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AN EFFICIENT APPROACH TO THE NUMERICAL SOLUTION OF
RATE-INDEPENDENT PROBLEMS WITH NONCONVEX ENERGIES"

SOREN BARTELS' axo MARTIN KRUZIK?

Abstract. We propose a new approach to the numerical treatment of non(quasi)convex rate-
independent evolutionary problems. The main idea is to replace the original microscopic energy density with
its polyconvexification. For this problem, first-order optimality conditions are derived and used in finding a
discrete solution. The effectiveness of the method is illustrated with some numerical experiments.
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1. Introduction—the underlying mathematical model. The aim of this con-
tribution is to propose a computational method for solving non(quasi)convex vectorial
and multidimensional variational problems. It is well known that if V(y):=
[oW(Vy(z))dz, where Q C R" is a bounded Lipschitz domain and W:R™" — R is
continuous but not quasiconvex [25], then V is not weakly sequentially lower semicon-
tinuous on WP(Q;R™), 1 < p < 400, and consequently V does not necessarily attain
its minimum in this space. We recall that W:R™ " — R is quasiconvex if for all ¥ €
Wy (Q;R™) and all F € R™ " it holds that

(1) W(F)Q| < / W(F + Vi (2))d.

One way to overcome this difficulty is to replace W with its quasiconvex envelope Q W
defined as the pointwise supremum of all quasiconvex functions not greater than W cf.
[9]. This is, however, mostly a theoretical tool because the formula is generically not
known in a closed form. Nevertheless, by the relaxation theorem [9] we have under stan-
dard polynomial growth conditions at infinity; i.e., we assume for some 0 < ¢ < C,
1< p<+oo, and all FF € R™*",

(2) c(=1+|F]) < W(F) < C(1+ |F]),

that inf ey qrm [o W(Vy(z))dz = mineyrorn) [o@W(Vy(z))dz, where Y?(Q;R™)
is a suitable subset of W'?(Q;R™), which may include Dirichlet boundary conditions,
for instance. In this paper, we suggest working with the polyconvex envelope PW in-
stead. The polyconvex envelope is defined analogously to the quasiconvex one, and we
say that W is polyconvex [3], [9] if there is a convex function h:R° — R such that
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NUMERICAL SOLUTION OF RATE-INDEPENDENT PROBLEMS 1277

W(F) = h(T(F)) for all F € R™" Here T(F) denotes the vector of all subdeterminants
of F, i.e., the dimension of T(F) equals

o R )

Polyconvexity implies quasiconvexity, and it is a stronger property if min(m,n) > 1.
The resulting variational problem min cyrrn) [oP W(Vy(z))dz is well-posed, and
we have

inf LW(Vy(x))dx: min )LQW(Vy(:r))dx

YEY? (QR™) yEY? (QR™

>  min LPW(Vy(x))dx,

T yeY?(Q;R™)

where the last inequality can be strict in particular cases. The advantage is that there are
efficient numerical methods to evaluate PW(F') [7], [29]. There is another widely used
method to estimate @ W, namely, the so-called rank-one convexification of W. The func-
tion W is called rank-one convex if it is convex along rank-one lines in R™*". Estimating
the rank-one convex envelope of W by so-called laminates [27] in the context of elasticity
is used, e.g., in [2], [15], [13], [14], [19]. In these cases, W is the stored energy density of a
hyperelastic material. We recall that laminates are among experimentally observed
material microstructures. Algorithms for the approximation of the rank-one convex en-
velope have been proposed and analyzed in [10], [6]. Unfortunately, they are extremely
expensive and may lead to ill-posed, i.e., nonweakly lower semicontinuous, variational
problems if n > 2 and m > 3 [28], [34].

The supremum definitions of @ W or PW mentioned above are not very useful for
numerical or analytical considerations. Much more suitable ways to evaluate and/or
estimate them were developed in terms of parameterized (Young) measures.

1.1. Young measures and Young functionals. It is well known [4], [35] that if
{Z1}gen C LP(Q;R™ ™), 1 < p < +00, is bounded, then there exists a subsequence (not
relabeled) and a family v = {v,},co of probability measures on Q such that for all
g € L(Q) and all f € C(R™*") such that {f(z;)};en is uniformly integrable it holds that

(4) in [ fa@g@do= [ [ fFav. (P

k—o00

Conversely, if v = {v,},cq is such that v, is for almost all z € Q a probability measure
on R™" g [puof(F)dv,(F) is measurable for all fe Cy(R™"):={g¢€
C(R™™); limyy o g(s) = 0}, and [ [ue|F|Pdv,(F)dz < 400, then there exists a se-
quence {z;}rey C LP(Q; R™ ™) such that (4) holds. The family v = {v,} is called the
LP-Young measure and {z;,} its generating sequence. We denote the set of LP-Young mea-
sures by VP (Q; R™*"). It is well known that every Young measure v as above can be gen-
erated by a sequence {z;} such that {f(z;)} is uniformly integrable for every continuous
f € CrRM M) = {f € CR™™);|f| < C(L+| - ). C > 0}.

We will be interested in Young measures generated by gradients, i.e., z;, := Vy, for
some sequence {y;} C WHP(Q;R™). Such a Young measure will be referred to as a
gradient Young measure. Fixing 1 < p < 400, we denote the set of gradient Young
measures generated by {Vy;} for {y,} € WHP(Q;R™) by G?(Q; R™*"). Thus, if {y;} C
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1278 SOREN BARTELS AND MARTIN KRUZIK

WP (Q;R™) is bounded and { W(Vy;,)} uniformly integrable, we have (up to a subse-
quence) that limy . V(y.) = [qgma W(F)dv,(F). Let us mention that if W is
coercive with superlinear growth at infinity and {y;} is minimizing for V, then the
uniform-integrability condition holds. In fact, if p > 1, then every gradient Young mea-
sure from GP(Q;R™ ™) can be generated by a bounded sequence {Vz;},cy such that
{z1}hen C WHP(Q;R™) and {|V2;|P}jcy is uniformly integrable [11]. The following
well-known result of Kinderlehrer and Pedregal [17], [27] characterizes the set of gra-
dient Young measures.

Lemva 1.1 Let 1 <p <+oo. A Young measure v ={v,},cq belongs to
GP(Q; R™™) if and only if the following three conditions are satisfied simultaneously:

(i) there is y € WLP(Q;R™) such that for a.a. z € Q

5) Via) = [ Fav,(p)

(i) for this y and all quasiconvez functions v:R™" - R, |v| < C(1+| - |P), it
holds that for a.a. x € Q

(6) o(Vy(2)) < / o(F)dv,(F).

mxn

(iii) it holds that
(7) / / |Flrdv, (F)dz < +o0.
-

Extending the validity of (ii) to all rank-one convex functions with p-growth at in-
finity defines a subset of G?(€;R™ ") called laminates [27].

In this paper, we propose a different approach, namely, to use a proper superset of
GP(Q; R™ ™) by requiring that (6) holds only for all quasiaffine functions. We recall that
v is quasiaffine if and only if it is an affine function of all subdeterminants of the matrix
argument. This means that there is E € R? and ¢ € R such that v(-) :=E - T(-) + ¢. In
particular, if m =n =2, then v(F):=A-F+bdet F+ c for some A € R?>*? and
b,c e R. If n=3, then v(F)=A-F+ B-cofF + c det F + d for some A, B € R
and ¢, d € R. Here “cof F” denotes the matrix composed of all 2 x 2 subdeterminants
of F. We are going to deal with the following set of polyconvex Young measures
[27], [31], which strictly contains all gradient Young measures.

DeFmNiTION 1.2, Let min(m,n) < p < +oo. A Young measure v ={v,},.q is
called polyconvex and belongs to the set PP(Q;R™ ™) if the following conditions are
satisfied:

(i) there is y € WIP(Q;R™) such that for a.a. © € Q

®) T(Vy(a) = [ TP,

(i) 4t holds that

() / / |Flrdv, (F)dz < +o0.
-
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NUMERICAL SOLUTION OF RATE-INDEPENDENT PROBLEMS 1279

There is a much more general approach to relaxation using the so-called Young
functionals. We refer to [31] for a detailed exposition; cf. also [29], [30], [21]. The main
idea is to choose a suitable subspace H of Carathéodory functions h:Q x R™" — R
with at most p-growth; i.e., we consider |h(z, F)| < a,(x) + b,|F|? if a; € L}(Q) and
by, > 0. The space H is normed with the (semi)norm

|hl = inf{||all (@) + b; V(z, F) € Q x R™":|h(x, F)| < a(z) + b|F|"}.
The dual space to H, H*, is equipped with the standard norm ||n| g =
SUPpefnjzo(n, h) /1h|. Following [31] we define the embedding 4:LP(Q;R™*") — H*
by (i(u), h) == [oh(z, uw(z))dz, h € H.

The subset of H*, called the set of Young functionals, is the following (“w* — lim
denotes the weak* limit):

2

Y5 (QR™™) :={n € H*; I{z,}, C LF(Q;R™") a bounded net; w* — lim i(z,) = n}.

We then say that {z,} generates n. It was proved in [31] that Y%, (Q;R™*") is a convex
weakly* o-compact subset of H*. Moreover, if H contains a coercive function with
p-growth and H is separable, then Y%, (Q;R™*") is closed locally weakly* sequentially
compact. If 5 is generated by a net such that {|z,|?} is uniformly integrable, then we call
n p-nonconcentrating. Every p-nonconcentrating Young functional can be represented
by an LP-Young measure v (generally not unique) such that for all he H
(n.h) = [ofgmenh(z, F)dv,(F)dz. Conversely, every LP-Young measure defines a
Young functional by the previous formula. Notice that the choice H :=
LNQ; Co(R™ ™)) identifies Y?(Q;R™ ™) and YP(Q; R™"). If the net in the definition
of Y5 (Q;R™*") is a net of gradients of mappings from W1?(Q; R™), then we call such a
Young functional the gradient Young functional and their set is denoted G4, (€;R™*"),
ie.,

GL(QR™ ") == {n € H*; F{z,}, C W'P(Q;R™)a bounded net;
w* —lim i(Vz,) = n}.

The interesting feature is that we have some freedom in the choice of H. Larger H
makes the description of G% (€;R™*™) more complicated (see Lemma 1.1 above) but
allows us to evaluate the extension (relaxation) of a larger set of functionals to the space
H*. On the other hand, G%,(Q;R™*") can be easily characterized under crucial restric-
tions on H. The following result, which can be found in [30], demonstrates this
statement. If F' € R™ " then T,(F) denotes the vector of all subdeterminants of order
1 < s < min(m, n). Clearly, T,(F) € R%®), where o(s) :== (")("). If U is a linear separ-
able subspace of C?(R™*"), we recall that C(Q)® U consists of all finite sums
>.;9i(x)v;(F), where g; € C(Q) and v; € U for all j. Moreover, [g @ v(z, F) =
g(x)v(F) if ge C(Q) and v € U and (hen,g):=(n,g- h) for all g € C(Q).

Lemva 1.3, Letmin(m, n) < p and H contain densely the space C(Q) ® U, where U
is a separable linear subspace of C?(R™*™) containing the function F — T(F), and let it
hold that every function from U has its quasi-convez envelope polyconvex. Moreover, if
for somen € Y5 (Q;R™") p-nonconcentrating, somey € WH(Q;R™), and all1 < s <
min(m, n)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



1280 SOREN BARTELS AND MARTIN KRUZIK
(1@T,) en="T,(Vy) inL?/*QR),

then n € Gi(Q;R™™).

In particular, it means that only a finite number of conditions is needed to char-
acterize gradient Young functionals in this situation. Young measures and Young
functionals are an important tool in the mathematical treatment and relaxation of var-
ious nonconvex variational problems. A prominent example is the relaxation of energy
functionals in the modeling of shape-memory materials [5], [22], [27], [31].

1.2. Shape-memory alloys. Shape-memory alloys (SMAs) have been the subject
of intensive theoretical and experimental research during the past decades. Existing or
potential applications can be found, for example, in medicine and mechanical or aero-
space engineering. Shape-memory alloys are crystalline materials that exhibit specific
hysteretic stress, strain, or temperature response; they have the ability to recover a
trained shape after deformation and subsequent reheating. This is called the shape-
memory effect. It is based on the ability of the alloy to rearrange atoms in different
crystallographic configurations (in particular, with different symmetry groups). The
stability depends on the temperature. Normally, at higher temperatures a high-symme-
try (for example, cubic) lattice is stable, which is referred to as the austenite phase. At
lower temperatures, a lattice of lower symmetry (for example, tetragonal, orthorhombic,
monoclinic, or triclinic) becomes stable, called the martensite phase. Because of the loss
of symmetry, this phase may occur in different variants. The number of variants M is the
quotient of the order of the high-symmetry phase and the order of the low-symmetry
group. So for a cubic high-symmetry phase, M = 3, 6, 12, or 4 for the tetragonal, orthor-
hombic, monoclinic, or triclinic martensites, respectively, mentioned above. The
variants can be combined coherently with each other, forming so-called twins of two
variants.

The mathematical and computational modeling of SMAs represents a tool for the
theoretical understanding of phase transition processes in solids. Such an analysis may
complement experimental results, predict the response of new materials, or facilitate the
usage of SMAs in applications. SMAs are genuine multiscale materials and create a vari-
ety of challenges for mathematical modeling. We refer the reader to [32] for a survey of a
wide menagerie of SMA models ranging from nano- to macroscales. In this article, we
focus on a mesoscopic model in the framework of continuum mechanics. Beside the
macroscopic deformation and its gradient, the model also involves the volume fractions
of phases and variants and gradients of volume fraction. This seems a reasonable com-
promise, since it allows for the modeling scales of large single crystals or polycrystals.

Although the natural physical dimension is three, we will assume that our specimen
occupies a bounded domain Q C R" and the deformation y maps © to R™. This allows us
to consider various variational problems. Nevertheless for shape-memory applications
we obviously assume that m = n = 3. The stress-free parent austenite is a natural state
of the material that makes it, in the context of continuum mechanics, a canonical choice
for the reference configuration. As usual, y:Q — R™ denotes the deformation and
u:Q — R™ the displacement, which are related to each other via the identity
y(z) = 2+ u(x), where = € Q. Hence the deformation gradient is F :=Vy =1+ Vu.

The total stored energy in the bulk occupying, in its reference configuration, the
domain Q is then

(10) V(y) = A W(Vy(z))dz.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



NUMERICAL SOLUTION OF RATE-INDEPENDENT PROBLEMS 1281

A common variational principle in continuum mechanics is the minimization of the
stored energy. Because of the coexistence of several variants at low temperature, W
has multiple minima and thus a multiwell character. We consider an isothermal
situation with several coexisting variants. Since W is a multiwell energy density,
minimizing sequences of V tend to develop, in general, finer and finer spatial oscillations
of their gradients. In other words, the deformation gradient often tends to develop fine
spatial oscillations due to lack of (quasi-)convexity of the stored energy density. These
oscillations are difficult to model in full detail, although some studies in this direction
exist [1]. The oscillations correspond to the development of finer and finer microstruc-
tures when the stored energy is to be minimized. The minimum of V, under specific
boundary conditions for y, is usually not attained in a space of functions. Therefore
one needs to extend the notion of a solution. Young measures are here an appropriate
tool. They are capable of recording, on a mesoscopic level, the limit information of the
finer and finer oscillating deformation gradient as we move toward the macroscopic
scale. This can be described, for a current macroscopic point x € Q, by a probability
measure v, on the set of deformation gradients, that is, matrices in R™*". The extension
of V to Young measures then reads as [26]

(11) T(v) = [2 [ WE, (P

1.2.1. Dissipation related to phase transitions. In order to describe dissipa-
tion due to transformations we adopt, following, e.g., [22], the standpoint that the
amount of dissipated energy associated with a particular phase transition between aus-
tenite and a martensitic variant or between two martensitic variants can be described by
a specific energy (of the dimension J /m? = Pa). This viewpoint has been independently
adopted in physics; see [16]. For an explicit definition of the transformation dissipation,
we need to identify the particular phases or phase variants. In this behalf, we define a
continuous mapping L:R™" — A, where

A = {C€R1+M

M+1
£, >0for £=1,....M+1, and Zéle}
=1

is a simplex with M + 1 vertices, with M being the number of martensitic variants. Here
L isrelated to the material itself and thus has to be frame indifferent. We assume, beside
¢, >0and Y M1 ¢, =1, that the coordinate ¢, of L(F) takes the value 1 if F is in the
Zth (phase) variant; that is, F is in a vicinity of £th well SO(n) U, of W, which can be
identified by the stretch tensor F'' F being close to U} Uy. If L(F) is not in any vertex of
A, then it means that F is in the spinodal region where no definite phase or variant is
specified. We assume, however, that the wells are sufficiently deep and the phases and
variants are geometrically sufficiently far from each other that the tendency for mini-
mization of the stored energy will essentially prevent F' from ranging into the spinodal
region. Thus, the concrete form of £ is not important as long as £ enjoys the properties
listed above. We remark that £ plays the role of what is often called vector of order
parameters or a vector-valued internal variable.

For two states ¢; and ¢y, with ¢; = (y;,v;.4;) for j =1, 2, we now define the
dissipation due to martensitic transformation that “measures” changes in the volume
fraction A € L*(Q;RY*1). This dissipation is given by
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1282 SOREN BARTELS AND MARTIN KRUZIK

(12) D(ar. g5) = / 141(2) — 2a(2) s,
where
(13) b= [ L)

and | - [gsr is a norm on RM*1 As Y727 = 1 we call A the vector-valued volume
fraction, as it gives us relative portions of variants at almost every = € Q. In what fol-
lows, we will assume that the norm on R¥*! defining the dissipation in (12) is given as

M+1
(14) [Xlgon =Y X1, X = (X' ... XM,
i=1
where | - | is the absolute value and ¢ > 0 for all i. The physical meaning of ¢’ is the

specific energy dissipated if X* changes from zero to one (or vice versa).

1.2.2. Loading and boundary conditions. In experiments, a specimen occupy-
ing the region Q will be subjected to external loads. To simplify our exposition, we con-
sider only surface forces. We assume that there is a spatially constant tensor S taking
values in R™*" such that the density of surface forces g applied on I'y C 0Q is given by
g = So, where g is the unit outer normal vector to I';. We also assume that we are given a
set Ty C 0Q, where the (n — 1)-dimensional Hausdorff measure of T is positive. We con-
sider Dirichlet boundary conditions y = y, on Iy for some prescribed (time-dependent/
independent) mapping y,. As for the surface forces, we define a linear functional

(15) L(y) = L So - y(z)dA = /QS - Vy(z)dz.

Below, we write L = L(t, y) to indicate the possibility of temporally changing forces
g and therefore also S.

1.3. Energetic solution. Combining the previous considerations, we arrive at the
energy functional Z [26] of the form

(16) I(t, q) = / (W(F) — S(t) . F)d\)x(F)d:I/"F8||V/1||L2(Q;R(1+M)xu,).
Q RW‘LXH
It is often convenient to write V with the argument ¢ instead of v:
(17) 7(q) = / W(F)dv, (F)dz + & |2 1 g
Q JrRm

where the VA-term is included to regularize the problem. It penalizes spatial jumps of the
volume fraction 4 and introduces a length scale to the problem depending on a parameter
& > 0. In particular, it allows us to pass to the limit in the dissipation term. To define an
admissible set where we look for our solution triple ¢ = (y, v, 1), we put

(18) y € YP(Q;R™) == {y € W' (Q;R™)|y =0 on Iy},

where I'y C 0Q with a positive surface measure, as described in subsection 1.2.2. Here
is a time-dependent trace on I'y. We recall from that subsection that I'y N I'; = @. Then
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we look for ¢ € Q == Y?(Q;R™) x GP(Q; R™ ") x WH2(Q; RM*!) and restrict the space
further by imposing the admissibility condition

(19) Q:=={¢eQi=Levand Vy=Tev},

where, for almost all z € Q, [£ e v](z) = [gua L(F)v,(dF); L e v is defined analogously.
In what follows, we suppose that (2) holds. Following [12] we assume that there are
constants Cj, C; > 0 such that

(20) 0 Z(t, g)| < Co(Cr +Z(t, q)).

Let T > 0 denote the time horizon. We assume uniform continuity of ¢ = 9,Z(t, q)
in the sense that there is w:[0,T] — [0,+00) nondecreasing such that for all
t1, by €10, T]

(21) 10, Z (1, q) — 0, Z(ts, ¢)| < (|t — to).

We also suppose that ¢ = 0,Z(¢, ¢) is weakly continuous for all ¢ € [0, T].
Remark 1.4. If we prescribe time-dependent boundary conditions y,(t) €
Whr(Q;R™) on Iy, then we write

z(ta)= [ [ (W(F+ Va(ta)) - S(0)

(22) - (F 4 V(b)) dv, (F))da + el VAl g e

This allows us to keep Q independent of time.
We seek to analyze the time evolution of a process ¢(t) € Q during the time interval
[0, T]. The following two properties are key ingredients of the so-called energetic solu-
tion introduced by Mielke and Theil [23]; see also [24].
(i) Stability inequality. For every ¢ € [0, T] and every g € Q, it holds that

(23) Z(t. q(1)) < Z(t q) + D(q(1). 9).

(ii) Energy balance. For every 0 < t < T,

(24) Z(t. q(1)) + Var(D, ¢; [0, t]) = Z(0. ¢(0)) + AtdtI(& q(§))ds,

where

N
Var(D, ¢; [s, t]) = sup {ZD(q(tjl), q(tj))‘{tj}j.v_o is a partition of [s, t]}

J=1

is the wvariation of the dissipation.

DerNiTION 1.5. The mapping q:[0, T] — Q is an energetic solution to the problem
(Z,D) with the energy functional T as in (16) and the dissipation D as in (15) if the
stability inequality (23) and energy balance (24) are satisfied for every t € [0, T].

Further, we define the set of stable states at time ¢ € [0, T] as

S(t) ={qe Q Vg€ Q:I(t, ¢) <Z(t,9) + D(¢. 9}
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1284 SOREN BARTELS AND MARTIN KRUZIK

In particular, we will always assume that the initial condition is stable, i.e.,
qo € S(0). The following theorem regarding the existence of an energetic solution can
be proved using a general strategy described in [12].

THEOREM 1.6. Let p > 1, S € C1([0, T];R™ "), and let assumptions (2), (20), and
(21) hold. Then there is a process q:[0, T] — Q with q(t) = (y(t), v(t), A(t)) such that q is
an energetic solution according to Definition 1.5 for a given stable initial condition
9 € Q.

The proof of this theorem proceeds via semidiscretizations in time for decreasing
time steps, by a limit passage in the stability inequality (23) and in the energy equality
(24); cf. [12]. We refer to [22] for the proof in case of relaxation using Young measures.
The Tikhonoff compactness theorem is used to pass to the limiting Young measure.

In what follows, we are going to concentrate on a numerical solution to time-discrete
approximations of energetic solutions. As it leads to a sequence of nonconvex global-
minimization problems, it is a rather difficult task. Our new idea is to replace the
set GP(Q; R™ ™) of gradient Young measures in the definition of Q by a larger set of
polyconvex Young measures. This leads to a well-posed minimization problem for which
we will derive necessary and sufficient optimality conditions if the deformation y is kept
fixed; see Proposition 3.4. These are then used for efficient numerical solution in
section 4, which is far more effective than existing computational strategies. This is
demonstrated on computational examples.

2. Incremental problems. The proof of Theorem 1.6 relies on approximations by
time-discrete (incremental) problems constructed for a given time step. These are mini-
mization problems over spatial variables. Each minimization problem takes into account
the solution obtained for the previous time step, while the initial condition serves as
input for the first minimization problem. Details can be found, e.g., in [12]. In practical
applications, finding global minimizers of incremental minimization problems is extre-
mely important because global minimization is the key ingredient in the energetic-
solution approach.

Thus, in a first step, a sequence of incremental problems is defined. We define a time
discretization 0 = ty < --- < ty = T with a time step t := max;(¢; — ¢,_;). Let an initial
state S(0) > gy = qp € Q be given. For 1 < j < N we find ¢; € Q by solving

(25) minimize Z(t;, ¢) + D(q;_1, q), subject to ¢ € Q.
The existence of a solution to the time-step problem (25) follows in analogy to [12,
Theorem 3.2] by the direct method of the calculus of variations. Notice that this is true

even if ¢ = 0 and if we consider 4 € L*(Q; RM*1) only.
We denote g € QP = YP(Q;R™) x PP(Q; R™*") x L2(Q; RM+1),

(26) P:={qgeQPAi=Levand Vy=Tev};

moreover, clearly Q C P.
Then we can define the following incremental problem: For 1 < j < N we find ¢; €
P by solving

(27) minimize Z(t;, ¢) +D(q;_1.q). subject to ¢ € .

The existence of a solution to (27) follows again by the direct method of the calculus of
variations. Moreover, as proved, e.g., in [12], the following two-sided energy estimate
holds for k£ > 1:
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t; t;
(28) / 0T (s.q,)ds < T(t;. q;) + Dy 1.05) — T(t;1.0;1) < / 0T (5.4, 1)ds.
i1

i ti—1
Therefore, having ¢,_; we look for ¢; € P, which minimizes

M+1

(29) /Q W) = 5(1) - F)dvy(F)da+ 3 /Q ¢l (x) — Ay (2)|da.

This problem is nonsmooth, so using the Mosco transform we define an equivalent
smooth problem (with inequality constraints), which includes M + 1 auxiliary variables,
namely,

M+1
minimize / (W(F) - 8(t;) - F)dv,(F)da+ Y / ai(z)da
g RH!XIL B Q

subject to —a' —c¢'Llev < —c'lf | V1<i<M+1
—a' Loy <A V1I<i<M+1
(30) (y,v,4) € P, al € [}(Q).

We invite the reader to verify that (29) and (30) are equivalent in the sense that
minima are the same, and if (y, v, 2) solves (29), then (y, v, 4, {¢'|A" — 2% _,[},) solves (30);
conversely if (y,v,4,{a'},) solves (30), then (y,v,1) solves (29). A proof can be also
found in [18].

It will be convenient to rewrite (30) in terms of Young functionals. In additional to
the assumptions from Lemma 1.3, the underlying space H must also contain (z, F) —
1® (W(F)+5(t;) - F) and (z, F) = g(z)L'(F) for all 1 < i< M +1 and g € L'(Q).
Let us denote ®: H* x L?(Q;RM+1) — R, where

M+1 )
(31) O a) o= (1. W = 5(0) )+ / ai(z)dz

and for 1< M 41 let By Ry:H* x QR o L) with Ri(n.0) = —a—
c(1® L") en and Ri(n, a) = —a; + ¢'(1 ® L") e n. The problem (30) now reads as
minimize ®(n, a)
subject to (1 ® T) e n = T(Vy)
Ri(n.a)< —c'di, V1<i<M+1
Ry(n.a) < c'2i, V1<i<M+1
(32) (y.1.0) € Y/(QR™) x Y1 (QR™") x L*(Q;RMH).

Notice that the constraint (1 ® T) e n = T(Vy) is nonconvex while the other con-
straints and @ are all linear. Problem (32) is a two-scale problem. On the large scale we
optimize the deformation y € Y?(Q; R™), while on the smaller scale, keeping Vy fixed,
we look for an optimal Young functional n € Y%, (Q;R™), which encodes material mi-
crostructures. We can see it as an example of a Stackelberg leadership game [33]. The
deformation y is a leader, while particular 7 is a follower trying to minimize the energy if
Vy is fixed. In view of this, we can consider a special case of (32) when we keep Vy
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constant in R™*" so that we put A:=Vy. Hence, if we denote II,(n,a)=
(1®T,) en, where Il;: H* x L*(Q;RM*1) — [P/5(Q;R?(s)) (1 < s < p/min(m,n))
and H(n’ CL) = (Hl(n’ a’)7 s ’Hmin(m.n)(n’ a’))a Ri(n’ G,) = (R}(T}, (1), tro ng+l(n’ a )
for i =1, 2, and Aj_y = (¢'A} 4, ..., cMH/%j]Vf[l), we must solve the following convez
problem:

minimize ®(, a)

subject to II(n, a) = T(A)

Ri(n.a) < _A.iﬂ

Ry(n, a) < Ay

(33) (0, a) € Y2 (QR™") x [2(Q;RM+1),

where the inequality constraints are understood componentwise.

3. Optimality conditions for (33). It is proved in [29, Lemma 3.3] that for any
A € R™" there is n € Y4, (Q;R™") such that I (n, a) = T,(A) for all s admissible.
Further, the range of R} and R} is the whole space L*(Q). Let us still denote M; = {f €
LHQRMH) f < —A; 1} and My = {f € L2 (Q:RM*1); f <A, }, and we write for
i=1,2

(R)7'(ML) = {(n. a) € Y (QR™) x L*(QRY); B;(n. a) € M}

If B is a convex closed set in a linear space Z, we define the normal cone to B at
beBas

Ng(b) = {& € Z*; Vb e B:(£,b— b) < 0}.

Moreover, we denote IT:: LP/(P=5)(Q; RO()) — H** x L[*(Q; RM*1) the adjoint operator
to I similarly [R]*: [*(Q) — H* x L*(Q;RM*) is adjoint to Rj.

The optimality conditions state (see [29], [36]) that there exist Lagrange multipliers
o € I L/ QiR g € Nig, (Ri(n. 0)), g € Nug, (Ba(01. a)) such that

(34) ] 0 — [Bi] a1 — [B5] 10 — V. @(n, @) =0,

(35) [H*]nﬂo - [ij];,#1 - [Rﬂnﬂz —V,®(n,a) € NYZ(Q;R’”)(’])'

We start with a computation of V®.

Lemma 3.1. Let W € CP(Q;R™ ™). Then it holds for all (n, a) € H* x L*(Q;RM+1)
that V®(n, a) = (V,®(n,a),V,®(n,a)) = (W = S(t;) - 1,....1) € H x L*(Q;RM*1).

Proof. Tt is easy because @ depends on (7, a) linearly. a

Levma 3.2 If 1 < s <min(m, n), then [[Tj]u = ([I;], 1, T3] 1) = (n @ Ty, 0) for
any p € L/ (=) (Q; R1)).

Proof. We have for arbitrary (1, a) € H* x L*(Q;RM*1) and u € Lr/(»=9)(Q; R°1))

(] (s @) (e ey = (T (0 @) oo oy = (s (1 @ Ts) @ M) (s pors)
<(1 ® T.s) e, /J/>(LP/S’LW/(P*“)> = <77, n® Ts)(H*,H)' O
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Lemvia 3.3. It holds for every p € L*(Q) and (n,a) € H* x L*(Q;RM*H) that
[Ri]'p = (—p ® 'L —p) and [Ry]' e = (n @ 'L, —p).
Proof. We compute only the expression for [R!]*u as the other can be obtained
similarly. We have

([Ri]* ], (n, a)>(H**xL2,H*xL2) = (u, Ri(n, a)><L2,L2) =(n,—a' —c(1@L)e TI)(L2,L2)
=(—a' =L@ L) en pw)zp = -1 @ L)y g~ (K a) . O

As all the expressions on the left-hand side of (35) take their values in H rather than
in H**, we search for the intersection of Nle;(Q;Rmxn,) with H, i.e.,

Ny» @rmony(n) 0V H = {h € H; Vi € Y (R™")(, h) < (n.h)}

(36) _ {h CH: by =  sup / Wz, u(w))dx}.

ueL(@R™") JQ

Defining the Hamiltonian

(37) Hyu(ta, F) == = W(F) + S(t) - F+ po(a) - T(F) + ) ' () — py(2)) L1(F),

i=1

where it = (ftg, [41, [2) is the triple of vector-valued Lagrange multipliers, the inclusion
(35) reads that if (n,a) is a solution to (33), then there is a Lagrange multiplier

p = (fos 41, 2) such that

(n.H,(tj,-.-)) = sup /H (t;, z, u(z))dz.

ueL” Rmxu

As our problem is convex, this condition is also sufficient. Notice that (34) means that
pi+ps=1foralli=1,...,M+1.
Ifve yp(sz Rmxn) is a Young measure representing n (we write n = v) in the

sense that = [ofgmnh(, 2. F)dv,(F)dz for all h € H, the previous equality
reads
(38) / H,(tj, z, F)dv,(F)dz = /'H (t;, 2, u(z))dz

Q Jrmn ueLﬁ Q]R'”X”

The maximum principle (38) can be localized to a pointwise one using the argu-
ments of [29, Theorem 3.2].

ProrosiTioN 3.4. Let p > min(m,n) and (2) hold. If (n,a) € Y% (QR™")x
LX(Q;RM*1Y) solves (33) and n is represented by v € YP(Q;R™ ™), then there exist
o €Hfirim’")Lp/(?""”)(Q;R"("”)) and i,y € L2(Q;RM*FY) such that for almost all
z € Q

(39) Fre%&"?i"H (tj, oz, F) = o H, (L), 2z, F)dv,(F).

Conversely, if (39) holds for some v € YP(Q; R™ "), the constraints in (33) are satisfied
and !t +pb=1,put,ui >0foralli=1,...,M+1, then(n, a) = (v, a) is a solution to
(33).
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Remark 3.5. If there is no dissipation, i.e., £ = 0, and no loading, i.e., S = 0, the
Hamiltonian in (37) is the same as in [7].

In particular, having a solution to the problem (33) we also know the values of
Lagrange multipliers p, say, n*. Then the solution to (33) is the same as the solution
to the following minimization problem involving a homogeneous (i.e., independent of
z € Q) Young measure v:

M+1

minimize /M <W(F) —S(t;) - F—pj - T(F) + Z(ué* - Mi*)ﬁ(F))dv(F)
i=1

subject to T e v = T(A)
(40) v e YP(Q;R™ ™), v=A.

In each time step, (40) is a smooth convex minimization problem. The optimal value
of the objective function is the polyconvex envelope of F = W(F)—S(t;)-
F— i - T(F) + M7 (ud — i) L(F) evaluated at the point A € R™ " [9], [31].

In what follows, we show how to use advantageously the maximum principle in a
numerical-solution strategy. This approach was first suggested and tested in a static
scalar one-dimensional example in [8] and further used in micromagnetics calculations
in [18], [20].

4. Numerical approximations. We are about to discuss spatial discretization of
incremental problems (27) and describe an efficient strategy leading to their solutions.
To keep the explanation as simple as possible, we confine ourselves to the case of two
wells, i.e., M = 1, and instead of surface forces we drive the evolution of our specimen by
time-dependent boundary conditions; i.e., we set S = 0. It is straightforward to general-
ize the method to a more general scenario.

4.1. Problem description. Recall that the volume fraction is defined by

Az) = L(F)dv,(F)

Rmxn

for almost every z € Q. We have by the definition of £ that Y 31" 7 = >4 £7 = 1.
Therefore, if M =1, i.e., in case of the so-called double-well problem we have that
21—, Thus, having two pairs A= (A1, 1—=2") and 4y := (42,1 — 2?), we have
by (1 ) that D(qy. qo) = [o(c' + ¢)|A' — 2%|dz. To simplify the notation, we set
cp = c' + c2. The dlbblpathIl functional then reads

D(q1. q2) = CDL |/11 - /12|d$-

4.2. General discrete problem. Given a finite element partition 7 of Q with
diam(T) < h for all T €7 and a set Ay, C R™" A,, C dZ™" N BX(0), where
B%(0) is a ball in R™*" centered at zero and with the radius r. We consider a Young
measure v = {v,},cq where v |p =>4, 07464, With {074} 44, coefficients of a
convex combination, and § 4 the Dirac mass supported at A. The deformatlon y is ap-
proximated by a continuous, elementwise affine map y,;, defined by its nodal values at
the set of nods \V;,. A typical time step ¢; of the discrete version of (30) consists in solving
the following optimization problem:
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Find ((y4(2)).en, s (anl7) rer- (07.4) reT 4c,,), Which minimizes

ST 0raW(A) + > cp| Tlaylr

TeT AeA,, TeT
subject to yplr, = ypa(t. ), Ora >0, Z Ora=1, and
AeAy,
T(Vynlr) = Z Or.4T(A),
AE‘A,]VT

—ay|r/cp — Z Or AL (A) < =25 54l 4

AEAdAT
—aylg/ep+ Y OraLYA) <A1,

AeAdm
forall TeT.

Notice that the constraint with the left-hand side T(Vy,|r) is nonlinear if
min(m, n) > 2. Otherwise, this defines a linear program that we solve iteratively
with an active set strategy based on the maximum principle of section 3. Given the
(approximate) solution of this problem, the next time step ¢;,; is the same problem with
yp.i(t;) replaced by yp,(t;11) and 4, ;4 replaced by

Ajlp = o Z 07.4L'(A)
AeAy,

forall TeT.

4.3. Simplification through enforced homogeneity. To simplify the calcula-
tions we consider solutions of the model problem that are spatially homogeneous and the
deformation is entirely defined through the affine boundary data Fp(t); i.e., the defor-
mation y(¢, z) = Fp(t)z for all z € Qs fully prescribed in the entire evolution. Hence the
minimization problem in the jth time step reduces to

minimize W(F)dv(F) + cpa among (a,v) € R X Py,
R'VVLX’M

subject to /X T(F)dv(F) = T(Fp(t;))

—afep— | LUF)(F) < —A,,  —a/ep+ | LUF)AW(F) <AL
RI?’LXU Rmxn “

4.4. Discretization of spatially homogeneous problems. We choose a finite
subset A, C R™" and discretize the convex set of (homogeneous) polyconvex Young
measures Py, = {v € PP(Q;R™");v, = v Vi, y € Q} by

Phom (@ YME&H]I = {Ud,r = Z QA(SA:HA >0, Z QA = 1}
AeA,, Ae-Ad.r

We will identify a discrete Young measure with its convex coefficients 6 =

(€4) aea,, - This choice leads to the following discretization of the homogeneous vectorial
problem described above:
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minimize Z 0,W(A)+ cpa among (a,v,,) € R x YME{;“?

AE.AdV,«
subject to T(Fp(t;)) = Z 0,T(A),
AcA,,
—a/ep— Y 04LYA) <=y, —a/ep+ Y 04LY(A) <AL
AeA,, A€A,,

We subsequently set 4; = - 4.4, 04L' (4).

4.5. Efficient solution via active set strategy. The discrete problem is a linear
optimization problem that can be solved directly with standard algorithms. Realizing
that only a small number of coefficients 8 4 will be nonvanishing, it is desirable to employ
an iterative scheme in which a large number of vanishing or small coefficients will not be
incorporated in the approximating problems. The key to such an iterative method is the
optimality condition

mex (T(F) - jto = W(F) + ep(p' — p?)LN(F))
= D (04T(A) - jrg — W(A) + ep(u' — n?)LY(4)),
AeA,,

where p( is the Lagrange multiplier related to the equality constraints involving
T(Fp(t;)) and (@q, pto) are the multipliers related to the inequality constraints involving
a. Notice that we write 1, ito instead of ui and p} to simplify the notation. It shows
that only those atoms A € A, can have a convex coefficient 8, different from zero, for
which the function on the left-hand side assumes its maximum. Given a guess or a good
approximation of the Lagrange multipliers and some tolerance ¢ > 0, those atoms A are
activated within an iterative strategy for which the maximum is attained up to the tol-
erance . This defines the new set A, .. If the solution of the (reduced) linear program
satisfies the maximum principle (up to a small tolerance chosen equal to the grid size d)
for the full set of atoms, then the solution is accepted and otherwise the activation para-
meter is enlarged and a new (presumably larger) active set is computed based on the new
approximate multipliers. Since the optimality conditions are necessary and sufficient,
the iterative strategy converges. To obtain accurate initial guesses, this strategy is com-
bined with a multilevel scheme in which the discretization parameter d is gradually de-
creased. In our implementation the (reduced) optimization problems were solved with
the MATLAB routine 1inprog. The precise scheme for the solution of one time step
reads as follows. As we are interested in z-independent problems, we drop the explicit
dependence of the Hamiltonian on z € Q.

ALrcorrtaM (Ahom ).
Input: Parameters 0 < dg,, < r, number of refinement levels J >0 such that
27 a1 < 1, time step t;, vector 4;_; € RMFL.

(1) Set d = 2Jdﬁnal7 Ko = 0, 1= 0, Ko = 0, and Emp = d/2

(2) Define

Ay, = {A € dZ™ " 0 BX(0): M, (t;. A) > > 05H,(t;. B) — emp},
BeA,,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



NUMERICAL SOLUTION OF RATE-INDEPENDENT PROBLEMS 1291

where M, (t;, A) = T(A) - uo(t;) — W(A) + ep(pa(t;) — pa(ty)) - L(A).
(3) Add further elements A € R™*" to ensure feasibility and solve the linear pro-
gram described in section 4.4 with the set A;,. This provides updates of the

multipliers g, (1, Ka.
(4) If there exists A € dZ™" N BX(0) with

M. (t;. A) > > 05H,(t;. B).
BeA,,

then set ¢,,, = 2¢,,, and go to (2).
(5) If d> dgp,, set d = d/2 and ¢,,, = d /2 and go to (2).

We consider the following specification of the model problem.
Example 4.1. Let m=n=2,T =1, 4, =0,

W(F) = min{|FTF — FTF,|> /2,|FTF — FTF,|? /2}

for F; = diag(8,1/6), Fy = diag(1/6, ), and Fp(t) = (1 — ¢)F; + tF,. The function
L' is for given € > 0 chosen as

LYF) = fc([FTF],)

with
0, 2> 6% —¢,
folz) =R (2= (8% —¢))/(1/8>+2c—68%), 1/8%+e<2<8%—¢,
1, 2<1/8%+e.

The value of € relates to the elastic region of the material. Indeed, starting the evolution
with the Young measure supported in one of the energy wells of W, the parameter €
determines “how far” the support can move without any dissipation. For the experiments
we choose € = 1/20 and § = /5 /4.

We employed d =1/20, T =1/40, r = 2, and

cp=1,1,/10,1/100

in our experiments. The multilevel strategy always started with the coarse grid defined
by d = 1. In Figure 1 we displayed for the time steps ¢; = j /40 for j = 0, 10, 20, 30, 40
(from left to right) and the dissipation coefficients ¢p = 1,1 /10, and 1 /100 (from top to
bottom) the deformed body Fp(#)Q for Q = (0,1)? and, indicated by the gray shading,
the volume fraction A(Z;). We see that the specimen does not transform for the large
dissipation constant but does for the other values of ¢p. This is what we observe in phy-
sical experiments because large dissipation, i.e., large c¢p, makes the transformation
more difficult, or not possible at all.
In Figure 2 we plotted the functions

ti = W(Fp(t;)),

tie I(t) = > 0, W(A)+ cpa,
Acdz>?

t] [ 'D(éq]) = Cpa,j = CDM‘j — /1j,1|, /1] = Z HA’];CI(A)
AcA,,

for ¢p =1, 1/10, and 1 /100.
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t=0 1/4 1/2 3/4 1
1 1 1 1 1 1
Cp—l
o 1 o 1 o 1 o 1 o 1
1 1 1 1 1
1/10
o 1 o 1 o 1 o 1 o 1
1 1 1 1 1
1/100
0
o 1 o 1 o 1 o 1 o 1

Fic. 1. Transformation of a specimen for different dissipation strengths. The upper row shows the de-
formed body colored by the volume f?'actionll(tj) fort; =j/40, j =0, 10, 20, 30, 40, and cp = 1. The second
and third rows show the related quantities for cp = 1/10 and c¢p = 1 /100, respectively.

For ¢p =1 /100 we plotted in Figure 3 the relative number of activated atoms on
the finest level corresponding to d = 1 /10 for each time step. Notice that we have here
for d=1/10 and r =2

card(dZ><? N BX(0)) = 2825761.

We thus obtain an average reduction to about 0.1% of the theoretical number of atoms.

4.6. Scalar experiment with spatial dependence. We consider the following
specification of the model problem.

Ezample4.2. Let Q = (0,1)%, T =1,Tp = 0Q, up(z, t) = sin(2rnt)z;, o(z) = 1/2,

W(F) =min{|F — F1|* /2 + ¢,

F — Fy* /2 + ¢}

for F1 = (I,O)T, Fz = (71,0)7—', Cl1 = 1/57 and Co =0.

0.06 -

— 1)

- - D(6g)- 10
WED )

0.04 |

0.02 |

0 - - , T | el e e R e i i ==

g d
0 10 10 1

Fic. 2. Total energy, dissipation, and elastic energy for the macroscopic deformation for cp = 1,1 /10,
and 1 /100 (from left to right).
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0.12%

0.11% --- cp=1H0
— cp=1A00

0.1%
0.09%
0.08%| « ,
0.07%

0.06%

0.05%
0 01 02 03 04 05 06 07 08 09 1

Fic. 3. Relative number of activated atoms during the evolution for different dissipation constants.

For a triangulation of Q consisting of 32 triangles, the set A, defined through d =
274 and r = 2, the time-step size t = 1 /80, and the choices of constants

cp=1 and c¢p=1/10,

Figures 4 and 5, respectively, show snapshots of the evolution for ¢t = j /20 with j =4,
20, 40, 60, 80.

Figure 6 displays the energy and the dissipation contribution, i.e., the
quantities

E(t;) = [z . W(A)v, an(dA) + D(t;)

=TS ¢, WA+ D), D(t) = e / andz = 3| Tlar(t)

TeT AcA,, TeT

as functions of ¢ € [0, 1] for ¢p =1 and ¢p =1 /10.

Figure 6 illustrates hysteresis effects that occur in the evolution defined by the
rate-independent process. We displayed the spatial averages of the (spatially constant)
quantities 0,y,; and o,;0 on I';, (¢ is the outer unit normal to the boundary),
where

o= Y 0,4, DW(A).
AcA,,

The validity of a fully discrete analogue of the semidiscrete two-sided energy esti-
mate (28)
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Fic. 4. Scalar displacement wy, ; (left) and discrete Young measure v, (right) for j = 4, 20, 40, 60, 80 in
Example 4.3 with cp = 1. The displacement is colored by the quantity A;,, and the sizes of the dots in the grid in
the right plots are proportional to the volume fraction associated with a grid point. The grid indicates every
second atom.
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Fic. 5. Scalar displacement u;, (left) and discrete Young measure v, (right) for j = 4, 20, 40, 60, 80 in
Ezample 4.3 with cp = 1 /10. The displacement is colored by the quantity A;, and the sizes of the dots in the grid
in the right plots are proportional to the volume fraction associated with a grid point. The grid indicates every

second atom.
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0.3 -

— E{) (p=1)

==D() (0 =1)

— E(t) (ep=1/0)

== D(t) (ep =1/0) 05-
0.2 | .

0.3 |

0.1 -|

-0.1-|

-0.3 -

T T T T 7 ] T T i ~05
0 01 02 03 04 05 06 07 08 09 1 1 _08 -06 04 -02 0 02 04 06 08 1

Fic. 6. Total energy and dissipation as functions of t € [0, 1] in Ezample 4.3 with ¢cp = 1 and ¢p =1 /10
(left). Stress versus strain for t € [0,1] in Example 4.3 with cp =1 and c¢p =1/10 (right).

m(tj) = / Opj - Q(UD,j - UD,]'A)dS
I'p
< E(t)) = / W(s)v;,(ds)dz + CD/ 4; = Ay |dz — / W(s)v,_1.(ds)dz
Q Jr? Q Q JRr?2
< /r Opj-1-Q(up; —up;1)ds = :M(t;)
D

is graphically analyzed in Figure 7. We observe that m(t;) and M(t;) are close together

but that m(¢;) is not below M(t;) and E(t;) is not in between. Therefore, a fully discrete

two-sided energy estimate can be expected to hold only with error terms related to the
spatial discretization.

4.6.1. Scalar, inhomogeneous example. We consider the following specifica-
tion of the model problem that leads to an inhomogeneous solution.

0.015 -
0.01 -

0.005 |

-0.005 T T T T T T T T
0o 01 02 03 04 05 06 07 08 09 1

Fic. 7. Ezperimental two-sided energy estimate in Example 4.3 for ¢p = 1.
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0.05 -

0.04 -

0.03 -

0.02 -

0.01 -

T T T T T T T T
o 01 02 03 04 05 06 07 08 09 1

Fic. 8. Total energy and dissipation as functions of t € [0,1] in Ezample 4.3.

Ervample4.3. Let n =2, m=1,Q=(0,1)%, T =1,Tp = 0Q, Ay(z) = 1 /2, and the
displacement

up(t, ) = —3(z—2)7 /128 — (2 — 23)% /3 for 2 < z,
p\t,T) = (z—zb)3/24+(z—zb) for z > z,

for z=x-Fy, 2, =1/2, Fy = (cos ¢,sin ¢), ¢ = 7 /6, and
W(F) = |F — Fy]’|F + Fy|*

For a triangulation of Q consisting of 128 triangles, the set A, , defined through d =
270 and r = 3 /2, the time-step size T = 1 /20, and the choice

cp =1,

Figure 9 shows snapshots of the evolution for ¢t = 5 /20 with j =1, 5, 10, 20.
Figure 8 displays the energy and the dissipation contribution, i.e., the
quantities

B(t;) = Z|T| Z ng,A W(A) + D(t)), D(t;) = CDZ|T|GT(tj)

TeT AeA,, TeT

as functions of ¢ € [0, 1].

We found out that the proposed method works effectively. In fact, if we consider
Lemma 1.1 (ii) not only polyconvex functions but also for a finite number of quasiconvex
ones, the related maximum principle provides an improved lower bound of the quasi-
convex envelope. A further step might be to investigate whether the polyconvex Young
measure obtained by our algorithm is a laminate. These aspects are left for future
research.
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Fic. 9. Scalar displacement u;;, (left) and discrete Young measure v, related to the elements indicated
by the filled square (middle) and the filled diamond (right) for j = 4, 20, 40, 60, 80 in Example 4.3 with cp = 1.
The displacement is colored by the quantity Ay, ; the sizes of the dots represent the volume fractions of every sizth
atom.

Acknowledgments. We thank the anonymous referee for extremely careful read-
ing of the manuscript and for the valuable comments and suggestions that significantly
improved our paper.

REFERENCES

[1] M. ArnpT, Upscaling from Atomistic Models to Higher Order Gradient Continuum Models for Crystalline
Solids. Ph.D. thesis, Institut fiir Numerische Simulation, Universitat Bonn, Bonn, Germany, 2004.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



(2]

3]
(4]

[5]
[6]
(7]
(8]

(9]
[10]

(11]
(12]
(13]

[14]

[15]

[16]
(17]
18]
(19]
20]
21]
22]

23]

24]
25]
[26]
27]
28]

[29]
(30]

NUMERICAL SOLUTION OF RATE-INDEPENDENT PROBLEMS 1299

S. AuBri, M. Faco, AND M. ORrTiz, A constrained sequential-lamination algorithm for the simulation of
sub-grid microstructure in martensitic materials, Comput. Methods Appl. Mech. Engrg., 192 (2003),
pp. 2823-2843.

J. M. BarL, Convezity conditions and ezistence theorems in nonlinear elasticity, Arch. Ration. Mech.
Anal., 63 (1977), pp. 337-403.

J. M. BaLw, A version of the fundamental theorem for Young measures, in PDEs and Continuum Models
of Phase Transition, Lecture Notes in Physics 344, M. Rascle, D. Serre, and M. Slemrod, eds., Spring-
er, Berlin, 1989, pp. 207-215.

J. M. BaLL AnND R. D. JAMES, Fine phase miztures as minimizers of energy, Arch. Ration. Mech. Anal., 100
(1988), pp. 13-52.

S. BARTELS, Linear convergence in the approzimation of rank-one convex envelopes, M2AN Math. Model.
Numer. Anal., 38 (2004), pp. 811-820.

S. BARTELS, Reliable and efficient approximation of polyconver envelopes, SITAM J. Numer. Anal., 43
(2005), pp. 363-385.

C. CARSTENSEN AND T'. ROUBICEK, Numerical approzimation of Young measures in nonconvex variational
problems, Numer. Math., 84 (2000), pp. 395-415.

B. DacorocNA, Direct Methods in the Calculus of Variations, Springer, Berlin, 1989.

G. DoLzMANN AND N. WALKINGTON, Estimates for numerical approximations of rank one conver envelopes,
Numer. Math., 85 (2000), pp. 647-663.

I. Fonseca, S. MULLER, AND P. PEDREGAL, Analysis of concentration and oscillation effects generated by
gradients, STAM J. Math. Anal., 29 (1998), pp. 736-756.

G. FRANCFORT AND A. MIELKE, Fzistence results for a class of rate-independent material models with non-
convez elastic energies, J. Reine Angew. Math., 595 (2006), pp. 55-91.

S. GovINDJEE, A. MIELKE, G. J. HaLL, AND C. MienE, The free-energy of mixing for n-variant martensitic
phase transformations using quasi-convez analysis, J. Mech. Phys. Solids, 50 (2002), pp. 1897-1922.

S. GovINDJEE, A. MIELKE, G. J. HAaLL, AND C. MieHE, The free-energy of mixing for n-variant martensitic
phase transformations using quasi-convez analysis, erratum and correct reprinting, J. Mech. Phys.
Solids, 51 (2003), pp. 763 & I-XXVI.

K. Hackr anp U. Hoppe, On the calculation of microstructure for inelastic materials using relaxed en-
ergies, in ITUTAM Symposium on Compututational Mechanics of Solid Materials at Large Strains,
Ch. Miehe, ed., Kluwer, Dordrecht, 2003, pp. 77-86.

Y. Huo anp I. MULLER, Nonequilibrium thermodynamics of pseudoelasticity, Contin. Mech. Thermodyn.,
5 (1993), pp. 163-204.

D. KINDERLEHRER AND P. PEDRECAL, Gradient Young measures generated by sequences in Sobolev spaces,
J. Geom. Anal., 4 (1994), pp. 59-90.

M. Kruzik, Mazimum principle based algorithm for hysteresis in micromagnetics, Adv. Math. Sci. Appl.,
13 (2003), pp. 461-485.

M. Kruzik, A. MIELKE, AND T. RoUBICEK, Modelling of microstructure and its evolution in shape memory-
alloy single-crystals, in particular in CuAlNi, Meccanica, 40 (2005), pp. 389-418.

M. Kruzik AND A. ProuL, Young measure approxzimation in micromagnetics, Numer. Math., 90 (2001),
pp- 291-307.

M. Kruzik aNp T. ROUBICEK, Optimization problems with concentration and oscillation effects: Relaxation
theory and numerical approzimation, Numer. Funct. Anal. Optim., 20 (1999), pp. 511-530.

A. Mierke AND T. ROUBICEK, A rate-independent model for inelastic behavior of shape-memory alloys,
Multiscale Model. Simul., 1 (2003), pp. 571-597.

A. MieLke AND F. THEIL, A mathematical model for rate-independent phase transformations with hyster-
esis, in Models of Continuum Mechanics in Analysis and Engineering, H.-D. Alber, R. Balean, and R.
Farwig, eds., Shaker Verlag, Aachen, 1999, pp. 117-129.

A. MIELKE, F. THEIL, AND V. L. LEVITAS, A variational formulation of rate-independent phase transforma-
tions using an extremum principle, Arch. Ration. Mech. Anal., 162 (2002), pp. 137-177.

C. B. MORREY, Jr., Quasi-convezity and the lower semicontinuity of multiple integrals, Pacific J. Math., 2
(1952), pp. 25-53.

P. PepREGAL, On the numerical analysis of non-convex variational problems, Numer. Math., 74 (1996),
pp. 325-336.

P. PEDREGAL, Parametrized Measures and Variational Principles, Birkhduser, Basel, 1997.

P. PEDREGAL, Rank-One Convexity Implies Quasiconvezity for Two-Component Maps, manuscript.

T. RouBICEK, Relazation of vectorial variational problems, Math. Bohem., 120 (1995), pp. 411-430.

T. RouBICEK, Effective characterization of generalized Young measures generated by gradients, Boll.
Unione Mat. Ital., 9-B (1995), pp. 755-779.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



1300 SOREN BARTELS AND MARTIN KRUZIK

[31] T.RoUBICEK, Relazation in Optimization Theory and Variational Calculus., W. de Gruyter, Berlin, 1997.

[32] T. RousiCex, Models of microstructure evolution in shape memory materials. in Nonlinear Homogeniza-
tion and Its Applications to Composites, Polycrystals and Smart Materials, NATO Sci. Ser. II 170,
P. Ponte Castaneda, J. J. Telega, and B. Gambin, eds., Kluwer, Dordrecht, 2004, pp. 269-304.

[33] H. von STACKELBERG, The Theory of the Market Economy, Oxford University Press, Oxford, 1952.

[34] V. SVERAK, Rank-one convezity does not imply quasiconvezity, Proc. Roy. Soc. Edinburgh Sect. A, 120
(1992), pp. 293-300.

[35] L. C. Young, Generalized curves and ezistence of an attained absolute minimum in the calculus of varia-
tions, Comptes Rendus de la Société et des Lettres de Varsovie, Classe III, 30 (1937), pp. 212-234.

[36] J. ZowE anD S. Kurcyusz, Regularity and stability for the mathematical programming problem in Banach
spaces, Appl. Math. Optim., 5 (1979), pp. 49-62.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



