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Abstract— The problem of minimizing convex integral function-
als subject to moment-like constraints is treated in a general
setting when the underlying convex function may be multivariate,
perhaps not strictly convex or differentiable. The results are
applied to the minimization of f -divergences simultaneously in
both variables.

I. INTRODUCTION

Let μ be a nonzero and σ-finite measure on a measurable
space (Z,Z), and γ a proper closed convex function on R

e.
The function is not necessarily strictly convex or differentiable.

This work studies minimization of the integral functional

Jγ(g) �
∫
Z

γ(g(z)) μ(dz) (1)

over the measurable functions g : Z → R
e satisfying the linear

moment-like constraints∫
Z

ϕg dμ = a . (2)

Here, a ∈ R
d, ϕ is a measurable mapping on Z with values

in R
d×e, regarded as d × e matrices, and ϕg denotes the R

d-
valued function obtained by matrix multiplication, regarding
the values of g as column vectors.

A. Previous work

The univariate case, e = 1, has been extensively studied,
see [2], [6], [7], [12], [13], etc. The instance γ(t) = t log t
is of main interest for information theory. In the multivariate
case, the minimization of γ itself has been much studied as
well, intertwined with the theory of Bregman [3] distances
on R

e. The similar problem for the functionals (1), or even
more general functionals based on normal integrands, seems
hardly been tackled within information theory or statistics,
references in [15, p. 681] point elsewhere.

For e = 2, a class of functionals (1) of major statistical
relevance arises with γ defined by

γ(t, s) =

⎧⎪⎨
⎪⎩

sf
(

t
s

)
, t � 0 , s > 0 ,

tf ′(+∞) , t � 0 , s = 0 ,

+∞ , otherwise.

(3)

Here, f is a closed convex function on R that is finite on the
positive axis and +∞ on the negative one. The corresponding
integral functional

Df (g1, g2) � Jγ(g) =
∫
Z

γ(g1, g2) dμ

applies to pairs g = (g1, g2) of real functions on Z and is
known under the name f -divergence [5]. Kullback-Leibler I-
divergence results from the choice f(t) = t log t − t + 1. Its
minimization simultaneously in both variables is the substance
of the EM-algorithm, see [9].

Analogues of the f -divergences were defined also for e > 2,
as dissimilarity measures [10]. The instance of the functional
Jγ with γ(x) = −∏e

i=1 xαi

i , x = (x1, . . . , xe) ∈ R
e, where

the exponents are positive and sum to 1, plays an important
role in the theory of statistical experiments [11].

B. Outline of the results

In the recent work [8] the authors addressed the minimiza-
tion of the functional (1) in the univariate case, assuming
differentiability and strict convexity of γ. The goal was to
dispense with constraint qualifications usually imposed in
the literature. This approach is extended in Section III to
the multivariate case, but here the focus is on dropping the
regularity conditions on γ. In particular, for non-differentiable
γ a new definition of Bregman distances is suggested in
Section II. Also, two errors in previous papers of the first
author are corrected in Remark 7 of Section III.

Section IV is devoted to minimization of the functionals (1)
with e = 2 and γ defined by eq. (3), thus to minimization of
the f -divergences simultaneously in both variables. Note that
this function γ is not strictly convex, and thus disposal of this
assumption on γ is necessary.

II. PRELIMINARIES

The subdifferential ∂γ(x) of γ at x ∈ R
e is a closed convex

set of the subgradients of γ at x [14, Section 23]. The set of
all x’s with ∂γ(x) nonempty is denoted by dom(∂γ). It is
contained in the set dom(γ) of all x’s with γ(x) finite. The
two sets have the same relative interior [14, Theorem 23.4].

The convex conjugate γ ∗ of γ is given by

γ∗(ϑ) = supx∈Re

[〈ϑ, x〉 − γ(x)
]
, ϑ ∈ R

e .

A. Bregman distances

The Bregman distance of vectors x, y ∈ R
e, induced by a

convex function γ, is typically defined when γ is differentiable
in the interior of dom(γ), and y is in that interior. More
generally, for x, y ∈ dom(γ) let

Δγ(x, y) = γ(x) − γ(y) − supϑ∈∂γ(y) 〈ϑ, x − y〉



when y ∈ dom(∂γ); otherwise let Δγ(x, y) equal 0 or +∞
according to x = y or not. When x or y is out of dom(γ) let
Δγ(x, y) = +∞. The convexity of γ implies Δγ(x, y) � 0.
This inequality is strict if γ is strictly convex on the segment
with different endpoints x and y in dom(γ). Thus, Δγ is a
pseudodistance on dom(γ), which is a distance (but generally
not a metric) if γ is strictly convex on its domain.

For x, y, θ in R
e let

Υγ(x, y, θ) = supϑ∈∂γ(y) 〈ϑ − θ, x − y〉
when θ belongs to the subdifferential; otherwise let Υγ(x, y, θ)
equal +∞. This nonnegative quantity measures lack of differ-
entiability of the function γ at the point y in the direction x−y
w.r.t. the subgradient θ.

Lemma 1. For x ∈ R
e, y ∈ dom(∂γ) and θ ∈ ∂γ(y)

γ(x) + γ∗(θ) = 〈θ, x〉 + Δγ(x, y) + Υγ(x, y, θ) (4)

Proof. If x �∈ dom(γ) then both sides of eq. (4) equal +∞.
Otherwise, since γ is proper and convex, θ ∈ ∂γ(y) implies
that γ(y)+γ∗(θ) = 〈θ, y〉 [14, Theorem 23.5]. This combines
with the definitions of Δγ and Υγ to arrive at (4). �

The Bregman pseudodistance of measurable functions g, h
on Z with values in R

e is defined by

Bγ(g, h) �
∫
Z

Δγ(g(z), h(z)) μ(dz) . (5)

The inequality Bγ(g, h) � 0 always holds, and for γ strictly
convex the equality does only if g, h ∈ dom(γ) and g = h,
μ-a.e. If additionally τ : Z → R

e is measurable let

Lγ(g, h, τ) �
∫
Z

Υγ(g(z), h(z), τ(z)) μ(dz) .

The above integrands are measurable, omitting details.

B. The value function and its conjugate

A value Jγ(g) of the functional Jγ is well defined by eq. (1)
if the integral exists, finite or not; otherwise it set equal to +∞.
In the sequel, the existence of a measurable function g such
that Jγ(g) < +∞ and ϕg is μ-integrable is referred to as the
global assumption.

For a ∈ R
d let the affine set of functions g satisfying eq. (2)

be denoted by Ga, and the convex set of functions g ∈ Ga with
values in dom(γ), μ-a.e., by La.

Minimization of the functional Jγ under the constraints (2)
gives rise to the value function Hγ given by

Hγ(a) � infg∈Ga Jγ(g) = infg∈La Jγ(g) , a ∈ R
d . (6)

This function is convex but not necessarily proper or closed.
The global assumption means that Hγ is not identically +∞.
In particular, it may take the value −∞.

Lemma 2. Under the global assumption,

H∗
γ(ϑ) =

∫
Z

γ∗(ϑϕ) dμ , ϑ ∈ R
d ,

where the integral is finite or +∞.

Here, ϑϕ denotes the R
e-valued function obtained by matrix

multiplication, regarding ϑ as a row vector.

Proof. By definition,

H∗
γ (ϑ) = −infa∈Rd

[ − 〈ϑ, a〉 + infg∈Ga Jγ(g)
]
.

The infimum rewrites to

infa∈Rd infg∈Ga

∫
Z

[ − 〈ϑ, ϕg(z)〉 + γ(g(z))
]
μ(dz) ,

and thus to

infg∈G
∫
Z

[ − 〈ϑϕ(z), g(z)〉 + γ(g(z))
]
μ(dz)

where G denotes the space of functions g with μ-integrable
ϕg. If the above integrals do not exist they are set equal to
+∞ as in the definition of Jγ . It suffices to prove that the
above infimum equals∫

Z
infx∈Re

[ − 〈ϑϕ(z), x〉 + γ(x)
]
μ(dz) .

If ϕ is μ-integrable then the linear space G is decomposable
in the sense of [15, Definition 14.59] whence the infimum and
integral can be exchanged by [15, Theorem 14.60]. Otherwise,
G need not be decomposable, but it is possible to modify [15,
Theorem 14.60] to cover also this case, omitting details. �

III. MAIN RESULTS

For a measurable function τ on Z with values in dom(∂γ ∗),
μ-a.e., the set-valued mapping z �→ ∂γ ∗(τ(z)), z ∈ Z , is
measurable in the sense of [15, Definition 14.1], using [15,
Theorem 14.56]. Hence, it admits a Castaing representation
[15, Theorem 14.5], and consequently a measurable selection.
Thus, there exists a Z-measurable function h such that h(z)
belongs to ∂γ∗(τ(z)), μ-a.e. In the following theorem this
conclusion is applied to τ of the form ϑϕ.

Theorem 1. Under the global assumption, for ϑ ∈ dom(H ∗
γ )

with ϑϕ taking values in dom(∂γ∗), μ-a.e., and a measurable
selection h from z �→ ∂γ∗(ϑϕ(z)) the equality

Jγ(g) + H∗
γ (ϑ) = 〈ϑ, a〉 + Bγ(g, h) + Lγ(g, h, ϑϕ)

holds for all a ∈ R
d and functions g ∈ Ga.

Proof. For z ∈ Z let x = g(z), θ = ϑϕ(z), and y = h(z).
Since γ is closed y ∈ ∂γ∗(θ) is equivalent to θ ∈ ∂γ(y)
by [14, Theorem 23.5]. Then, the assumptions on ϑ, g and h
imply that Lemma 1 applies and eq. (4) holds with the above
substitutions μ-a.e. The assertion follows by integration w.r.t.
μ using the following arguments: (i) the integral of γ ∗(ϑϕ) is
finite and equals H∗

γ (ϑ) due to Lemma 2 and the assumption
ϑ ∈ dom(H∗

γ ), (ii) the integral of 〈ϑϕ, g〉 equals 〈ϑ, a〉 because
g ∈ Ga, and (iii) the quantities Δγ and Υγ are nonnegative. �
Remark 1. If in Theorem 1 a selection h belongs to La then
the infima in (6) are finite and attained by g = h.

Remark 2. If γ is strictly convex then γ ∗ is essentially smooth
[14, Theorem 26.3], thus dom(γ ∗) has nonempty interior
where γ∗ is differentiable and ∂γ∗ is empty otherwise. Hence,
in this case h = ∇γ∗(ϑϕ) is the unique selection in Theorem 1.
On the other hand, if γ is essentially smooth then the term
Lγ(g, h, ϑϕ) in Theorem 1 vanishes. In fact, by the above
proof, ϑϕ ∈ ∂γ(h) whence Υγ(g, h, ϑϕ) = 0, μ-a.e.



Remark 3. The integration in the above proof reveals also that
in Theorem 1 the integral defining Jγ(g) exists, finite or +∞.

The minimization of Jγ(g) over g ∈ Ga will be investi-
gated via the second conjugate of the value function. Due to
Lemma 2, under the global assumption

H∗∗
γ (a) = supϑ∈Rd

[〈ϑ, a〉 −
∫
Z

γ∗(ϑϕ) dμ
]
, a ∈ R

d . (7)

Theorem 2. If a belongs to ri(dom(Hγ)) and Hγ(a) is finite
then the supremum in (7) is attained and coincides with Hγ(a).
If, additionally, a maximizer ϑ in (7) exists such that the values
of ϑϕ belong μ-a.e. to dom(∂γ∗) then

Jγ(g) = Hγ(a)+ Bγ(g, h)+ Lγ(g, h, ϑϕ) , g ∈ Ga , (8)

for any measurable selection h from z �→ ∂γ∗(ϑϕ(z)).

Proof. By the assumptions on a, the value function is proper
[14, Theorems 7.2], and the first implication follows from [14,
Theorems 23.4, 23.5]. For any maximizer ϑ, the integral in
(7) is finite whence ϑϕ belongs to dom(γ∗), μ-a.e. Under the
stronger assumption on ϑϕ, the second assertion follows from
Theorem 1 and Lemma 2, noting that the assumptions on a
imply the global one. �

When Theorem 2 applies the infima in eq. (6) coincide
with the supremum in (7), which is an attained maximization
problem without constraints in a finite dimension.

Remark 4. In the second part of Theorem 2, if Jγ(g) equals
the finite infimum Hγ(a) for some g ∈ Ga then g ∈ La and
Bγ(g, h) vanishes for any of the selections h. In particular,
if γ is strictly convex then g is equal to the unique selection
∇γ∗(ϑϕ) by Remark 2. Even if no such minimizer g exists,
Bγ(gn, h) → 0 for every minimizing sequence gn ∈ Ga in (6),
thus when Jγ(gn) → Hγ(a). Such a function h is referred to
as a generalized minimizer of the problem (6). When γ is not
strictly convex, it is not necessarily unique.

Remark 5. The first hypothesis of Theorem 2 is of a very
common kind, known as the (primal) constraint qualification.
For the univariate case and a certain class of functions γ, an
explicit characterization of dom(Hγ) and its relative interior
is available in [8, Theorem 1]. For that case, the constraint
qualification can be dispensed with [8, Theorem 2]. Extensions
of these results to the present generality remain unclear.

Remark 6. The hypothesis on ϑ attaining the maximum in (7)
is trivially satisfied when dom(γ∗) = dom(∂γ∗), in particular
when dom(γ∗) is relatively open. In the framework of [8], a
maximizing ϑ always satisfies this hypothesis whenever one
of the coordinates of ϕ is the constant function 1, which
is an assumption commonly adopted also elsewhere. If that
assumption were dropped, Theorem 2 could fail even in that
framework, as demonstrated below.

Example 1. Let Z = {−1, 0, 1} be endowed with the counting
measure, e = 1 and γ(x) = 1/2x for x > 0 while γ(x) = +∞
otherwise. Thus, γ∗(ϑ) = −√−ϑ for ϑ � 0 and γ∗(ϑ) = +∞
otherwise. Let d = 1 and ϕ(z) = z. Then, representing a

function g on Z by a triple (r, s, t) ∈ R
3,

Hγ(a) = inf{ 1
2r+ 1

2s+ 1
2t : r, s, t > 0 , t−r = a} = 0 , a ∈ R .

It follows that ϑ = 0 is the unique element of dom(H ∗
γ ). Then,

ϑϕ identically equals 0, the endpoint of dom(γ ∗) = (−∞, 0]
where ∂γ∗(0) = ∅. Hence, no ϑ ∈ dom(H∗

γ ) satisfies the ad-
ditional hypothesis of Theorem 2. Moreover, each minimizing
sequence gn has the form (rn, sn, rn +a) with rn, sn → +∞
arbitrarily. Therefore, for g represented by r, s, t > 0

Bγ(gn, g) = (rn−r)2

2rnr + (sn−s)2

2sns + (rn+a−t)2

2(rn+a)t → +∞
which implies that no generalized minimizer exists. In par-
ticular, no function h renders the Pythagorean-like inequality
Jγ(g) � Hγ(a) + Bγ(g, h) true for all g ∈ La.

Remark 7. This example reveals two errors in previous papers
of the first author. Nonexistence of the generalized minimizer
in Example 1 contradicts [6, Theorem 1(c)], stating the Pytha-
gorean-like inequality. Failure of a maximizer in (7) to satisfy
the hypothesis in Theorem 2 contradicts the second statement
of [7, Theorem II.2]. Regretting these errors, the first author
notes that the proof of the existence of a generalized minimizer
in [6] is valid under the erroneously omitted assumption that
members of minimizing sequences have bounded Bregman
distances from some fixed function.

IV. MINIMIZATION OF f -DIVERGENCE

In this section, e = 2 and γ is defined by eq. (3). For
simplicity we assume that f is strictly convex, differentiable on
the positive axis and f ′(+∞) = +∞. By the last assumption,

Jγ(g) = Df(g1, g2) =
∫
{g2>0} g2f

(
g1
g2

)
dμ

if g = (g1, g2) is a pair of nonnegative functions on Z such that
g2 = 0 implies g1 = 0, μ-a.e. Otherwise, Df (g1, g2) = +∞.
The minimization problem of this section takes the form

Hγ(a) = inf(g1,g2)∈La
Df (g1, g2) , a ∈ R

d . (9)

A. Preliminaries and technicalities

The assumptions on f imply that the convex conjugate f ∗

is everywhere finite, differentiable, constant on (−∞, f ′(0)]
and increasing on (f ′(0), +∞).

If f(0) = +∞ then the domain of γ is the union of the
open positive quadrant and the origin (0, 0). Otherwise, the
domain contains additionally the halfline � = {(0, s) : s > 0}.

Lemma 3. At y = (u, v) with u, v positive

∇γ(y) =
(
f ′(u

v

)
, f

(
u
v

) − u
v f ′(u

v

) )
. (10)

For y = (0, 0)

∂γ(y) = {(α, β) ∈ R
2 : f∗(α) + β � 0} . (11)

If f(0) is finite then for all y ∈ �

∂γ(y) = {(α, f(0)) : α � f ′(0)} . (12)

A proof relies on [14, Theorem 23.2].



Lemma 4. For θ = (α, β) ∈ R
2

γ∗(θ) =

{
0 , f∗(α) + β � 0 ,

+∞ , otherwise,
(13)

and ∂γ∗(θ) = {v(f∗′(α), 1): v � 0} if f∗(α) + β = 0.

Eq. (13) follows from [14, Corollary 13.5.1].

Lemma 5. dom(γ∗) = dom(∂γ∗) = ∂γ(y) where y = (0, 0).

Lemma 6. For x = (t, s) ∈ dom(γ), y = (u, v) ∈ dom(∂γ)

Δγ(x, y) =

{
s Δf

(
t
s , u

v

)
, s, v > 0 ,

0 , u = 0 , v = 0 .

Proof. For s, v > 0 the assertion follows by simple calculus,
using (10) in the case u > 0 and (12) when u = 0. For s > 0
and u = v = 0

Δγ(x, y) = sf
(

t
s

) − supϑ∈∂γ(y) 〈ϑ, x〉 = 0

because by (11) the supremum equals

sup {αt + βs : α ∈ R , β � −f∗(α)} = sf∗∗( t
s

)
and f ∗∗ = f . If instead s = 0, the assertion is trivial. �
The previous lemma is partially covered by identities stated
in [1, Remark 6.10] for a broader class of functions γ than
those given by (3).

Lemma 7. For x, y as in Lemma 6 and θ = (α, β) ∈ ∂γ(y)

Υγ(x, y, θ) =

⎧⎪⎨
⎪⎩

0 , u > 0 , v > 0 ,

t [f ′(0) − α] , u = 0 , v > 0 ,

γ(x) − 〈θ, x〉 , u = 0 , v = 0 ,

where the second case takes place only when f ′(0) is finite.
In the third case, Υγ(x, y, θ) vanishes if and only if x = (0, 0)
or x = s(f∗′(α), 1) and f ∗(α) + β = 0.

Proof. The first case follows by the differentiability of γ at y.
In the second one, Lemma 3 applies to recognize that f ′(0) is
finite, to conclude that β = f(0) and to compute Υγ(x, y, θ) as
the maximum of the scalar product of (w − α, f(0) − β) and
x− y = (t, s− v) over w � f ′(0). The last case follows from
Lemma 1, where Δγ(x, y) = 0 by Lemma 6, and γ∗(θ) = 0,
on account of the assumption θ ∈ ∂γ(y) and Lemmas 5 and 4.
Hence, Υγ(x, y, θ) = 0 if and only if γ(x)− 〈θ, x〉 = −γ∗(θ)
which is equivalent to x ∈ ∂γ∗(θ). Then, the last assertion
follows from Lemma 4. �

B. Specialization of the main results

The minimization problem (9) is studied by applying the
results of Section III and the above technical lemmas. Let ϕ1

and ϕ2 be the columns of ϕ so that if ϑ ∈ R
d then ϑϕ has

the coordinates ϑϕ1 and ϑϕ2. By Lemma 4, the values of ϑϕ
belong to dom(∂γ∗) if and only if

f∗(ϑϕ1) + ϑϕ2 � 0 . (14)

For ϑ satisfying (14) μ-a.e. it follows from the second assertion
of Lemma 4 that h = (h1, h2) is a measurable selection from
∂γ∗(ϑϕ) if and only if, μ-a.e.,

h1 = f∗′(ϑϕ1)h2 (15)

and h2 = 0 outside the set

Zϑ = {z ∈ Z : f∗(ϑϕ1(z)) + ϑϕ2(z) = 0} .

The global assumption is satisfied, because the f -divergence
Df (g1, g2) is zero if both g1 and g2 vanish identically. Hence,
eq. (7) takes the form

H∗∗
γ (a) = sup{〈ϑ, a〉 : ϑ satisfies (14) μ-a.e.} , a ∈ R

d .
(16)

Theorem 2 is specialized for the present case as follows.

Theorem 3. If a belongs to ri(dom(Hγ)) and Hγ(a) is finite
then the supremum in (16) is attained at some ϑ and coincides
with Hγ(a). For this ϑ and any g = (g1, g2) ∈ La

Df (g1, g2) = Hγ(a) +
∫
A∩B

g2 Δf

(
g1
g2

, f∗′(ϑϕ1)
)
dμ

+
∫
A∩C

g1

[
f ′(0)−ϑϕ1

]
dμ +

∫
Z\A

[
γ(g)−〈ϑϕ, g〉] dμ

(17)

where A is any measurable subset of Zϑ and B, C are the
subsets of Z given by g2 > 0 and ϑϕ1 � f ′(0), respectively.

Proof. The first assertion follows directly from Theorem 2.
The finiteness of (16) at a maximizer ϑ implies that ϑϕ belongs
to dom(γ∗), μ-a.e. The additional hypotheses of Theorem 2
holds because dom(γ∗) = dom(∂γ∗) by Lemma 5. If A ⊆ Zϑ

is measurable then h2 = 11A and h1 = f∗′(ϑϕ1)11A give rise
to a measurable selection h = (h1, h2) from z �→ ∂γ∗(ϑϕ(z))
as discussed above. Then, the second assertion of Theorem 2
applies and (17) results from (8). In fact, by the substitutions

g = (g1, g2) for x = (t, s)
h = (h1, h2) for y = (u, v)

ϑϕ = (ϑϕ1, ϑϕ2) for θ = (α, β)

Lemma 6 implies that

Bγ(g, h) =
∫
{g2>0 , h2>0} g2 Δf

(
g1
g2

, h1
h2

)
dμ (18)

equals the integral on the first line of eq. (17). By Lemma 7,

Lγ(g, h, ϑϕ) =
∫
{h1=0} Υγ(g, h, ϑ) dμ . (19)

Splitting the integration further to A and Z \ A, the two
integrals on the second line of eq. (17) emerge. The function
h1 vanishes on A if and only if f ∗′(ϑϕ1) = 0 which is
equivalent to ϑϕ1 � f ′(0). �
Remark 8. A set A in Theorem 3 originated from a selection
h in Theorem 2. Though the selections in the above proof
are not in the most general form, it is not difficult to see that
no generality was lost when rewriting (8) to (17). In fact, for
arbitrary selection h = (h1, h2), satisfying (15) and h2 = 0
outside Zϑ, μ-a.e., the integral in (18) depends on h only
through {h2 > 0} and the ratio h1

h2
= f∗′(ϑϕ1) on this set,

and (19) depends on h only through {h 1 = 0}, expressible



also via that set and ratio. It follows that all these selections
h are generalized minimizers in the problem (9). This may be
of limited value in general, but if either of them happens to
satisfy the given constraints, h ∈ La, then it has to be a true
minimizer, by Remark 1.

Remark 9. Under the assumptions of Theorem 3, if g is a
minimizer in the problem (9) then g2 vanishes outside Zϑ

and g1 = f∗′(ϑϕ1)g2, μ-a.e., thus g is among the generalized
minimizers discussed in Remark 8. In fact, in eq. (17) with
A = Zϑ the last integral vanishes, and thus g = 0, μ-a.e.
outside Zϑ, by the last assertion of Lemma 7. Then, in eq. (17)
B = {g2 > 0} ∩ Zϑ can play the role of A, the first integral
vanishes, and therefore g1 = f∗′(ϑϕ1)g2 on B, μ-a.e., by
the properties of f . The finiteness of Df (g1, g2) implies that
g1 = 0 whenever g2 = 0 so that g1 = f∗′(ϑϕ1)g2, μ-a.e.

Example 2. Let Z = (0, 1] be endowed with the Lebesgue
measure, d = 2 and f(t) = 1

2 t2, t � 0. Then f ∗(s) = |s|2+/2.
Further, γ(x) = t2

2s for x = (t, s) with t � 0, s > 0. Let
ϕ1 consist of the functions z, 0 and ϕ2 of 0, z2. Then La

with a = (a1, a2) contains pairs g = (g1, g2) of nonnegative
functions satisfying∫ 1

0
zg1(z) dz = a1 and

∫ 1

0
z2g2(z) dz = a2 .

Let a1, a2 be positive. By eq. (16),

H∗∗
γ (a) = sup {ϑ1a1 + ϑ2a2 : |ϑ1|2+ + 2ϑ2 � 0}

= max {ϑ1a1 − 1
2 ϑ2

1a2 : ϑ1 � 0} =
a2
1

2a2

where the supremum is attained at ϑ1 = a1
a2

and ϑ2 = − a2
1

2a2
2

,
uniquely. Then, Hγ(a) = H∗∗

γ (a).
The mapping ϕ was chosen on purpose to make ineq. (14)

with the maximizing ϑ = (ϑ1, ϑ2) tight, and thus to achieve
Zϑ = Z . Hence, h = (h1, h2) is a measurable selection from
z �→ ∂γ∗(ϑϕ(z)) if and only if h2 is a nonnegative measurable
function on Z and

h1(z) = |ϑ1z|+h2(z) = a1
a2

zh2(z) ,

a.e. In particular, the selection h = 3(a1z, a2) satisfies the
constraints, h ∈ La, and thus is a minimizer of the problem (9)

by Remark 8. Any minimizer g = (g1, g2) in (9) must have the
form ( a1

a2
zg2, g2) with g2 � 0 by Remark 9. A pair of this form

is a minimizer if and only if z2g2(z) integrates to a2. Let us
remark that this example can be analyzed also in a simple
direct way, without any convex analysis.
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