n

i=1,(αi)n
i=1) in M. The definition of a partition gives that each block ai satisfies

ai �(αi −k)ai =0, for 1≤k ≤αi, and each pair of blocks ai,aj with i �= j fulfils αiai �αjaj =0. The
inequality ≤ in (1) then results from

v(1)=m(1)=m
( n∑

i=1

aiαi

)
=

n∑
i=1

αim(ai)≤
n∑

i=1

αiv(ai).

The reversed inequality follows by taking the partition (1,0) in M with multiplicities α1 =1,α2 =0.
To prove (vi) observe that v∈CM (v) and assume that there exists some m∈CM (v) with m �=v. Hence
there must be a∈M \{0,1} with the property m(a)<v(a). This gives

m(¬a)=m(1)−m(a)>v(1)−v(a)=v(¬a),

which is a contradiction. �
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In particular, the properties (ii)–(iv) mean that the mapping v∈GM �→CM (v)⊆MM is superaddi-
tive, positively homogeneous, and commutes with every automorphism of M. The last property is an
important ‘fairness’ axiom. It expresses the fact that the core of the game πv with the roles of players
interchanged coincides with the π -image of the core containing the distributions of loss (measures)
in the original game v. Precisely, every automorphism π of M gives rise to a homeomorphism
π∗ :x∈XM �→{a∈M |π (a)=x} of the compact space of all players XM [11, p. 72], so that we
can write (πv)(a)=v(π (a))=v(a◦π∗). The action of the automorphism group of M on the set of
games GM is thus completely captured by the action of the corresponding group of homeomorphisms
{π∗ |π is an automorphism of M} on the set of the players XM and vice versa.

3.3 Sublinear games

A game v on M is subadditive if v(a⊕b)≤v(a)+v(b), for every a,b∈M with a�b=0. The
subadditivity is a time-honored condition in game theory, it captures the idea of ‘l’union fait la
force’. In other words, disjoint coalitions have an incentive to join their forces as this leads to a loss
that is not greater than the sum of the individual losses.

The set of all subadditive games forms a convex cone in the linear space GM . There are numerous
examples of games from this cone. We say that a real function f defined on a real linear space E is
subadditive, when f (x+y)≤ f (x)+f (x) for every x,y∈E. In the examples below M is any semisimple
MV-algebra.

Example 2
Let m1,...,mn ∈MM and f be a subadditive function R

n →R vanishing at 0. The measures
mi can be viewed as potential cost allocations available in the game v a priori. Define v(a)=
f (m1(a),...,mn(a)), a∈M, and observe that v is a subadditive game.

Example 3
Let M′

M be a non-empty compact subset of MM . Put

v(a)=sup{m(a) |m∈M′
M}, a∈M. (2)

The game v is subadditive: for every a,b∈M with a�b=0, we get

v(a⊕b)=sup{m(a⊕b) |m∈M′
M}=sup{m(a)+m(b) |m∈M′

M}
≤sup{m(a) |m∈M′

M}+sup{m(b) |m∈M′
M}=v(a)+v(b).

Since M′
M is compact and the evaluation mapping m∈M′

M �→m(a) is continuous for every a∈M,
the supremum in (2) becomes in fact the maximum so that v(a)=m(a) for some m∈M′

M . The loss
of every coalition a∈M in the game is thus the most pessimistic loss distribution from M′

M . In this
particular case showing that CM (v) �=∅ is straightforward. There exists m′ ∈M′

M giving the grand
coalition 1 its exact loss v(1) and this measure m′ in addition satisfies m′(a)≤v(a) due to the definition
of v. Hence m′ ∈CM (v).

Subadditivity alone does not guarantee non-emptiness of the core even when M is the set of all
subsets of a finite set of players. The property (v) from Proposition 2 suggests that non-emptiness of
the core can be decided in a sufficiently small neighbourhood of the point 1. This line of reasoning is
confirmed by Theorem 1, which singles out a family of games whose core is non-empty. This family
of games covers some well-known models: for example, convex games with finitely many players
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investigated by Shapley [20] and Aubin [1]. The idea of Theorem 1 does not appear to be formulated
elsewhere. In a nutshell, a sufficient condition for non-emptiness of the core is that a game v on M is
minorized by a ‘suitable’ function defined over the space of all continuous function on the maximal
spectrum of M.

The following notations are introduced. By C∗(XM ) we denote the Banach space of all bounded
linear functionals on C(XM ), which can be identified with the space of regular Borel measures on
XM by Riesz theorem. The restriction of any functional m∗ ∈C∗(XM ) to M then obviously defines
a measure on M. A real function f defined on a real linear space E is said to be sublinear if it is
subadditive and positively homogeneous (that is, f (tx)= tf (x) for every t ≥0 and every x∈E).

Theorem 1
Let M be a semisimple MV-algebra and w :C(XM )→R be a continuous sublinear function. If v∈GM
is such that w≤v on M and v(1)=w(1), then CM (v) includes the non-empty set

{m∗�M |m∗(a−1)≤w(a)−w(1),m∗ ∈C∗(XM ), a∈C(XM )}.
Proof. Since w is positively homogeneous and subadditive, it is a convex function on C(XM ). Hence
the right-hand directional derivative at 1

d+w(1)(a)= lim
t→0+

w(1+ta)−w(1)

t

exists for every a∈C(XM ) [18, Lemma 1.2]. Let ∂w(1) be the subdifferential of w at 1:

∂w(1)={m∗ ∈C∗(XM ) |m∗(a)≤d+w(1)(a),a∈C(XM )}.
Since w is continuous at 1, Proposition 1.11 in [18] guarantees that the set ∂w(1) is non-empty, convex
and weak*-compact subset of C∗(XM ). Moreover, the subdifferential ∂w(1) coincides with the set

{m∗ ∈C∗(XM ) |m∗(a−1)≤w(a)−w(1),a∈C(XM )}. (3)

We will show that CM (v) contains the set of all elements of ∂w(1) restricted to M. Let m∗ ∈∂w(1). If
a=α ·1 for α>0, then (3) together with linearity of m∗ and positive homogeneity of w yields

αm∗(1)−m∗(1)≤αw(1)−w(1),

which is equivalent to
(1−α)(m∗(1)−w(1))≥0. (4)

Setting α=1/2 in (4) leads to m∗(1)≥w(1), while, on the other hand, if α=3/2, then m∗(1)≤w(1).
Hence necessarily m∗(1)=w(1)=v(1). Due to (3) this means also that m∗(a)≤w(a)≤v(a), for every
a∈M. Hence m∗�M ∈CM (v). �
Loosely speaking, the elements of ∂w(1) in the above proof can be visualized as all plausible
candidates for the derivative of w at 1 (see Figure 2). Precisely, if m∗ ∈∂w(1), then there exists
an affine function A :C(XM )→R such that A≤w and A(1)=w(1). To see this it is enough to put
A(a)=m∗(a)+w(1)−m∗(1) for every a∈C(XM ).Vice versa, if such a function A with m∗ ∈C∗(XM )
exists, then m∗ necessarily belongs to ∂w(1).

In special cases, the core of v can be completely described by the subdifferential ∂w(1) of w at 1.
Moreover, it will be shown that in this situation the core is an ‘additive’ solution [cf. Proposition 2
(ii)] and the most ‘pessimistic’ solution [cf. Example 3].
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1
A

wv

Figure 2. Function w and of its plausible tangents A

Proposition 3
Let M be an MV-algebra of all [0,1]-continuous functions on some compact Hausdorff space X.

(i) If v is a continuous sublinear function C(X)→R, then

CM (v�M)={m∗�M |m∗ ∈∂v(1)} (5)

is non-empty compact and

v(a)=sup{m(a) |m∈CM (v�M)}, a∈M. (6)

(ii) If v1,v2 are continuous sublinear functions C(X)→R, then CM (v1�M +v2�M) �=∅ and

CM (v1�M +v2�M)=CM (v1�M)+CM (v2�M).

(iii) Let v be a continuous sublinear function C(X)→R and let

dv(1)(a)= lim
t→0

v(1+ta)−v(1)

t
, a∈C(X). (7)

The limit in (7) exists for every a∈C(X) if and only if

CM (v�M)={dv(1)(·)�M}.
Proof.

(i) Letting w=v in Theorem 1 yields non-emptiness of CM (v�M) and the inclusion CM (v�M)⊇
{m∗�M |m∗ ∈∂v(1)} in (5). Let m∈CM (v�M). Then there exists a unique representing Borel
measureµ for m according to Proposition 1. Defining m∗(a)=∫

adµ, for every a∈C(X), gives
a linear functional m∗ ∈C∗(X) such that m∗�M =m.We will show by verifying the condition (3)
that m∗ ∈∂v(1). If a=0, then m∗(0−1)=−m∗(1)=−m(1)=−v(1)=v(0)−v(1). Let a∈C(X)
be non-zero. Then

m∗(a−1)=m∗(a)−m∗(1)=‖a‖m∗( a

‖a‖
)
−v(1)=‖a‖m

( a

‖a‖
)
−v(1)

≤‖a‖v
( a

‖a‖
)
−v(1)=v(a)−v(1).

Compactness of CM (v�M) follows from weak∗-compactness of ∂v(1) [18, Proposition 1.11]
and continuity of the mapping m∗ ∈∂v(1) �→m∗�M.
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In order to show (6), let a∈M. Since for every m∈CM (v�M) we have v(a)≥m(a), the inequality
v(a)≥sup{m(a) |m∈CM (v�M)} holds true. Conversely, since v is convex and continuous at
every a∈M, then it follows from [18, Proposition 1.11] that there exists an element

m∗ ∈∂v(a)={m′ ∈C∗(X) |m′(b−a)≤v(b)−v(a), for every b∈C(X)}.

This implies m∗ ≤v and m∗(a)=v(a), so

v(a)=m∗(a)≤sup {m(a) |m∈CM (v�M)}.

(ii) This is basically Proposition 2 (ii) combined with Theorem 3.23 from [18].
(iii) Existence of the limit in (7) for every a∈C(X) means by the definition Gâteaux differentiability

of v at 1. If it exists, the Gâteaux derivative dv(1)(·) is a continuous linear functional since v is
continuous and convex [18, Corollary 1.7]. Gâteaux differentiability of v at 1 is also equivalent
to saying that the subdifferential ∂v(1) is a singleton containing only the Gâteaux derivative
dv(1)(·) [18, Proposition 1.8]. To finish the proof use (i). �

The next proposition shows a method for constructing games with non-empty cores on any
semisimple MV-algebra. The idea is that of ‘vector measure games’ discussed already in Example 2.

Proposition 4
Let f :Rn →R be a sublinear function with f (0)=0 and m1,...,mn ∈MM , for some n∈N and a
semisimple MV-algebra M. Then a game v= f ◦(m1,...,mn) on M has a non-empty core.

Proof. First the game v is extended from M to the whole Banach space C(XM ). This is done as
follows. For every mi,i=1,...,n, there exists a unique regular Borel measure µi such that mi(a)=∫

adµi, for every a∈M (Proposition 1). Given arbitrary a∈C(XM ), put w(a)= f (∫adµ1,...,∫adµn).
Clearly w agrees with v on M. As a consequence of linearity of integral and sublinearity of f , the
function w is easily seen to be sublinear. It is also continuous everywhere in C(XM ): take a sequence
(ak) in C(XM ) such that ‖ak −a‖→0 for some a∈C(XM ). Since the convergence in supremum norm
implies the pointwise convergence, we obtain

lim
k→∞w(ak)= lim

k→∞f (∫ak dµ1,...,∫ak dµn)= f ( lim
k→∞(∫ak dµ1,...,∫ak dµn))

= f (∫adµ1,...,∫adµn)=w(a),

where the second equality results from continuity of the convex function f everywhere in R
n, and the

third equality is a consequence of Lebesgue’s dominated convergence theorem. To finish the proof,
use Theorem 1 with v and w. �

Proposition 3 in conjunction with subdifferential calculus [2, 18] provide useful rules for
determining the exact shape of cores for some important classes of games. In particular, the cores of
sublinear games can easily be visualized in case of finitely many players with both Boolean coalitions
(Example 4) and many-valued coalitions (Example 5).

Example 4
Let M be the set of all subsets a of an n-player set X. A game v on M is said to be submodular
if v(a∧b)+v(a∨b)≤v(a)+v(b), for every a,b∈M. The Shapley’s result [20] says that the core of
every submodular game is non-empty. Namely, the core C(v) is a convex polytope in R

n with the
dimension at most n−1 and there are at most n! vertices of CM (v) which can be characterized in
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the following way: a vector m∈R
n is a vertex of CM (v) if and only if there is an (n+1)-tuple of

coalitions a0,...,an ∈M such that ∅=a0 ≤a1 ≤···≤an =X,where the cardinality of each ai is i, and

m= (v(a1),v(a2)−v(a1),...,v(an)−v(an−1)).

Example 5
Let M be a finite direct product of n standard MV-algebras [0,1]. The set of players is then X =
{1,...,n}. The core of any game on M is an intersection of uncountably many halfspaces and a
hyperplane in R

n so the question arises which classes of games are tractable from the computational
point of view. The result of Brânzei et al. [7] states that if a game v satisfies v(a⊕d)−v(a)≥
v(b⊕d)−v(b), for every a,b,d ∈M with b�d =0 and a≤b, then C(v) �=∅, the game v restricted to
2X is submodular and C(v) coincides with the core of the game v�2X described in Example 4.

For the class of games from Example 5 the description of their cores is substantially improved:
all the accepted loss distributions are determined by only finitely many coalitions although there are
infinitely many coalitions in the game. In the next section, we investigate a somewhat analogous
situation for a certain family of games on the MV-algebra Lk of equivalence classes of formulas
defined in Section 3.1.

3.4 Games on free MV-algebras

The algebra Lk is known to be the free k-generated MV-algebra [10, Section 3]. According to
McNaughton theorem [14], it is precisely the MV-algebra of all functions [0,1]k →[0,1] that are
continuous and piecewise linear, where each piece has integer coefficients. Theory of Schauder hats
in Lk developed for the purely geometrical proof of McNaughton theorem in [10, Section 9.1] is
briefly repeated in the next paragraph.

A polyhedral complex is a finite set of polyhedra R such that: (i) each polyhedron of R is included
in [0,1]k , all its vertices have rational coordinates; (ii) if P∈R and Q is a face of P, then Q∈R;
(iii) if P,Q∈R, then P∩Q is a face of both P and Q. The set

⋃
P∈R P is called a support of R.

If all the polyhedra of a polyhedral complex S are simplices, then S is said to be a simplicial
complex. Alternatively, a simplicial complex S with the support S is called a triangulation of S. The
denominator den(q) of a point q∈[0,1]k with rational coordinates ( r1

s1
,..., rk

sk
), where ri ≥0,si>0 are

the uniquely determined relatively prime integers, is the least common multiple of s1,...,sk . Passing
to homogeneous coordinates in R

k , put

q̃=( den(q)
s1

r1,...,
den(q)

sk
rk,den(q)

)
and note that q̃∈Z

k+1.A k-simplex with vertices v0,...,vk is unimodular if {ṽ0,...,ṽk} is a basis of
the free Abelian group Z

k+1.An n-simplex with n<k is unimodular if it is a face of some unimodular
k-simplex. We say that a triangulation � is unimodular if each simplex of � is unimodular. If R
is a polyhedral complex, V(R) denotes the set of all the vertices of R. Let � be a unimodular
triangulation with a support S ⊆[0,1]k . For each x∈V(�), the Schauder hat (at x over �) is the
uniquely determined continuous piecewise linear function hx :S →[0,1] which attains the value
1/den(x) at x, vanishes at each vertex from V(�)\{x} and is a linear function on each simplex of
�. The basis H� (over �) is the set {hx |x∈V(�)}. In the sequel T denotes the collection of all
unimodular triangulations of [0,1]k .

The MV-algebra Lk captures a coalitional structure of a very special kind. It describes a ‘completely
many-valued’ model of coalition formation with infinitely many players since there are precisely
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two coalitions in which all the players participates with degrees of membership only from {0,1}:
the Boolean skeleton of LK consists of the McNaughton functions 0 and 1. Yet, the structure of
each coalition from Lk exhibits several features analogous to games with finitely many players
such as the decomposition of every coalition as a convex combination of {0,1}-valued coalitions
(cf. Figure 1). The essential tool lies at the heart of the Mundici’s proof of McNaughton theorem
[10, Theorem 9.1.5]: for every a∈Lk there exist�∈T and the basis H� such that a=∑

x∈V(�)αxhx ,
for uniquely determined non-negative integers αx . So the coalitions in each basis H� can be viewed
as generators which enable to represent each coalition in Lk by a particular linear combination of
Schauder hats.

A special family of games on Lk whose cores arise as the intersection of a smaller family of sets
than in the original definition (Definition 2) fulfils a condition of rigidity of worth for each coalition
a with respect to any decomposition via bases:

v(a)= inf
{ ∑

x∈V(�)

αxv(hx) |a=
∑

x∈V (�)

αxhx,H� basis
}
, a∈Lk . (8)

In words, the condition (8) models a situation in which the cost v(a) associated with forming the
coalition a is the least attainable, since splitting a and forming all the coalitions αxhx will not improve
the outlook of the coalition a. A condition similar to (8) but using Boolean coalitions and convex
combinations in place of hats and linear combinations is introduced also for games on [0,1]n in [5],
where it guarantees that the core remains non-empty even after any number of players ‘leave’ the
game. Surprisingly, the condition (8) has a different role if the coalition structure is Lk . We will show
that the core of any game satisfying (8) is in fact determined by the generators of all coalitions in Lk ,
that is, by the set of all Schauder hats. Given a basis H� , put

CH� (v)={m∈MLk |m(h)≤v(h), for every h∈H�}.
Proposition 5
If v is a game on Lk having the property (8), then

CLk (v)=
⋂

H�basis

CH� (v) ∩ {m∈MLk |m(1)=v(1)}. (9)

In particular, if v is a sublinear function C([0,1]k)→R, then the core of the game v�Lk is non-empty
and satisfies (9).

Proof. The inclusion ⊆ is trivial. Let m be a measure from the set on the right-hand side of (9)
and a∈Lk be a McNaughton function. Let H� be any basis such that a=∑

x∈V (�)αxhx. Since every
basis is a partition in Lk , we obtain

m(a)=m
( ∑

x∈V (�)

αxhx
)=

∑
x∈V (�)

αxm(hx)≤
∑

x∈V (�)

αxv(hx).

The condition (8) yields m(a)≤v(a) and thus m∈CLk (v). The second part of the proposition results
from Proposition 3 (i) and the fact that every restriction to Lk of a sublinear function fulfils (8). �
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