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Abstract. We propose a new approach to the numerical treatment of non(quasi)convex rate-
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its polyconvexification. For this problem, first-order optimality conditions are derived and used in finding a
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1. Introduction—the underlying mathematical model. The aim of this con-
tribution is to propose a computational method for solving non(quasi)convex vectorial
and multidimensional variational problems. It is well known that if V ðyÞ ≔
∫ ΩW ð∇yðxÞÞdx, where Ω ⊂ Rn is a bounded Lipschitz domain and W∶Rm×n → R is
continuous but not quasiconvex [25], then V is not weakly sequentially lower semicon-
tinuous on W 1;pðΩ;RmÞ, 1 < p < þ∞, and consequently V does not necessarily attain
its minimum in this space. We recall that W∶Rm×n → R is quasiconvex if for all ψ ∈
W 1;∞

0 ðΩ;RmÞ and all F ∈ Rm×n it holds that

W ðFÞjΩj ≤
Z
Ω
W ðF þ∇ψðxÞÞdx:ð1Þ

One way to overcome this difficulty is to replace W with its quasiconvex envelope QW
defined as the pointwise supremum of all quasiconvex functions not greater than W ; cf.
[9]. This is, however, mostly a theoretical tool because the formula is generically not
known in a closed form. Nevertheless, by the relaxation theorem [9] we have under stan-
dard polynomial growth conditions at infinity; i.e., we assume for some 0 < c < C ,
1 < p < þ∞, and all F ∈ Rm×n,

cð−1þ jF jpÞ ≤ W ðFÞ ≤ Cð1þ jF jpÞ;ð2Þ

that infy∈YpðΩ;RmÞ ∫ ΩW ð∇yðxÞÞdx ¼ miny∈YpðΩ;RmÞ ∫ ΩQW ð∇yðxÞÞdx, where YpðΩ;RmÞ
is a suitable subset of W 1;pðΩ;RmÞ, which may include Dirichlet boundary conditions,
for instance. In this paper, we suggest working with the polyconvex envelope PW in-
stead. The polyconvex envelope is defined analogously to the quasiconvex one, and we
say that W is polyconvex [3], [9] if there is a convex function h∶Rσ → R such that
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W ðFÞ ¼ hðTðFÞÞ for all F ∈ Rm×n. Here TðFÞ denotes the vector of all subdeterminants
of F , i.e., the dimension of TðFÞ equals

σ ≔
Xminðm;nÞ

k¼1

�
m
k

��
n
k

�
¼

�
mþ n

n

�
− 1:ð3Þ

Polyconvexity implies quasiconvexity, and it is a stronger property if minðm;nÞ > 1.
The resulting variational problem miny∈YpðΩ;RmÞ ∫ ΩPW ð∇yðxÞÞdx is well-posed, and
we have

inf
y∈YpðΩ;RmÞ

Z
Ω
W ð∇yðxÞÞdx ¼ min

y∈YpðΩ;RmÞ

Z
Ω
QW ð∇yðxÞÞdx

≥ min
y∈YpðΩ;RmÞ

Z
Ω
PW ð∇yðxÞÞdx;

where the last inequality can be strict in particular cases. The advantage is that there are
efficient numerical methods to evaluate PW ðFÞ [7], [29]. There is another widely used
method to estimateQW , namely, the so-called rank-one convexification ofW . The func-
tionW is called rank-one convex if it is convex along rank-one lines in Rm×n. Estimating
the rank-one convex envelope ofW by so-called laminates [27] in the context of elasticity
is used, e.g., in [2], [15], [13], [14], [19]. In these cases,W is the stored energy density of a
hyperelastic material. We recall that laminates are among experimentally observed
material microstructures. Algorithms for the approximation of the rank-one convex en-
velope have been proposed and analyzed in [10], [6]. Unfortunately, they are extremely
expensive and may lead to ill-posed, i.e., nonweakly lower semicontinuous, variational
problems if n ≥ 2 and m ≥ 3 [28], [34].

The supremum definitions of QW or PW mentioned above are not very useful for
numerical or analytical considerations. Much more suitable ways to evaluate and/or
estimate them were developed in terms of parameterized (Young) measures.

1.1. Young measures and Young functionals. It is well known [4], [35] that if
fzkgk∈N ⊂ LpðΩ;Rm×nÞ, 1 ≤ p < þ∞, is bounded, then there exists a subsequence (not
relabeled) and a family ν ¼ fνxgx∈Ω of probability measures on Ω such that for all
g ∈ L∞ðΩÞ and all f ∈ CðRm×nÞ such that ffðzkÞgk∈N is uniformly integrable it holds that

lim
k→∞

Z
Ω
f ðzkðxÞÞgðxÞdx ¼

Z
Ω

Z
Rm×n

f ðFÞdνxðFÞgðxÞdx:ð4Þ

Conversely, if ν ¼ fνxgx∈Ω is such that νx is for almost all x ∈ Ω a probability measure
on Rm×n, x ↦ ∫ Rm×nf ðFÞdνxðFÞ is measurable for all f ∈ C 0ðRm×nÞ ≔ fg ∈
CðRm×nÞ; limjsj→∞ gðsÞ ¼ 0g, and ∫ Ω∫ Rm×n jF jpdνxðFÞdx < þ∞, then there exists a se-
quence fzkgk∈N ⊂ LpðΩ;Rm×nÞ such that (4) holds. The family ν ¼ fνxg is called the
Lp-Young measure and fzkg its generating sequence. We denote the set of Lp-Young mea-
sures by YpðΩ;Rm×nÞ. It is well known that every Young measure ν as above can be gen-
erated by a sequence fzkg such that ffðzkÞg is uniformly integrable for every continuous
f ∈ CpðRm×nÞ ≔ ff ∈ CðRm×nÞ; jf j ≤ Cð1þ j · jpÞ; C > 0g.

We will be interested in Young measures generated by gradients, i.e., zk ≔ ∇yk for
some sequence fykg ⊂ W 1;pðΩ;RmÞ. Such a Young measure will be referred to as a
gradient Young measure. Fixing 1 ≤ p < þ∞, we denote the set of gradient Young
measures generated by f∇ykg for fykg ⊂ W 1;pðΩ;RmÞ by GpðΩ;Rm×nÞ. Thus, if fykg ⊂
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W 1;pðΩ;RmÞ is bounded and fW ð∇ykÞg uniformly integrable, we have (up to a subse-
quence) that limk→∞ V ðykÞ ¼ ∫ Ω∫ Rm×nW ðFÞdνxðFÞ. Let us mention that if W is
coercive with superlinear growth at infinity and fykg is minimizing for V , then the
uniform-integrability condition holds. In fact, if p > 1, then every gradient Young mea-
sure from GpðΩ;Rm×nÞ can be generated by a bounded sequence f∇zkgk∈N such that
fzkgk∈N ⊂ W 1;pðΩ;RmÞ and fj∇zkjpgk∈N is uniformly integrable [11]. The following
well-known result of Kinderlehrer and Pedregal [17], [27] characterizes the set of gra-
dient Young measures.

LEMMA 1.1. Let 1 < p < þ∞. A Young measure ν ¼ fνxgx∈Ω belongs to
GpðΩ;Rm×nÞ if and only if the following three conditions are satisfied simultaneously:

(i) there is y ∈ W 1;pðΩ;RmÞ such that for a.a. x ∈ Ω

∇yðxÞ ¼
Z
Rm×n

FdνxðFÞ;ð5Þ

(ii) for this y and all quasiconvex functions v∶Rm×n → R, jvj ≤ Cð1þ j · jpÞ, it
holds that for a.a. x ∈ Ω

vð∇yðxÞÞ ≤
Z
Rm×n

vðFÞdνxðFÞ;ð6Þ

(iii) it holds that
Z
Ω

Z
Rm×n

jF jpdνxðFÞdx < þ∞:ð7Þ

Extending the validity of (ii) to all rank-one convex functions with p-growth at in-
finity defines a subset of GpðΩ;Rm×nÞ called laminates [27].

In this paper, we propose a different approach, namely, to use a proper superset of
GpðΩ;Rm×nÞ by requiring that (6) holds only for all quasiaffine functions. We recall that
v is quasiaffine if and only if it is an affine function of all subdeterminants of the matrix
argument. This means that there is Ξ ∈ Rσ and c ∈ R such that vð·Þ ≔ Ξ · Tð·Þ þ c. In
particular, if m ¼ n ¼ 2, then vðFÞ ≔ A · F þ b det F þ c for some A ∈ R2×2 and
b; c ∈ R. If n ¼ 3, then vðFÞ ≔ A · F þ B · cofF þ c det F þ d for some A;B ∈ R3×3

and c; d ∈ R. Here “cof F” denotes the matrix composed of all 2× 2 subdeterminants
of F . We are going to deal with the following set of polyconvex Young measures
[27], [31], which strictly contains all gradient Young measures.

DEFINITION 1.2. Let minðm;nÞ < p < þ∞. A Young measure ν ¼ fνxgx∈Ω is
called polyconvex and belongs to the set PpðΩ;Rm×nÞ if the following conditions are
satisfied:

(i) there is y ∈ W 1;pðΩ;RmÞ such that for a.a. x ∈ Ω

Tð∇yðxÞÞ ¼
Z
Rm×n

TðFÞdνxðFÞ;ð8Þ

(ii) it holds that
Z
Ω

Z
Rm×n

jF jpdνxðFÞdx < þ∞:ð9Þ
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There is a much more general approach to relaxation using the so-called Young
functionals. We refer to [31] for a detailed exposition; cf. also [29], [30], [21]. The main
idea is to choose a suitable subspace H of Carathéodory functions h∶Ω× Rm×n → R
with at most p-growth; i.e., we consider jhðx; FÞj ≤ ahðxÞ þ bhjF jp if ah ∈ L1ðΩÞ and
bh > 0. The space H is normed with the (semi)norm

jhj ¼ inffkakL1ðΩÞ þ b; ∀ðx; FÞ ∈ Ω× Rm×n∶jhðx; FÞj ≤ aðxÞ þ bjF jpg:

The dual space to H , H �, is equipped with the standard norm kηkH � ¼
suph∈H ;jhj≠0hη; hi ∕ jhj. Following [31] we define the embedding i∶LpðΩ;Rm×nÞ → H �

by hiðuÞ; hi ≔ ∫ Ωhðx; uðxÞÞdx, h ∈ H .
The subset of H �, called the set of Young functionals, is the following (“w� − lim”

denotes the weak� limit):

Yp
H ðΩ;Rm×nÞ ≔ fη ∈ H �; ∃fzαgα ⊂ LpðΩ;Rm×nÞ a bounded net; w� − lim iðzαÞ ¼ ηg:

We then say that fzαg generates η. It was proved in [31] that Yp
H ðΩ;Rm×nÞ is a convex

weakly� σ-compact subset of H �. Moreover, if H contains a coercive function with
p-growth and H is separable, then Yp

H ðΩ;Rm×nÞ is closed locally weakly* sequentially
compact. If η is generated by a net such that fjzαjpg is uniformly integrable, then we call
η p-nonconcentrating. Every p-nonconcentrating Young functional can be represented
by an Lp-Young measure ν (generally not unique) such that for all h ∈ H
hη; hi ¼ ∫ Ω∫ Rm×nhðx; FÞdνxðFÞdx. Conversely, every Lp-Young measure defines a
Young functional by the previous formula. Notice that the choice H ≔
L1ðΩ;C 0ðRm×nÞÞ identifies YpðΩ;Rm×nÞ and YpðΩ;Rm×nÞ. If the net in the definition
of Yp

H ðΩ;Rm×nÞ is a net of gradients of mappings fromW 1;pðΩ;RmÞ, then we call such a
Young functional the gradient Young functional and their set is denoted Gp

H ðΩ;Rm×nÞ,
i.e.,

Gp
H ðΩ;Rm×nÞ ≔ fη ∈ H �; ∃fzαgα ⊂ W 1;pðΩ;RmÞ a bounded net;

w� − lim ið∇zαÞ ¼ ηg:

The interesting feature is that we have some freedom in the choice of H . Larger H
makes the description of Gp

H ðΩ;Rm×nÞ more complicated (see Lemma 1.1 above) but
allows us to evaluate the extension (relaxation) of a larger set of functionals to the space
H �. On the other hand, Gp

H ðΩ;Rm×nÞ can be easily characterized under crucial restric-
tions on H . The following result, which can be found in [30], demonstrates this
statement. If F ∈ Rm×n, then TsðFÞ denotes the vector of all subdeterminants of order
1 ≤ s ≤ minðm;nÞ. Clearly, TsðFÞ ∈ RσðsÞ, where σðsÞ ≔ ðms ÞðnsÞ. If U is a linear separ-
able subspace of CpðRm×nÞ, we recall that CðΩ̄Þ ⊗ U consists of all finite sumsP

jgjðxÞvjðFÞ, where gj ∈ CðΩ̄Þ and vj ∈ U for all j. Moreover, ½g ⊗ v�ðx; FÞ ≔
gðxÞvðFÞ if g ∈ CðΩ̄Þ and v ∈ U and hh • η; gi ≔ hη; g · hi for all g ∈ CðΩ̄Þ.

LEMMA 1.3. Letminðm;nÞ ≤ p andH contain densely the spaceCðΩ̄Þ ⊗ U , whereU
is a separable linear subspace of CpðRm×nÞ containing the function F ↦ TðFÞ, and let it
hold that every function from U has its quasi-convex envelope polyconvex. Moreover, if
for some η ∈ Yp

H ðΩ;Rm×nÞ p-nonconcentrating, some y ∈ W 1;pðΩ;RmÞ, and all 1 ≤ s ≤
minðm;nÞ
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ð1 ⊗ TsÞ • η ¼ Tsð∇yÞ in Lp ∕ sðΩ;RσðsÞÞ;

then η ∈ Gp
H ðΩ;Rm×nÞ.

In particular, it means that only a finite number of conditions is needed to char-
acterize gradient Young functionals in this situation. Young measures and Young
functionals are an important tool in the mathematical treatment and relaxation of var-
ious nonconvex variational problems. A prominent example is the relaxation of energy
functionals in the modeling of shape-memory materials [5], [22], [27], [31].

1.2. Shape-memory alloys. Shape-memory alloys (SMAs) have been the subject
of intensive theoretical and experimental research during the past decades. Existing or
potential applications can be found, for example, in medicine and mechanical or aero-
space engineering. Shape-memory alloys are crystalline materials that exhibit specific
hysteretic stress, strain, or temperature response; they have the ability to recover a
trained shape after deformation and subsequent reheating. This is called the shape-
memory effect. It is based on the ability of the alloy to rearrange atoms in different
crystallographic configurations (in particular, with different symmetry groups). The
stability depends on the temperature. Normally, at higher temperatures a high-symme-
try (for example, cubic) lattice is stable, which is referred to as the austenite phase. At
lower temperatures, a lattice of lower symmetry (for example, tetragonal, orthorhombic,
monoclinic, or triclinic) becomes stable, called the martensite phase. Because of the loss
of symmetry, this phase may occur in different variants. The number of variantsM is the
quotient of the order of the high-symmetry phase and the order of the low-symmetry
group. So for a cubic high-symmetry phase,M ¼ 3, 6, 12, or 4 for the tetragonal, orthor-
hombic, monoclinic, or triclinic martensites, respectively, mentioned above. The
variants can be combined coherently with each other, forming so-called twins of two
variants.

The mathematical and computational modeling of SMAs represents a tool for the
theoretical understanding of phase transition processes in solids. Such an analysis may
complement experimental results, predict the response of new materials, or facilitate the
usage of SMAs in applications. SMAs are genuine multiscale materials and create a vari-
ety of challenges for mathematical modeling. We refer the reader to [32] for a survey of a
wide menagerie of SMA models ranging from nano- to macroscales. In this article, we
focus on a mesoscopic model in the framework of continuum mechanics. Beside the
macroscopic deformation and its gradient, the model also involves the volume fractions
of phases and variants and gradients of volume fraction. This seems a reasonable com-
promise, since it allows for the modeling scales of large single crystals or polycrystals.

Although the natural physical dimension is three, we will assume that our specimen
occupies a bounded domainΩ ⊂ Rn and the deformation ymapsΩ toRm. This allows us
to consider various variational problems. Nevertheless for shape-memory applications
we obviously assume that m ¼ n ¼ 3. The stress-free parent austenite is a natural state
of the material that makes it, in the context of continuum mechanics, a canonical choice
for the reference configuration. As usual, y∶Ω → Rm denotes the deformation and
u∶Ω → Rm the displacement, which are related to each other via the identity
yðxÞ ¼ xþ uðxÞ, where x ∈ Ω. Hence the deformation gradient is F ≔ ∇y ¼ Iþ∇u.

The total stored energy in the bulk occupying, in its reference configuration, the
domain Ω is then

V ðyÞ ≔
Z
Ω
W ð∇yðxÞÞdx:ð10Þ
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A common variational principle in continuum mechanics is the minimization of the
stored energy. Because of the coexistence of several variants at low temperature, W
has multiple minima and thus a multiwell character. We consider an isothermal
situation with several coexisting variants. Since W is a multiwell energy density,
minimizing sequences of V tend to develop, in general, finer and finer spatial oscillations
of their gradients. In other words, the deformation gradient often tends to develop fine
spatial oscillations due to lack of (quasi-)convexity of the stored energy density. These
oscillations are difficult to model in full detail, although some studies in this direction
exist [1]. The oscillations correspond to the development of finer and finer microstruc-
tures when the stored energy is to be minimized. The minimum of V , under specific
boundary conditions for y, is usually not attained in a space of functions. Therefore
one needs to extend the notion of a solution. Young measures are here an appropriate
tool. They are capable of recording, on a mesoscopic level, the limit information of the
finer and finer oscillating deformation gradient as we move toward the macroscopic
scale. This can be described, for a current macroscopic point x ∈ Ω, by a probability
measure νx on the set of deformation gradients, that is, matrices in Rm×n. The extension
of V to Young measures then reads as [26]

V̄ ðνÞ ≔
Z
Ω

Z
Rm×n

W ðFÞdνxðFÞdx:ð11Þ

1.2.1. Dissipation related to phase transitions. In order to describe dissipa-
tion due to transformations we adopt, following, e.g., [22], the standpoint that the
amount of dissipated energy associated with a particular phase transition between aus-
tenite and a martensitic variant or between two martensitic variants can be described by
a specific energy (of the dimension J ∕ m3 ¼ Pa). This viewpoint has been independently
adopted in physics; see [16]. For an explicit definition of the transformation dissipation,
we need to identify the particular phases or phase variants. In this behalf, we define a
continuous mapping L∶Rn×n → Δ, where

Δ ≔
�
ζ ∈ R1þM

����ζl ≥ 0 for l ¼ 1; : : : ;M þ 1; and
XMþ1

l¼1

ζl ¼ 1

�

is a simplex withM þ 1 vertices, withM being the number of martensitic variants. Here
L is related to the material itself and thus has to be frame indifferent. We assume, beside
ζl ≥ 0 and

P
Mþ1
l¼1 ζl ¼ 1, that the coordinate ζl of LðFÞ takes the value 1 if F is in the

lth (phase) variant; that is, F is in a vicinity of lth well SOðnÞUl of W , which can be
identified by the stretch tensor F⊤F being close to U⊤

lUl. If LðFÞ is not in any vertex of
Δ, then it means that F is in the spinodal region where no definite phase or variant is
specified. We assume, however, that the wells are sufficiently deep and the phases and
variants are geometrically sufficiently far from each other that the tendency for mini-
mization of the stored energy will essentially prevent F from ranging into the spinodal
region. Thus, the concrete form of L is not important as long as L enjoys the properties
listed above. We remark that L plays the role of what is often called vector of order
parameters or a vector-valued internal variable.

For two states q1 and q2, with qj ¼ ðyj; νj; λjÞ for j ¼ 1, 2, we now define the
dissipation due to martensitic transformation that “measures” changes in the volume
fraction λ ∈ L∞ðΩ;RMþ1Þ. This dissipation is given by
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Dðq1; q2Þ ≔
Z
Ω
jλ1ðxÞ− λ2ðxÞjRMþ1dx;ð12Þ

where

λjðxÞ ≔
Z
Rm×n

LðFÞνj;xðdFÞð13Þ

and j · jRMþ1 is a norm on RMþ1. As
P

Mþ1
j¼1 λj ¼ 1 we call λ the vector-valued volume

fraction, as it gives us relative portions of variants at almost every x ∈ Ω. In what fol-
lows, we will assume that the norm on RMþ1 defining the dissipation in (12) is given as

jX jRMþ1 ≔
XMþ1

i¼1

cijXij; X ¼ ðX1; : : : ; XMþ1Þ;ð14Þ

where j · j is the absolute value and ci > 0 for all i. The physical meaning of ci is the
specific energy dissipated if Xi changes from zero to one (or vice versa).

1.2.2. Loading and boundary conditions. In experiments, a specimen occupy-
ing the region Ω will be subjected to external loads. To simplify our exposition, we con-
sider only surface forces. We assume that there is a spatially constant tensor S taking
values in Rm×n such that the density of surface forces g applied on Γ1 ⊂ ∂Ω is given by
g ¼ Sϱ, where ϱ is the unit outer normal vector to Γ1. We also assume that we are given a
set Γ0 ⊂ ∂Ω, where the (n− 1)-dimensional Hausdorff measure of Γ0 is positive. We con-
sider Dirichlet boundary conditions y ¼ y0 on Γ0 for some prescribed (time-dependent/
independent) mapping y0. As for the surface forces, we define a linear functional

LðyÞ ≔
Z
Γ1

Sϱ · yðxÞdA ¼
Z
Ω
S · ∇yðxÞdx:ð15Þ

Below, we write L ¼ Lðt; yÞ to indicate the possibility of temporally changing forces
g and therefore also S .

1.3. Energetic solution. Combining the previous considerations, we arrive at the
energy functional I [26] of the form

Iðt; qÞ ≔
Z
Ω

Z
Rm×n

ðW ðFÞ− SðtÞ · FÞdνxðFÞdxþ εk∇λkL2ðΩ;Rð1þM Þ×nÞ:ð16Þ

It is often convenient to write V̄ with the argument q instead of ν:

V̄ ðqÞ ¼
Z
Ω

Z
Rm×n

W ðFÞdνxðFÞdxþ εk∇λkL2ðΩ;Rð1þM Þ×nÞ;ð17Þ

where the∇λ-term is included to regularize the problem. It penalizes spatial jumps of the
volume fraction λ and introduces a length scale to the problem depending on a parameter
ε > 0. In particular, it allows us to pass to the limit in the dissipation term. To define an
admissible set where we look for our solution triple q ¼ ðy; ν; λÞ, we put

y ∈ YpðΩ;RmÞ ≔ fy ∈ W 1;pðΩ;RmÞjy ¼ 0 on Γ0g;ð18Þ

where Γ0 ⊂ ∂Ω with a positive surface measure, as described in subsection 1.2.2. Here y0
is a time-dependent trace on Γ0. We recall from that subsection that Γ0 ∩ Γ1 ¼ ∅. Then
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we look for q ∈ Q ≔ YpðΩ;RmÞ×GpðΩ;Rm×nÞ×W 1;2ðΩ;RMþ1Þ and restrict the space
further by imposing the admissibility condition

Q ≔ fq ∈ Qjλ ¼ L • ν and ∇y ¼ I • νg;ð19Þ

where, for almost all x ∈ Ω, ½L • ν�ðxÞ ≔ ∫ Rm×nLðFÞνxðdFÞ; I • ν is defined analogously.
In what follows, we suppose that (2) holds. Following [12] we assume that there are

constants C 0; C 1 > 0 such that

j∂tIðt; qÞj ≤ C 0ðC 1 þ Iðt; qÞÞ:ð20Þ

Let T > 0 denote the time horizon. We assume uniform continuity of t ↦ ∂tIðt; qÞ
in the sense that there is ω∶½0;T� → ½0;þ∞Þ nondecreasing such that for all
t1; t2 ∈ ½0;T�

j∂tIðt1; qÞ− ∂tIðt2; qÞj ≤ ωðjt1 − t2jÞ:ð21Þ

We also suppose that q ↦ ∂tIðt; qÞ is weakly continuous for all t ∈ ½0;T�.
Remark 1.4. If we prescribe time-dependent boundary conditions y0ðtÞ ∈

W 1;pðΩ;RmÞ on Γ0, then we write

Iðt; qÞ ≔
Z
Ω

Z
Rm×n

ðW ðF þ∇y0ðt; xÞÞ− SðtÞ

· ðF þ∇y0ðt; xÞÞdνxðFÞÞdxþ εk∇λkL2ðΩ;Rð1þMÞ×nÞ:ð22Þ

This allows us to keep Q independent of time.
We seek to analyze the time evolution of a process qðtÞ ∈ Q during the time interval

½0;T�. The following two properties are key ingredients of the so-called energetic solu-
tion introduced by Mielke and Theil [23]; see also [24].

(i) Stability inequality. For every t ∈ ½0;T� and every ~q ∈ Q, it holds that

Iðt; qðtÞÞ ≤ Iðt; ~qÞ þDðqðtÞ; ~qÞ:ð23Þ

(ii) Energy balance. For every 0 ≤ t ≤ T,

Iðt; qðtÞÞ þVarðD; q; ½0; t�Þ ¼ Ið0; qð0ÞÞ þ
Z

t

0
∂tIðξ; qðξÞÞdξ;ð24Þ

where

VarðD; q; ½s; t�Þ ≔ sup

�XN
j¼1

Dðqðtj−1Þ; qðtjÞÞ
����ftjgNj¼0 is a partition of ½s; t�

�

is the variation of the dissipation.
DEFINITION 1.5. The mapping q∶½0;T� → Q is an energetic solution to the problem

ðI ;DÞ with the energy functional I as in (16) and the dissipation D as in (15) if the
stability inequality (23) and energy balance (24) are satisfied for every t ∈ ½0;T�.

Further, we define the set of stable states at time t ∈ ½0;T� as

SðtÞ ≔ fq ∈ Q; ∀ ~q ∈ Q∶Iðt; qÞ ≤ Iðt; ~qÞ þDðq; ~qÞg:
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In particular, we will always assume that the initial condition is stable, i.e.,
q0 ∈ Sð0Þ. The following theorem regarding the existence of an energetic solution can
be proved using a general strategy described in [12].

THEOREM 1.6. Let p > 1, S ∈ C 1ð½0;T�;Rm×nÞ, and let assumptions (2), (20), and
(21) hold. Then there is a process q∶½0;T� → Q with qðtÞ ¼ ðyðtÞ; νðtÞ; λðtÞÞ such that q is
an energetic solution according to Definition 1.5 for a given stable initial condition
q0 ∈ Q.

The proof of this theorem proceeds via semidiscretizations in time for decreasing
time steps, by a limit passage in the stability inequality (23) and in the energy equality
(24); cf. [12]. We refer to [22] for the proof in case of relaxation using Young measures.
The Tikhonoff compactness theorem is used to pass to the limiting Young measure.

In what follows, we are going to concentrate on a numerical solution to time-discrete
approximations of energetic solutions. As it leads to a sequence of nonconvex global-
minimization problems, it is a rather difficult task. Our new idea is to replace the
set GpðΩ;Rm×nÞ of gradient Young measures in the definition of Q by a larger set of
polyconvex Young measures. This leads to a well-posed minimization problem for which
we will derive necessary and sufficient optimality conditions if the deformation y is kept
fixed; see Proposition 3.4. These are then used for efficient numerical solution in
section 4, which is far more effective than existing computational strategies. This is
demonstrated on computational examples.

2. Incremental problems. The proof of Theorem 1.6 relies on approximations by
time-discrete (incremental) problems constructed for a given time step. These are mini-
mization problems over spatial variables. Each minimization problem takes into account
the solution obtained for the previous time step, while the initial condition serves as
input for the first minimization problem. Details can be found, e.g., in [12]. In practical
applications, finding global minimizers of incremental minimization problems is extre-
mely important because global minimization is the key ingredient in the energetic-
solution approach.

Thus, in a first step, a sequence of incremental problems is defined. We define a time
discretization 0 ¼ t0 < · · · < tN ¼ T with a time step τ ≔ maxiðti − ti−1Þ. Let an initial
state Sð0Þ ∋ q0 ≕ q0 ∈ Q be given. For 1 ≤ j ≤ N we find qj ∈ Q by solving

minimize Iðtj; qÞ þDðqj−1; qÞ; subject to q ∈ Q:ð25Þ
The existence of a solution to the time-step problem (25) follows in analogy to [12,

Theorem 3.2] by the direct method of the calculus of variations. Notice that this is true
even if ε ¼ 0 and if we consider λ ∈ L2ðΩ;RMþ1Þ only.

We denote q ∈ QP ≔ YpðΩ;RmÞ× PpðΩ;Rm×nÞ× L2ðΩ;RMþ1Þ,
P ≔ fq ∈ QPjλ ¼ L • ν and ∇y ¼ I • νg;ð26Þ

moreover, clearly Q ⊂ P.
Then we can define the following incremental problem: For 1 ≤ j ≤ N we find qj ∈

P by solving

minimize Iðtj; qÞ þDðqj−1; qÞ; subject to q ∈ P:ð27Þ
The existence of a solution to (27) follows again by the direct method of the calculus of
variations. Moreover, as proved, e.g., in [12], the following two-sided energy estimate
holds for k ≥ 1:
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Z
tj

tj−1

∂tIðs; qjÞds ≤ Iðtj; qjÞ þDðqj−1; qjÞ− Iðtj−1; qj−1Þ ≤
Z

tj

tj−1

∂tIðs; qj−1Þds:ð28Þ

Therefore, having qj−1 we look for qj ∈ P, which minimizes

Z
Ω

Z
Rm×n

ðW ðFÞ− SðtjÞ · FÞdνxðFÞdxþ
XMþ1

i¼1

Z
Ω
cijλiðxÞ− λij−1ðxÞjdx:ð29Þ

This problem is nonsmooth, so using the Mosco transform we define an equivalent
smooth problem (with inequality constraints), which includesM þ 1 auxiliary variables,
namely,

minimize

Z
Ω

Z
Rm×n

ðW ðFÞ− SðtjÞ · FÞdνxðFÞdxþ
XMþ1

i¼1

Z
Ω
aiðxÞdx

subject to − ai − ciLi • ν ≤ −ciλij−1 ∀ 1 ≤ i ≤ M þ 1

−ai þ ciLi • ν ≤ ciλij−1 ∀ 1 ≤ i ≤ M þ 1

ðy; ν; λÞ ∈ P; ai ∈ L2ðΩÞ.ð30Þ

We invite the reader to verify that (29) and (30) are equivalent in the sense that
minima are the same, and if ðy; ν; λÞ solves (29), then ðy; ν; λ; fcijλi − λij−1jgiÞ solves (30);
conversely if ðy; ν; λ; faigiÞ solves (30), then ðy; ν; λÞ solves (29). A proof can be also
found in [18].

It will be convenient to rewrite (30) in terms of Young functionals. In additional to
the assumptions from Lemma 1.3, the underlying space H must also contain ðx; FÞ ↦
1 ⊗ ðW ðFÞ þ SðtjÞ · FÞ and ðx; FÞ ↦ gðxÞLiðFÞ for all 1 ≤ i ≤ M þ 1 and g ∈ L1ðΩÞ.
Let us denote Φ∶H � × L2ðΩ;RMþ1Þ → R, where

Φðη; aÞ ≔ hη;W − SðtjÞ ·i þ
XMþ1

i¼1

Z
Ω
aiðxÞdxð31Þ

and for 1 ≤ i ≤ M þ 1 let Ri
1; R

i
2∶H � × L2ðΩ;RMþ1Þ → L1ðΩÞ with Ri

1ðη; aÞ ≔ −ai−
cið1 ⊗ LiÞ • η and Ri

2ðη; aÞ ≔ −ai þ cið1 ⊗ LiÞ • η. The problem (30) now reads as

minimizeΦðη; aÞ
subject to ð1 ⊗ TÞ • η ¼ Tð∇yÞ

Ri
1ðη; aÞ ≤ −ciλij−1 ∀ 1 ≤ i ≤ M þ 1

Ri
2ðη; aÞ ≤ ciλij−1 ∀ 1 ≤ i ≤ M þ 1

ðy;η; aÞ ∈ YpðΩ;RmÞ×Yp
H ðΩ;Rm×nÞ× L2ðΩ;RMþ1Þ:ð32Þ

Notice that the constraint ð1 ⊗ TÞ • η ¼ Tð∇yÞ is nonconvex while the other con-
straints and Φ are all linear. Problem (32) is a two-scale problem. On the large scale we
optimize the deformation y ∈ YpðΩ;RmÞ, while on the smaller scale, keeping ∇y fixed,
we look for an optimal Young functional η ∈ Yp

H ðΩ;RmÞ, which encodes material mi-
crostructures. We can see it as an example of a Stackelberg leadership game [33]. The
deformation y is a leader, while particular η is a follower trying to minimize the energy if
∇y is fixed. In view of this, we can consider a special case of (32) when we keep ∇y
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constant in Rm×n, so that we put A ≔ ∇y. Hence, if we denote Πsðη; aÞ ¼
ð1 ⊗ TsÞ • η, where Πs∶H � × L2ðΩ;RMþ1Þ → Lp ∕ sðΩ;RσðsÞÞ (1 < s < p∕ minðm;nÞ)
and Πðη; aÞ ≔ ðΠ1ðη; aÞ; : : : ;Πminðm;nÞðη; aÞÞ, Riðη; aÞ ≔ ðR1

i ðη; aÞ; : : : ; RMþ1
i ðη; aÞÞ

for i ¼ 1, 2, and Λj−1 ≔ ðc1λ1j−1; : : : ; c
Mþ1λMþ1

j−1 Þ, we must solve the following convex
problem:

minimizeΦðη; aÞ
subject to Πðη; aÞ ¼ TðAÞ

R1ðη; aÞ ≤ −Λj−1

R2ðη; aÞ ≤ Λj−1

ðη; aÞ ∈ Yp
H ðΩ;Rm×nÞ× L2ðΩ;RMþ1Þ;ð33Þ

where the inequality constraints are understood componentwise.

3. Optimality conditions for (33). It is proved in [29, Lemma 3.3] that for any
A ∈ Rm×n there is η ∈ Yp

H ðΩ;Rm×nÞ such that Πsðη; aÞ ¼ TsðAÞ for all s admissible.
Further, the range of Ri

1 and Ri
2 is the whole space L

2ðΩÞ. Let us still denote M1 ¼ ff ∈
L2ðΩ;RMþ1Þ; f ≤ −Λj−1g and M2 ¼ ff ∈ L2ðΩ;RMþ1Þ; f ≤ Λj−1g, and we write for
i ¼ 1, 2

ðRiÞ−1ðMiÞ ≔ fðη; aÞ ∈ Yp
H ðΩ;RmÞ× L2ðΩ;RMþ1Þ;Riðη; aÞ ∈ Mig:

If B is a convex closed set in a linear space Z , we define the normal cone to B at
b ∈ B as

NBðbÞ ≔ fξ ∈ Z�; ∀ ~b ∈ B∶hξ; ~b− bi ≤ 0g:

Moreover, we denote Π�
s∶Lp ∕ ðp−sÞðΩ;RσðsÞÞ → H �� × L2ðΩ;RMþ1Þ the adjoint operator

to Πs; similarly ½Ri
j��∶L2ðΩÞ → H �� × L2ðΩ;RMþ1Þ is adjoint to Ri

j.
The optimality conditions state (see [29], [36]) that there exist Lagrange multipliers

μ0 ∈ Πminðm;nÞ
s¼1 Lp ∕ ðp−sÞðΩ;RσðsÞÞ, μ1 ∈ NM1

ðR1ðη; aÞÞ, μ2 ∈ NM2
ðR2ðη; aÞÞ such that

½Π��aμ0 − ½R�
1�aμ1 − ½R�

2�aμ2 −∇aΦðη; aÞ ¼ 0;ð34Þ

½Π��ημ0 − ½R�
1�ημ1 − ½R�

2�ημ2 −∇ηΦðη; aÞ ∈ NYp
H
ðΩ;RmÞðηÞ:ð35Þ

We start with a computation of ∇Φ.
LEMMA 3.1. Let W ∈ CpðΩ;Rm×nÞ. Then it holds for all ðη; aÞ ∈ H � × L2ðΩ;RMþ1Þ

that ∇Φðη; aÞ ¼ ð∇ηΦðη; aÞ;∇aΦðη; aÞÞ ¼ ðW − SðtjÞ ·; 1; : : : ; 1Þ ∈ H × L2ðΩ;RMþ1Þ.
Proof. It is easy because Φ depends on ðη; aÞ linearly. ▯
LEMMA 3.2. If 1 ≤ s ≤ minðm;nÞ, then ½Π�

s �μ ≔ ð½Π�
s �ημ; ½Π�

s �aμÞ ¼ ðμ ⊗ Ts; 0Þ for
any μ ∈ Lp ∕ ðp−sÞðΩ;RσðsÞÞ.

Proof. We have for arbitrary ðη; aÞ ∈ H � × L2ðΩ;RMþ1Þ and μ ∈ Lp ∕ ðp−sÞðΩ;RσðsÞÞ

h½Π�
s �μ; ðη; aÞiðH ��×L2;H �×L2Þ ¼ hμ;Πsðη; aÞiðLp∕ ðp−sÞ;Lp∕ sÞ ¼ hμ; ð1 ⊗ TsÞ • ηiðLp ∕ ðp−sÞ;Lp ∕ sÞ

hð1 ⊗ TsÞ • η;μiðLp ∕ s;Lp ∕ ðp−sÞÞ ¼ hη;μ ⊗ TsiðH �;H Þ: ▯
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LEMMA 3.3. It holds for every μ ∈ L2ðΩÞ and ðη; aÞ ∈ H � × L2ðΩ;RMþ1Þ that
½Ri

1��μ ¼ ð−μ ⊗ ciLi;−μÞ and ½Ri
2��μ ¼ ðμ ⊗ ciLi;−μÞ.

Proof. We compute only the expression for ½Ri
1��μ as the other can be obtained

similarly. We have

h½Ri
1��μ�; ðη; aÞiðH ��×L2;H �×L2Þ ¼ hμ; Ri

1ðη; aÞiðL2;L2Þ ¼ hμ;−ai − cið1 ⊗ LiÞ • ηiðL2;L2Þ

¼ h−ai − cið1 ⊗ LiÞ • η;μiðL2;L2Þ ¼ −hη; ciμ ⊗ LiiðH �;HÞ − hμ; aiiðL2;L2Þ: ▯

As all the expressions on the left-hand side of (35) take their values in H rather than
in H ��, we search for the intersection of NYp

H
ðΩ;Rm×nÞ with H , i.e.,

NYp
H
ðΩ;Rm×nÞðηÞ ∩ H ¼ fh ∈ H ; ∀ ~η ∈ Yp

H ðΩ;Rm×nÞh ~η; hi ≤ hη; hig

¼
�
h ∈ H ; hη; hi ¼ sup

u∈LpðΩ;Rm×nÞ

Z
Ω
hðx; uðxÞÞdx

�
:ð36Þ

Defining the Hamiltonian

Hμðt; x; FÞ ≔ −W ðFÞ þ SðtÞ · F þ μ0ðxÞ · TðFÞ þ
XMþ1

i¼1

ciðμi
1ðxÞ− μi

2ðxÞÞLiðFÞ;ð37Þ

where μ ¼ ðμ0;μ1;μ2Þ is the triple of vector-valued Lagrange multipliers, the inclusion
(35) reads that if ðη; aÞ is a solution to (33), then there is a Lagrange multiplier
μ ¼ ðμ0;μ1;μ2Þ such that

hη;Hμðtj; ·; ·Þi ¼ sup
u∈LpðΩ;Rm×nÞ

Z
Ω
Hμðtj; x; uðxÞÞdx:

As our problem is convex, this condition is also sufficient. Notice that (34) means that
μi

1 þμi
2 ¼ 1 for all i ¼ 1; : : : ;M þ 1.

If ν ∈ YpðΩ;Rm×nÞ is a Young measure representing η (we write η ≅ ν) in the
sense that hη; hi ¼ ∫ Ω∫ Rm×nhð; x; FÞdνxðFÞdx for all h ∈ H , the previous equality
reads

Z
Ω

Z
Rm×n

Hμðtj; x; FÞdνxðFÞdx ¼ sup
u∈LpðΩ;Rm×nÞ

Z
Ω
Hμðtj; x; uðxÞÞdx:ð38Þ

The maximum principle (38) can be localized to a pointwise one using the argu-
ments of [29, Theorem 3.2].

PROPOSITION 3.4. Let p > minðm;nÞ and (2) hold. If ðη; aÞ ∈ Yp
H ðΩ;Rm×nÞ×

L2ðΩ;RMþ1Þ solves (33) and η is represented by ν ∈ YpðΩ;Rm×nÞ, then there exist
μ0 ∈ Πminðm;nÞ

s¼1 Lp ∕ ðp−sÞðΩ;RσðsÞÞ and μ1;μ2 ∈ L2ðΩ;RMþ1Þ such that for almost all
x ∈ Ω

max
F∈Rm×n

Hμðtj; x; FÞ ¼
Z
Rm×n

Hμðtj; x; FÞdνxðFÞ:ð39Þ

Conversely, if (39) holds for some ν ∈ YpðΩ;Rm×nÞ, the constraints in (33) are satisfied
and μi

1 þ μi
2 ¼ 1,μi

1;μ
i
2 ≥ 0 for all i ¼ 1; : : : ;M þ 1, then ðη; aÞ ≅ ðν; aÞ is a solution to

(33).
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Remark 3.5. If there is no dissipation, i.e., L ¼ 0, and no loading, i.e., S ¼ 0, the
Hamiltonian in (37) is the same as in [7].

In particular, having a solution to the problem (33) we also know the values of
Lagrange multipliers μ, say, μ�. Then the solution to (33) is the same as the solution
to the following minimization problem involving a homogeneous (i.e., independent of
x ∈ Ω) Young measure ν:

minimize

Z
Rm×n

�
W ðFÞ− SðtjÞ · F − μ�

0 · TðFÞ þ
XMþ1

i¼1

ðμi�
2 −μi�

1 ÞLiðFÞ
�
dνðFÞ

subject to T • ν ¼ TðAÞ
ν ∈ YpðΩ;Rm×nÞ; ν̄ ¼ A:ð40Þ

In each time step, (40) is a smooth convex minimization problem. The optimal value
of the objective function is the polyconvex envelope of F ↦ W ðFÞ− SðtjÞ ·
F − μ�

0 · TðFÞ þ
P

Mþ1
i¼1 ðμi�

2 − μi�
1 ÞLiðFÞ evaluated at the point A ∈ Rm×n [9], [31].

In what follows, we show how to use advantageously the maximum principle in a
numerical-solution strategy. This approach was first suggested and tested in a static
scalar one-dimensional example in [8] and further used in micromagnetics calculations
in [18], [20].

4. Numerical approximations. We are about to discuss spatial discretization of
incremental problems (27) and describe an efficient strategy leading to their solutions.
To keep the explanation as simple as possible, we confine ourselves to the case of two
wells, i.e.,M ¼ 1, and instead of surface forces we drive the evolution of our specimen by
time-dependent boundary conditions; i.e., we set S ¼ 0. It is straightforward to general-
ize the method to a more general scenario.

4.1. Problem description. Recall that the volume fraction is defined by

λðxÞ ¼
Z
Rm×n

LðFÞdνxðFÞ

for almost every x ∈ Ω. We have by the definition of L that
P

Mþ1
j¼1 λj ¼ P

Mþ1
j¼1 Lj ¼ 1.

Therefore, if M ¼ 1, i.e., in case of the so-called double-well problem, we have that
λ2 ≔ 1− λ1. Thus, having two pairs λ1 ≔ ðλ1; 1− λ1Þ and λ2 ≔ ðλ2; 1− λ2Þ, we have
by (12) that Dðq1; q2Þ ≔ ∫ Ωðc1 þ c2Þjλ1 − λ2jdx. To simplify the notation, we set
cD ≔ c1 þ c2. The dissipation functional then reads

Dðq1; q2Þ ¼ cD

Z
Ω
jλ1 − λ2jdx:

4.2. General discrete problem. Given a finite element partition T of Ω with
diamðTÞ ≤ h for all T ∈ T and a set Ad;r ⊂ Rm×n, Ad;r ⊂ dZm×n ∩ B∞

r ð0Þ, where
B∞

r ð0Þ is a ball in Rm×n centered at zero and with the radius r. We consider a Young
measure ν ¼ fνxgx∈Ω where νxjT ≔

P
A∈Ad;r

θT;AδA, with fθT;AgA∈Ad;r
coefficients of a

convex combination, and δA the Dirac mass supported at A. The deformation y is ap-
proximated by a continuous, elementwise affine map yh defined by its nodal values at
the set of nodsN h. A typical time step tj of the discrete version of (30) consists in solving
the following optimization problem:
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Find ððyhðzÞÞz∈N h
; ðahjT ÞT∈T ; ðθT;AÞT∈T ;A∈Ad;r

Þ; which minimizesX
T∈T

jT j
X

A∈Ad;r

θT;AW ðAÞ þ
X
T∈T

cDjT jahjT

subject to yhjΓD
¼ yD;hðtj; ·Þ; θT;A ≥ 0;

X
A∈Ad;r

θT;A ¼ 1; and

Tð∇yhjT Þ ¼
X

A∈Ad;r

θT;ATðAÞ;

− ahjT ∕ cD −
X

A∈Ad;r

θT;AL1ðAÞ ≤ −λ1h;j−1jT ;

− ahjT ∕ cD þ
X

A∈Ad;r

θT;AL1ðAÞ ≤ λ1h;j−1jT

for all T ∈ T :

Notice that the constraint with the left-hand side Tð∇yhjT Þ is nonlinear if
minðm;nÞ ≥ 2. Otherwise, this defines a linear program that we solve iteratively
with an active set strategy based on the maximum principle of section 3. Given the
(approximate) solution of this problem, the next time step tjþ1 is the same problem with
yD;hðtjÞ replaced by yD;hðtjþ1Þ and λh;j−1 replaced by

λ1h;jjT ¼ cD
X

A∈Ad;r

θT;AL1ðAÞ

for all T ∈ T .

4.3. Simplification through enforced homogeneity. To simplify the calcula-
tions we consider solutions of the model problem that are spatially homogeneous and the
deformation is entirely defined through the affine boundary data FDðtÞ; i.e., the defor-
mation yðt; xÞ ¼ FDðtÞx for all x ∈ Ω is fully prescribed in the entire evolution. Hence the
minimization problem in the jth time step reduces to

minimize

Z
Rm×n

W ðFÞdνðFÞ þ cDa among ða; νÞ ∈ R× Phom

subject to

Z
Rm×n

TðFÞdνðFÞ ¼ TðFDðtjÞÞ

− a ∕ cD −
Z
Rm×n

L1ðFÞdνðFÞ ≤ −λ1j−1; −a∕ cD þ
Z
Rm×n

L1ðFÞdνðFÞ ≤ λ1j−1:

4.4. Discretization of spatially homogeneous problems. We choose a finite
subset Ad;r ⊂ Rm×n and discretize the convex set of (homogeneous) polyconvex Young
measures Phom ¼ fν ∈ PpðΩ;Rm×nÞ; νx ¼ νy∀x; y ∈ Ωg by

Phom ⊂ YM hom
Ad;r

¼
�
νd;r ¼

X
A∈Ad;r

θAδA∶θA ≥ 0;
X

A∈Ad;r

θA ¼ 1

�
:

We will identify a discrete Young measure with its convex coefficients θ ¼
ðθAÞA∈Ad;r

. This choice leads to the following discretization of the homogeneous vectorial
problem described above:
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minimize
X

A∈Ad;r

θAW ðAÞ þ cDa among ða; νd;rÞ ∈ R× YM hom
Ad;r

subject to TðFDðtjÞÞ ¼
X

A∈Ad;r

θATðAÞ;

− a∕ cD −
X

A∈Ad;r

θAL1ðAÞ ≤ −λ1j−1; −a ∕ cD þ
X

A∈Ad;r

θAL1ðAÞ ≤ λ1j−1:

We subsequently set λ1j ¼
P

A∈Ad;r
θAL1ðAÞ.

4.5. Efficient solution via active set strategy. The discrete problem is a linear
optimization problem that can be solved directly with standard algorithms. Realizing
that only a small number of coefficients θA will be nonvanishing, it is desirable to employ
an iterative scheme in which a large number of vanishing or small coefficients will not be
incorporated in the approximating problems. The key to such an iterative method is the
optimality condition

max
F∈Ad;r

ðTðFÞ · μ0 −W ðFÞ þ cDðμ1 − μ2ÞL1ðFÞÞ

¼
X

A∈Ad;r

ðθATðAÞ · μ0 −W ðAÞ þ cDðμ1 − μ2ÞL1ðAÞÞ;

where μ0 is the Lagrange multiplier related to the equality constraints involving
TðFDðtjÞÞ and ðμ1;μ2Þ are the multipliers related to the inequality constraints involving
a. Notice that we write μ1, μ2 instead of μ1

1 and μ1
2 to simplify the notation. It shows

that only those atoms A ∈ Ad;r can have a convex coefficient θA different from zero, for
which the function on the left-hand side assumes its maximum. Given a guess or a good
approximation of the Lagrange multipliers and some tolerance ε > 0, those atoms A are
activated within an iterative strategy for which the maximum is attained up to the tol-
erance ε. This defines the new set Ad;r. If the solution of the (reduced) linear program
satisfies the maximum principle (up to a small tolerance chosen equal to the grid size d)
for the full set of atoms, then the solution is accepted and otherwise the activation para-
meter is enlarged and a new (presumably larger) active set is computed based on the new
approximate multipliers. Since the optimality conditions are necessary and sufficient,
the iterative strategy converges. To obtain accurate initial guesses, this strategy is com-
bined with a multilevel scheme in which the discretization parameter d is gradually de-
creased. In our implementation the (reduced) optimization problems were solved with
the MATLAB routine linprog. The precise scheme for the solution of one time step
reads as follows. As we are interested in x-independent problems, we drop the explicit
dependence of the Hamiltonian on x ∈ Ω.

ALGORITHM (Ahom
active set).

Input: Parameters 0 < dfinal ≤ r, number of refinement levels J ≥ 0 such that
2Jdfinal ≤ r, time step tj, vector λj−1 ∈ RMþ1.

(1) Set d ¼ 2Jdfinal, μ0 ¼ 0, μ1 ¼ 0, μ2 ¼ 0, and εmp ¼ d ∕ 2.
(2) Define

Ad;r ¼
�
A ∈ dZm×n ∩ B∞

r ð0Þ∶Hμðtj; AÞ ≥
X

B∈Ad;r

θBHμðtj; BÞ− εmp

�
;

1290 SÖREN BARTELS AND MARTIN KRUŽÍK

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



where Hμðtj; AÞ ¼ TðAÞ · μ0ðtjÞ−W ðAÞ þ cDðμ1ðtjÞ− μ2ðtjÞÞ · L1ðAÞ.
(3) Add further elements A ∈ Rm×n to ensure feasibility and solve the linear pro-

gram described in section 4.4 with the set Ad;r. This provides updates of the
multipliers μ0, μ1, μ2.

(4) If there exists A ∈ dZm×n ∩ B∞
r ð0Þ with

Hμðtj; AÞ >
X

B∈Ad;r

θBHμðtj; BÞ;

then set εmp ¼ 2εmp and go to (2).
(5) If d > dfinal, set d ¼ d∕ 2 and εmp ¼ d ∕ 2 and go to (2).

We consider the following specification of the model problem.
Example 4.1. Let m ¼ n ¼ 2, T ¼ 1, λ0 ¼ 0,

W ðFÞ ¼ minfjFTF − FT
1 F1j2 ∕ 2; jFTF − FT

2 F2j2 ∕ 2g

for F1 ¼ diagðδ; 1 ∕ δÞ, F2 ¼ diagð1 ∕ δ;δÞ, and FDðtÞ ¼ ð1− tÞF1 þ tF2. The function
L1 is for given ϵ > 0 chosen as

L1ðFÞ ¼ fC ð½FTF �11Þ
with

fC ðzÞ ¼
8<
:

0; z ≥ δ2 − ϵ;
ðz − ðδ2 − εÞÞ ∕ ð1 ∕ δ2 þ 2ϵ− δ2Þ; 1 ∕ δ2 þ ϵ ≤ z ≤ δ2 − ϵ;
1; z ≤ 1 ∕ δ2 þ ϵ:

The value of ϵ relates to the elastic region of the material. Indeed, starting the evolution
with the Young measure supported in one of the energy wells of W , the parameter ϵ
determines “how far” the support can move without any dissipation. For the experiments
we choose ϵ ¼ 1 ∕ 20 and δ ¼ ffiffiffiffiffiffiffiffiffi

5 ∕ 4
p

.
We employed d ¼ 1 ∕ 20, τ ¼ 1 ∕ 40, r ¼ 2, and

cD ¼ 1; 1 ∕ 10; 1 ∕ 100

in our experiments. The multilevel strategy always started with the coarse grid defined
by d ¼ 1. In Figure 1 we displayed for the time steps tj ¼ j ∕ 40 for j ¼ 0, 10, 20, 30, 40
(from left to right) and the dissipation coefficients cD ¼ 1, 1 ∕ 10, and 1 ∕ 100 (from top to
bottom) the deformed body FDðtÞΩ for Ω ¼ ð0; 1Þ2 and, indicated by the gray shading,
the volume fraction λðtjÞ. We see that the specimen does not transform for the large
dissipation constant but does for the other values of cD. This is what we observe in phy-
sical experiments because large dissipation, i.e., large cD, makes the transformation
more difficult, or not possible at all.

In Figure 2 we plotted the functions

tj ↦ W ðFDðtjÞÞ;
tj ↦ I ðtjÞ ¼

X
A∈dZ2×2

θjAW ðAÞ þ cDa;

tj ↦ DðδqjÞ ¼ cDaj ¼ cDjλj − λj−1j; λj ¼
X

A∈Ad;r

θA;jL1ðAÞ

for cD ¼ 1, 1 ∕ 10, and 1 ∕ 100.

NUMERICAL SOLUTION OF RATE-INDEPENDENT PROBLEMS 1291

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



For cD ¼ 1 ∕ 100 we plotted in Figure 3 the relative number of activated atoms on
the finest level corresponding to d ¼ 1 ∕ 10 for each time step. Notice that we have here
for d ¼ 1 ∕ 10 and r ¼ 2

cardðdZ2×2 ∩ B∞
r ð0ÞÞ ¼ 2825761:

We thus obtain an average reduction to about 0.1% of the theoretical number of atoms.

4.6. Scalar experiment with spatial dependence. We consider the following
specification of the model problem.

Example 4.2. Let Ω ¼ ð0; 1Þ2, T ¼ 1, ΓD ¼ ∂Ω, uDðx; tÞ ¼ sinð2πtÞx1, λ0ðxÞ ¼ 1 ∕ 2,

W ðFÞ ¼ minfjF − F1j2 ∕ 2þ c1; jF − F2j2 ∕ 2þ c2g

for F1 ¼ ð1; 0ÞT , F2 ¼ ð−1; 0ÞT , c1 ¼ 1 ∕ 5, and c2 ¼ 0.

FIG. 1. Transformation of a specimen for different dissipation strengths. The upper row shows the de-
formed body colored by the volume fraction λ1ðtjÞ for tj ¼ j∕ 40, j ¼ 0, 10, 20, 30, 40, and cD ¼ 1. The second
and third rows show the related quantities for cD ¼ 1∕ 10 and cD ¼ 1∕ 100, respectively.

FIG. 2. Total energy, dissipation, and elastic energy for the macroscopic deformation for cD ¼ 1, 1∕ 10,
and 1∕ 100 (from left to right).
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For a triangulation of Ω consisting of 32 triangles, the set Ad;r defined through d ¼
2−4 and r ¼ 2, the time-step size τ ¼ 1 ∕ 80, and the choices of constants

cD ¼ 1 and cD ¼ 1 ∕ 10;

Figures 4 and 5, respectively, show snapshots of the evolution for t ¼ j∕ 20 with j ¼ 4,
20, 40, 60, 80.

Figure 6 displays the energy and the dissipation contribution, i.e., the
quantities

EðtjÞ ¼
Z
Ω

Z
R2

W ðAÞνj;d;hðdAÞ þ DðtjÞ

¼
X
T∈T

jT j
X

A∈Ad;r

θjT;AW ðAÞ þ DðtjÞ; DðtjÞ ¼ cD

Z
Ω
ah;jdx ¼ cD

X
T∈T

jT jaT ðtjÞ

as functions of t ∈ ½0; 1� for cD ¼ 1 and cD ¼ 1 ∕ 10.
Figure 6 illustrates hysteresis effects that occur in the evolution defined by the

rate-independent process. We displayed the spatial averages of the (spatially constant)
quantities ∂1yh;j and σh;jϱ on ΓD (ϱ is the outer unit normal to the boundary),
where

σh;j ¼
X

A∈Ad;r

θA;jDW ðAÞ:

The validity of a fully discrete analogue of the semidiscrete two-sided energy esti-
mate (28)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.05%

0.06%

0.07%

0.08%

0.09%

0.1%

0.11%

0.12%

cD = 1/10
cD = 1/100

FIG. 3. Relative number of activated atoms during the evolution for different dissipation constants.
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FIG. 4. Scalar displacement uh;j (left) and discrete Young measure νj;h (right) for j ¼ 4, 20, 40, 60, 80 in
Example 4.3 with cD ¼ 1. The displacement is colored by the quantity λh, and the sizes of the dots in the grid in
the right plots are proportional to the volume fraction associated with a grid point. The grid indicates every
second atom.
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FIG. 5. Scalar displacement uj;h (left) and discrete Young measure νj;h (right) for j ¼ 4, 20, 40, 60, 80 in
Example 4.3 with cD ¼ 1∕ 10. The displacement is colored by the quantity λh, and the sizes of the dots in the grid
in the right plots are proportional to the volume fraction associated with a grid point. The grid indicates every
second atom.
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mðtjÞ ≔
Z
ΓD

σh;j · ϱðuD;j − uD;j−1Þds

≤ ΞðtjÞ ≔
Z
Ω

Z
R2

W ðsÞνj;xðdsÞdxþ cD

Z
Ω
jλ1j − λ1j−1jdx−

Z
Ω

Z
R2

W ðsÞνj−1;xðdsÞdx

≤
Z
ΓD

σh;j−1 · ϱðuD;j − uD;j−1Þds ¼ ∶M ðtjÞ

is graphically analyzed in Figure 7. We observe that mðtjÞ and MðtjÞ are close together
but thatmðtjÞ is not belowM ðtjÞ and ΞðtjÞ is not in between. Therefore, a fully discrete
two-sided energy estimate can be expected to hold only with error terms related to the
spatial discretization.

4.6.1. Scalar, inhomogeneous example. We consider the following specifica-
tion of the model problem that leads to an inhomogeneous solution.

FIG. 6. Total energy and dissipation as functions of t ∈ ½0; 1� in Example 4.3 with cD ¼ 1 and cD ¼ 1∕ 10
(left). Stress versus strain for t ∈ ½0; 1� in Example 4.3 with cD ¼ 1 and cD ¼ 1∕ 10 (right).

FIG. 7. Experimental two-sided energy estimate in Example 4.3 for cD ¼ 1.

1296 SÖREN BARTELS AND MARTIN KRUŽÍK

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Example 4.3. Let n ¼ 2,m ¼ 1, Ω ¼ ð0; 1Þ2, T ¼ 1, ΓD ¼ ∂Ω, λ0ðxÞ ¼ 1 ∕ 2, and the
displacement

uDðt; xÞ ¼
�
−3ðz − zbÞ5 ∕ 128− ðz − zbÞ3 ∕ 3 for z ≤ zb;
ðz − zbÞ3 ∕ 24þ ðz − zbÞ for z ≥ zb

for z ¼ x · F0, zb ¼ 1 ∕ 2, F0 ¼ ðcos ϕ; sin ϕÞ, ϕ ¼ π∕ 6, and

W ðFÞ ¼ jF − F0j2jF þ F0j2:

For a triangulation of Ω consisting of 128 triangles, the setAd;r defined through d ¼
2−6 and r ¼ 3 ∕ 2, the time-step size τ ¼ 1 ∕ 20, and the choice

cD ¼ 1;

Figure 9 shows snapshots of the evolution for t ¼ j ∕ 20 with j ¼ 1, 5, 10, 20.
Figure 8 displays the energy and the dissipation contribution, i.e., the

quantities

EðtjÞ ¼
X
T∈T

jT j
X

A∈Ad;r

θjT;AW ðAÞ þ DðtjÞ; DðtjÞ ¼ cD
X
T∈T

jT jaT ðtjÞ

as functions of t ∈ ½0; 1�.
We found out that the proposed method works effectively. In fact, if we consider

Lemma 1.1 (ii) not only polyconvex functions but also for a finite number of quasiconvex
ones, the related maximum principle provides an improved lower bound of the quasi-
convex envelope. A further step might be to investigate whether the polyconvex Young
measure obtained by our algorithm is a laminate. These aspects are left for future
research.

FIG. 8. Total energy and dissipation as functions of t ∈ ½0; 1� in Example 4.3.
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