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Abstract. We characterize the Aubin property of a canonically perturbed KKT system related to the
second-order cone programming problem in terms of a strong second-order optimality condition. This condi-
tion requires the positive definiteness of a quadratic form, involving the Hessian of the Lagrangian and an extra
term, associated with the curvature of the constraint set, over the linear space generated by the cone of critical
directions. Since this condition is equivalent with the Robinson strong regularity, the mentioned KKT system
behaves (with some restrictions) similarly as in nonlinear programming.
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1. Introduction. In nonlinear programming we have (for sufficiently smooth
data) an equivalence between the strong second-order sufficient optimality condition
(SSOSC) and linear independence constraint qualification condition (LICQ) on one
hand, and Robinson’s strong regularity of the canonically perturbed Karush–Kuhn–
Tucker (KKT) system at the solution on the other hand (cf. [24, Theorem 4.1] and
[8, Theorem 4.10]). Thanks to the results in Dontchev and Rockafellar [9, Theorems
1, 4, and 5], one further knows that these properties are equivalent with the Aubin prop-
erty of the perturbed KKT system at the solution. This last equivalence is somewhat
surprising because, at first glance, the Aubin property seems to be much less restrictive
than the strong regularity. In fact, this equivalence is violated whenever the problem
data are only in C 1;1 (continuously differentiable with Lipschitz gradient; cf. [16]) or
provided we have to do with noncanonical perturbations (cf. [14]).

This paper is devoted to the study of the following nonlinear second-order cone
programming problem (SOCP):

Min
x∈Rn;sj∈Rmjþ1

f ðxÞ; gjðxÞ ¼ sj; ðsjÞ0 ≥ ks̄jk; j ¼ 1; : : : ; J ;ðSOCPÞ

where f and gj, j ¼ 1; : : : ; J , are twice continuously differentiable mappings from Rn

into R and Rmjþ1, respectively. Here we use the standard convention of indexing com-
ponents of vectors of Rmjþ1 from 0 to mj, and given s ∈ Rmjþ1, s̄ denotes the subvector
ðs1; : : : ; smj

Þ⊤. The vectors in Rn are indexed in the standard way from 1 to n, and by
k · k we denote the Euclidean norm. The second-order cone (or ice-cream cone, or
Lorentz cone) of dimension mþ 1 is defined to be
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Qmþ1 ≔ fs ∈ Rmþ1; s0 ≥ ks̄kg:

Hence, SOCP can be written as

Min
x

fðxÞ; gjðxÞ ∈ Qmjþ1; j ¼ 1; 2; : : : ; J ;

or

Min
x

fðxÞ; gðxÞ ∈ Q;

where gð·Þ ≔ ðg1ð·Þ; : : : ; gJ ð·ÞÞ and Q ≔
Q

J
j¼1 Qmjþ1. Clearly, under a constraint qua-

lification (CQ), one can associate with SOCP a KKT system in the form of a variational
inequality (VI), or a generalized equation (GE), with a nonpolyhedral constraint set.
The solution map of this VI, when perturbed in a canonical way, assigns the perturbing
parameter the KKT (critical) pairs of SOCP.

In Bonnans and Ramírez [5], the authors have proved a counterpart of the first
equivalence above in which the SSOSC has been appropriately changed to consider
the curvature of the constraint set, and LICQ has been replaced by the nondegeneracy
condition, standard in conical programming. In the present paper we intend to study a
possible extension of the second equivalence to the SOCP framework.

As in [9] our main workhorse is the characterization of the Aubin property via the
so-called Mordukhovich criterion; see formula (2.9) below. We, however, do not estab-
lish a counterpart of [9, Theorem 1], but reduce in the first step the perturbed KKT
system to a single GE

η ∈ DfðxÞ þ ðDgðxÞÞ⊤NQðgðxÞÞð1:1Þ

in variable x only. Then we prove that the Aubin property of the solution map η ↦ x in
(1.1) around ð0; x�Þ is equivalent with SSOSC under the nondegeneracy condition and a
restriction on the position of the KKT pair. This gives raise to a certain reduced form of
the second equivalence in nonlinear programming, which is the main result of this paper.
Our proof makes use of the following two essential ingredients:

(i) An explicit formula for the limiting (Mordukhovich) coderivative of the
metric projection onto Qmþ1, which has been computed in Outrata and
Sun [22], and

(ii) a generalization of the second-order chain rule from Mordukhovich and
Outrata [21, Theorem 3.4].

Besides the mentioned paper [9] a useful characterization of the Aubin property for
inverses of strongly B-differentiable PC1 functions has been provided in [13, Theorem
3.5] in terms of the so-called coherent orientation condition. This result, however, does
not completely cover the case of SOCP, due to the nature of Qmþ1.

There are many important optimization problems arising in structural design
(e.g., [2]), support vector machines and data classification (e.g., [2], [26]), robust opti-
mization (e.g., [3], [17]), and in numerous other areas, which can be advantageously
modeled or reformulated as SOCP; see [1] (and the references therein) for an overview
of such examples, as well as for a review of the theoretical properties of SOCP problems.
So, the investigation of the behavior of the critical points of SOCP with respect to the
considered perturbations is important both in postoptimal analysis as well as in a
possible control of solutions via parameters.
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The paper is organized as follows. Section 2 is devoted to preliminaries. To facilitate
the reading, it is split into subsections 2.1–2.4. In section 2.1 the reader finds a few basic
facts about the Jordan algebra associated with Qmþ1. This algebra is the main tool for
studying SOCP. In section 2.2 we provide the definitions of several notions from modern
variational analysis used in what follows. Furthermore, we present the main result from
[22], i.e., the mentioned formula for the coderivative of the projection onto Qmþ1. This
subsection is closed by a new second-order chain rule that enables us to compute the
coderivative of normal-cone mappings associated with the constraints system of SOCP.
Section 2.3 deals with first-order optimality conditions. Here we define the mappings S
and Se, whose local behavior is the main object of this study. Finally, in section 2.4 we
recall the notion of strong regularity and its connection with SSOSC, taken over from [5]
and [28]. Our main results are stated in section 3. Therein, Theorem 21 concerns SOCP
with J ¼ 1. For this case, under nondegeneracy, the Aubin property is characterized in
terms of SSOSC. In this way we establish a similar relationship between the Aubin prop-
erty and the strong regularity as in [9]. Theorem 26 concerns SOCP in its general form.
For this case, the desired characterization is proven provided that, for the local mini-
mizer x� and its corresponding (unique) Lagrange multilplier y�, there exists at most
one block j satisfying either gjðx�Þ ¼ 0 and y�j ∈ ∂Qmjþ1 \ f0g or gðx�Þ ∈ ∂Q \ f0g
and y�j ¼ 0 or gjðx�Þ ¼ 0 ¼ y�j. Finally, section 5 contains some short conclusions.

The following notation is employed. For a set A, symbols ∂A, SpðAÞ, and linðAÞ
stand for its boundary, span, and the lineality space, respectively. The latter, linðAÞ,
is defined as the biggest linear space contained in A. For a single-valued mapping f ,
Df ðxÞ and D2f ðxÞ denote its first- and second-order derivatives at x. B is the unit ball
and I is the identity matrix. Sometimes we write I n to indicate the dimension. oð·Þ
denotes, as usual, a function from Rþ to R with the property that limt→0 t

−1oðtÞ ¼ 0.
Finally, TAðsÞ ≔ fd∶sþ tdþ oðtÞ ∈ A for all t > 0g stands for the tangent cone to a set
A at the point s ∈ A.

2. Preliminaries.

2.1. Algebra preliminaries on SOCP. In this section, we recall some basic con-
cepts and properties about the Jordan algebra associated with the second-order cone
Qmþ1 that are needed for this work (see [11] for more details). For any v ¼ ðv0; v̄Þ,
w ¼ ðw0; w̄Þ ∈ R× Rm, the Jordan product for Qmþ1 is defined by

v ∘ w ¼ ðhv;wi; v0w̄þw0v̄Þ;ð2:1Þ

where hv;wi ¼ v⊤w ¼Pm
j¼0 vjwj. This product can be equivalently written as

v ∘ w ¼ ArwðvÞw;ð2:2Þ

where

ArwðvÞ ≔
�
v0 v̄⊤

v̄ v0Im

�

is the arrow matrix of vector v. In the case of block vectors v, w in ΠJ
j¼1R

mjþ1 we set

v ∘ w ≔ vecðv1 ∘ w1; : : : ; vJ ∘ wJ Þ;

where, for any block vector u ¼ ðu1; : : : ; uJ Þ in ΠJ
j¼1R

mjþ1, vecðuÞ denotes the row
vector ðu1; : : : ; uJ Þ⊤.
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It is clear that the product ∘ is commutative, and it follows easily from (2.2) that
ðv;wÞ ↦ v ∘ w is a bilinear function where the element e ¼ ð1; 0; : : : ; 0Þ ∈ Rmþ1 plays
the role of unit element for this algebra. On the other hand, the cone Qmþ1 is not closed
under the product ∘.

We recall the well-known property (e.g., [1, Lemma 15]):

For all v;w ∈ Qmþ1; v ∘ w ¼ 0 if and only if hv;wi ¼ 0:ð2:3Þ

Moreover, it is easily checked that relations in (2.3) are satisfied if and only if v and w
belong to Qmþ1 and

either v ¼ 0 or w ¼ 0; or there exists α > 0 such that

v0 ¼ αw0 and v̄ ¼ −αw̄.ð2:4Þ

We next introduce the spectral decomposition of vectors in Rmþ1 associated with
Qmþ1. For any w ¼ ðw0; w̄Þ ∈ R× Rm, we can decompose w as

w ¼ λ1ðwÞc1ðwÞ þ λ2ðwÞc2ðwÞ;ð2:5Þ
where λ1ðwÞ, λ2ðwÞ and c1ðwÞ, c2ðwÞ are the spectral values and spectral vectors of w
given by

λiðwÞ ¼ w0 þ ð−1Þikw̄k;ð2:6Þ

ciðwÞ ¼
8<
:

1
2

�
1; ð−1Þi w̄

kw̄k
�

if w̄ ≠ 0;
1
2 ð1; ð−1Þiv̄Þ if w̄ ¼ 0

ð2:7Þ

for i ¼ 1; 2 with v̄ being any unit vector in Rm. If w̄ ≠ 0, the decomposition (2.5) is
unique. Notice that λ1ðwÞ ≤ λ2ðwÞ and the vectors ciðwÞ, i ¼ 1; 2 belong to ∂Qmþ1.

For each w ¼ ðw1; w̄Þ ∈ R× Rm, the trace and the determinant of w with respect to
Qmþ1 are defined as

trðwÞ ¼ λ1ðwÞ þ λ2ðwÞ ¼ 2w0;

detðwÞ ¼ λ1ðwÞλ2ðwÞ ¼ w2
0 − kw̄k2:ð2:8Þ

These definitions can be viewed as the analogues of the trace and the determinant of
matrices.

The spectral decomposition entails some basic properties, which are summar-
ized below.

PROPOSITION 1. For any w ¼ ðw0; w̄Þ ∈ R× Rm the spectral values λ1ðwÞ, λ2ðwÞ
and spectral vectors c1ðwÞ, c2ðwÞ given by (2.6) and (2.7) have the following properties:

(a) c1ðwÞ and c2ðwÞ are orthogonal for the Jordan product; i.e., c1ðwÞ ∘ c2ðwÞ ¼ 0,
and kc1ðwÞk ¼ kc2ðwÞk ¼ 1ffiffi

2
p .

(b) c1ðwÞ and c2ðwÞ are idempotent for the Jordan product: ciðwÞ ∘ ciðwÞ ¼ ciðwÞ
for i ¼ 1; 2.

(c) λ1ðwÞ, λ2ðwÞ are nonnegative (resp., positive) if and only if w ∈ Qmþ1

(resp., w ∈ intQmþ1).
(d) The Euclidean norm of w can be represented as kwk2 ¼ 1

2 ðλ1ðwÞ2 þ λ2ðwÞ2Þ.
For a proof of the previous proposition, see [1], [11].
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2.2. Nonsmooth analysis. Consider a set A ⊆ Rn and a multifunction Φ∶Rn ⇉
Rm. Recall that the graph of Φ is defined by GrΦ ≔ fðx; yÞ ∈ Rn × Rmjy ∈ ΦðxÞg.

DEFINITION 2. Let x̄ ∈ A and ðx̄; ȳÞ ∈ GrΦ.
(i) The regular (Fréchet) normal-cone to A at x̄, denoted by N̂Aðx̄Þ, is defined by

N̂Aðx̄Þ ≔ fx� ∈ Rnjhx�; x− x̄i ≤ oðkx− x̄kÞ ∀ x ∈ Ag:

(ii) The limiting (Mordukhovich) normal-cone to A at x̄, denoted by NAðx̄Þ, is the
cone

NAðx̄Þ ≔ Limsup
x→x̄

N̂AðxÞ

¼ fx� ∈ Rnj∃xk →
A
x̄; x�k → x� such that x�k ∈ N̂AðxkÞg:

(iii) The (limiting) coderivative of Φ at ðx̄; ȳÞ is the multifunction D�Φðx̄; ȳÞ∶
Rm ⇉ Rn defined for all y� ∈ Rm by

D�Φðx̄; ȳÞðy�Þ ≔ fx� ∈ Rnjðx�;−y�Þ ∈ NGrΦðx̄; ȳÞg:

Remark 3. When the set A is convex, both normal-cones defined in (i) and (ii) co-
incide with the classical normal-cone used in convex analysis: NAðx̄Þ ≔ fx�∶hx�; xi ≤
hx�; x̄i for all x ∈ Ag.

The limiting notions above ((ii) and (iii)) admit a rich calculus and play an impor-
tant role in modern variational analysis. For their properties and respective calculus
rules the reader is referred to [19] and the monographs [25], [20]. The limiting coderi-
vative enables us to characterize an important Lipschitz-like behavior of multifunctions,
called the Aubin property.

DEFINITION 4. Multifunction Φ has the Aubin property around ðx̄; ȳÞ, provided there
are neighborhoods U of x̄ and V of ȳ and a positive scalar L such that

Φðx1Þ ∩ V ⊆ Φðx2Þ þ Lkx1 − x2kB ∀x1; x2 ∈ U:

It turns out that Φ possesses the Aubin property around ðx̄; ȳÞ if and only if

D�Φðx̄; ȳÞð0Þ ¼ f0g;ð2:9Þ

cf. [18, Proposition 3.5]. For different proofs and an extensive discussion on this subject,
see also [25, Theorem 9.40], [20, Theorem 4.10]. In [25], the condition (2.9) is called the
Mordukhovich criterion.

Let us now analyze the metric projection onto Qmþ1, which will be denoted by P. It
is easy to see that P is differentiable (even continuously differentiable) at points
z ∈ Rmþ1, where detðzÞ ≠ 0. One has that (cf. [15])

DPðzÞ ¼

8>>><
>>>:

0 if z0 < −kz̄k;
Imþ1 if z0 > þkz̄k;
1
2

�
1 w̄⊤

w̄ H

�
if − kz̄k < z0 < þkz̄k;

where w̄ ≔ z̄
kz̄k and H ≔ ð1þ z0

kz̄kÞIm − z0
kz̄k w̄w̄⊤.
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Due to the symmetry of DP at these points

D�Pðz; PðzÞÞðz�Þ ¼ DPðzÞz� ∀ z� ∈ Rmþ1:

The main result of [22] consists in the computation of D�P at points ðz; PðzÞÞ, where
detðzÞ ¼ 0. To present this result in a simple form, consider first a fixed z with z̄ ≠ 0 and
define the matrices

AðzÞ ≔ I þ 1

2

2
4−1 z̄⊤

kz̄k
z̄
kz̄k − z̄ðz̄Þ⊤

kz̄k2

3
5 ¼ Projðc1ðzÞÞ⊥ð·Þð2:10Þ

and

BðzÞ ≔ 1

2

2
4 1 z̄⊤

kz̄k
z̄
kz̄k

z̄ðz̄Þ⊤
kz̄k2

3
5 ¼ I − Projðc2ðzÞÞ⊥ð·Þ:ð2:11Þ

THEOREM 5. Let z ∈ Rmþ1 have the spectral decomposition as in (2.5) and let
u� ∈ Rmþ1. Then one has

(i) if detðzÞ ¼ 0 but λ2ðzÞ ≠ 0, i.e., z ∈ ∂Qmþ1 \ f0g, then

D�PðzÞðu�Þ ¼
�
convfu�; AðzÞu�g if hu�; c1ðzÞi ≥ 0;
fu�; AðzÞu�g otherwise;

ð2:12Þ

(ii) if detðzÞ ¼ 0 but λ1ðzÞ ≠ 0, i.e., z ∈ ∂ð−Qmþ1Þ \ f0g, then

D�PðzÞðu�Þ ¼
�
convf0; BðzÞu�g if hu�; c2ðzÞi ≥ 0;
f0; BðzÞu�g otherwise:

ð2:13Þ

So, it remains to consider the most difficult case z ¼ 0. In order to keep the respec-
tive formula forD�Pð0Þ in a concise form, we employ also the notion of theB-Jacobian of
P, defined by

∂̄BPðzÞ ≔
n

lim
k→þ∞

DPðzkÞjzk → z; P is differentiable at zk

o
:

THEOREM 6. For all u� ∈ Rmþ1 one has

D�Pð0Þðu�Þ ¼∂̄BPð0Þu� ∪ ðQmþ1 ∩ u� −Qmþ1Þ
∪
[
A∈A

convfu�; Au�g ∪
[
B∈B

convf0; Bu�g;ð2:14Þ

where

∂̄BPð0Þ ¼ fI ; 0g ∪
�
1

2

�
1 w⊤

w 2αI þ ð1− 2αÞww⊤

�
jw ∈ Rn−1; kwk ¼ 1; α ∈ ½0; 1�

	
;

ð2:15Þ

and
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A ≔
�
I þ 1

2

�−1 w⊤

w −ww⊤

�
jw ∈ Rn−1; kwk ¼ 1;



u�;

�
1

−w

��
≥ 0

	
;

B ≔
�
1

2

�
1 w⊤

w ww⊤

�
jw ∈ Rn−1; kwk ¼ 1;



u�;

�
1

w

��
≥ 0

	
:

In the last part of this subsection we will be dealing with the constraint set

A ≔ fx ∈ RnjgðxÞ ∈ Kg;ð2:16Þ

where the map g∶Rn → Rm is twice continuously differentiable and K ⊂ Rm is a general
closed and convex set. In section 3 we then put K equal to Qmþ1 or to the Cartesian
product of second-order cones, but Theorem 7 below can also be used in other situations
and therefore we will present it in a general form.

Let x̄ ∈ A be a reference point and put s̄ ≔ gðx̄Þ. Assume the existence of a twice
continuously differentiable reduction map h∶Rm → Rk and a closed convex set C ⊂ Rk

such that

1: hðs̄Þ ¼ 0; Dhðs̄Þ is surjective and there is a neighborhoodO
of s̄ such that

K ∩ O ¼ h−1ðCÞ ∩ O;
2: TCðhðs̄ÞÞ is pointed:

9>>>=
>>>;

ðRÞ

In agreement with [7, Definition 3.135], condition (R) means that K is ðC 2−Þ reducible
to the set C at s̄, and the reduction is pointed. Further, following [7, Definition 4.40], we
will suppose that x̄ is a nondegenerate point of the mapping g with respect to K and h;
i.e.,

Dgðx̄ÞRn þKerDhðs̄Þ ¼ Rm:ð2:17Þ

As shown in [7, section 4.6], under the pointedness assumption above, (2.17) is
equivalent with the condition

Dgðx̄ÞRn þ linðTK ðs̄ÞÞ ¼ Rmð2:18Þ

or, equivalently, with the implication

ðDgðx̄ÞÞ⊤λ ¼ 0
λ ∈ SpNK ðs̄Þ

	
⇒ λ ¼ 0;ð2:19Þ

which is independent of the reduction mapping h. So, under (R), either of the conditions
(2.18), (2.19) can be used as definition of nondegeneracy. This definition is discussed in a
general conic programming framework in [7, section 4.6] and extends, from classical
nonlinear programming, the concept of linear independence of gradients of active con-
straints. Note that other known definitions of nondegeneracy in the SOCP literature are
essentially equivalent; see, for instance, [1, Definition 18] and the references therein.

On the basis of (2.19) it can easily be proved that to each v̄ ∈ NAðx̄Þ, there exists a
unique multiplier ȳ ∈ NK ðs̄Þ such that v̄ ¼ ðDgðx̄ÞÞ⊤ȳ. Moreover, Dðh ∘ gÞðx̄Þ is
surjective.
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Our aim is now to compute the coderivative of normal-cone mapping NAð·Þ, which
plays a crucial role in the main results of this paper. In the proof of the respective state-
ment below we make use of the following formula for differentiation of a special
composition.

Let C be an ½l× p�matrix whose entries are continuously differentiable functions of
x ∈ Rn. Similarly, let the elements of b ∈ Rp be continuously differentiable functions
of x. Then one has

DðCð·Þbð·ÞÞjx¼x̄ ¼ DðCð·Þbðx̄ÞÞjx¼x̄ þ DðCðx̄Þbð·ÞÞjx¼x̄:ð2:20Þ

THEOREM 7. Let x̄ be a nondegenerate point of g with respect toK and h, and assume
that the conditions (R) are fulfilled. Let ðx̄; v̄Þ ∈ GrNA and ȳ ∈ Rm be the (unique) vector
from NK ðs̄Þ such that v̄ ¼ ðDgðx̄ÞÞ⊤ȳ. Then for all v� ∈ Rm

D�NAðx̄; v̄Þðv�Þ ¼
�Xm

i¼1

ȳi Dg2i ðx̄Þ
�
v� þ Dgðx̄Þ⊤D�NK ðs̄; ȳÞðDgðx̄Þv�Þ:ð2:21Þ

Proof. Denote f ¼ h ∘ g. By [21, Theorem 3.4] and our assumptions above, there
exists a unique multiplier vector μ̄ ∈ N Cðfðx̄ÞÞ with ðDf ðx̄ÞÞ⊤μ̄ ¼ v̄ such that

D�NAðx̄; v̄Þðv�Þ ¼
�Xk

i¼1

μ̄i D
2f iðx̄Þ

�
v� þ Df ðx̄Þ⊤D�N Cðf ðx̄Þ; μ̄ÞðDf ðx̄Þv�Þ:ð2:22Þ

Clearly,

Df ðx̄Þ ¼ Dðh ∘ gÞðx̄Þ ¼ Dhðs̄ÞDgðx̄Þ

and

Df ðx̄Þ⊤ ¼ Dgðx̄Þ⊤Dhðs̄Þ⊤:ð2:23Þ

Moreover, sinceDhðs̄Þ is surjective, one has again by [21, Theorem 3.4] for all λ� ∈ Rk the
equality

D�NK ðs̄; ȳÞðλ�Þ ¼
�Xk

i¼1

ϑ̄i D
2hiðs̄Þ

�
λ� þ Dhðs̄Þ⊤D�N Cðhðs̄Þ; ϑ̄ÞðDhðs̄Þλ�Þ;

where ϑ̄ is the unique vector from Rk satisfying the relations

ϑ̄ ∈ N Cðhðs̄ÞÞ; Dhðs̄Þ⊤ϑ̄ ¼ ȳ:ð2:24Þ

As hðs̄Þ ¼ f ðx̄Þ, it follows by virtue of the uniqueness of μ̄ that ϑ̄ ¼ μ̄. Indeed, both ϑ̄ and
μ̄ belong to N Cðf ðx̄ÞÞ, and by virtue of (2.23),

Dfðx̄Þ⊤ϑ̄ ¼ Dgðx̄Þ⊤Dhðs̄Þ⊤ϑ̄ ¼ Dgðx̄Þ⊤ȳ ¼ v̄:

Taking this into account we observe that
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Dfðx̄Þ⊤D�N Cðfðx̄Þ; μ̄ÞðDf ðx̄Þv�Þ ¼ Dgðx̄Þ⊤Dhðs̄Þ⊤D�N Cðhðs̄Þ; ϑ̄ÞðDhðs̄ÞDgðx̄Þv�Þ

¼ Dgðx̄Þ⊤
�
D�NK ðs̄; ȳÞðDgðx̄Þv�Þ−

�Xk
i¼1

μ̄iD
2hiðs̄Þ

�
ðDgðx̄Þv�Þ

�
:

It remains thus to show that Xk
i¼1

μ̄iD
2f iðx̄Þ

!
v� ¼

 Xm
i¼1

ȳiD
2giðx̄Þ

!
v� þ Dgðx̄Þ⊤

 Xk
i¼1

μ̄iD
2hiðs̄Þ

!
ðDgðx̄Þv�Þ:

To this end we invoke formula (2.20) and conclude that, taking Dfið·Þ and Dhið·Þ as
column vectors, one has

DðDfiðx̄ÞÞ ¼ DðDgð·Þ⊤Dhiðgð·ÞÞÞjx¼x̄

¼ DðDgð·Þ⊤Dhiðs̄ÞÞjx¼x̄ þ Dgðx̄Þ⊤DðDhiðgð·ÞÞÞjx¼x̄:

Hence,

�Xk
i¼1

μ̄iD
2f iðx̄Þ

�
v� ¼

�
D

�
Dgð·Þ⊤

Xk
i¼1

μ̄iDhiðs̄Þ
�����

x¼x̄

�
v�

þ Dgðx̄Þ⊤
Xk
i¼1

μ̄iD
2hiðs̄ÞðDgðx̄Þv�

�
:ð2:25Þ

Since
P

k
i¼1 μ̄iDhiðs̄Þ ¼ ȳ, the first term on the right-hand side of (2.25) amounts to

ðDð½Dg1ð·Þ; : : : ; Dgmð·Þ�ȳÞjx¼x̄Þv� ¼
�Xm

i¼1

ȳiD
2giðx̄Þ

�
v�

and we are done. ▯
Several remarks are in order.
Remark 8. Formula (2.21) has been derived in [21] under the surjectivity of Dgðx̄Þ.

In such a case one does not need to take care about the reducibility of K . In this sense,
(2.21) can be viewed as generalization of the respective chain rule from [21].

Remark 9. In [7, section 3.4] one finds important examples of reducible sets. The
reducibility of Qmþ1 or the Cartesian product of the second-order cones has been proved
in [5, Lemma 15].

2.3. First-order optimality conditions for nonlinear SOCP. Let x� be a
(local) solution of SOCP satisfying Robinson’s CQ condition which attains in this case
the following form:

There exists h� ∈ Rn such that gðx�Þ þ Dgðx�Þh� ∈ intQ:ð2:26Þ

Under (2.26) there is a vector y� ¼ ðy�1; : : : ; y�J Þ⊤ of Lagrange multipliers associated
with x� such that the pair ðx�; y�Þ fulfills the KKT conditions

0 ¼ DxLðx; yÞ;
yj ∈ Qmjþ1; hyj; gjðxÞi ¼ 0 ∀j ¼ 1; : : : ; J ;ð2:27Þ

806 JIŘÍ V. OUTRATA AND HÉCTOR RAMÍREZ C.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



where

Lðx; yÞ ≔ f ðxÞ−
XJ
j¼1

hyj; gjðxÞi

is the Lagrangian function and y ¼ ðy1; : : : ; yJ Þ⊤. We denote by Λðx�Þ the set of vectors
y that satisfy condition (2.27) with x ¼ x�. They are termed Lagrange multipliers
associated with x�. Under (2.26), Λðx�Þ is a nonempty and compact set.

On the other hand, since the sets Qmjþ1, j ¼ 1; 2; : : : ; J are self-dual cones, one has

gjðxÞ ∈ Qmjþ1

yj ∈ Qmjþ1

hyj; gjðxÞi ¼ 0

9=
;⇔ −yj ∈ NQmjþ1

ðgjðxÞÞ ⇔ −gjðxÞ ∈ NQmjþ1
ðyjÞ:ð2:28Þ

So, Robinson’s condition (2.26) can be equivalently stated as follows:

P
J
j¼1 ðDgjðx�ÞÞ⊤yj ¼ 0

yj ∈ Qmjþ1

hyj; gjðx�Þi ¼ 0; j ¼ 1; : : : ; J

9>>=
>>;⇒ y ¼ 0:ð2:29Þ

Indeed, (2.26) is equivalent to saying that (see [7, Proposition 2.97 and Corollary 2.98])

Dgðx�ÞRn þ TQðgðx�ÞÞ ¼ Rmþ1ð2:30Þ

or

KerDgðx�Þ ∩ NQðgðx�ÞÞ ¼ f0g:ð2:31Þ

Due to (2.28), condition (2.31) clearly coincides with condition (2.29). They amount to
the (generalized) Mangasarian–Fromowitz CQ for SOCP; cf. [12].

It also follows from (2.28) that KKT conditions (2.27) can be written as the
“enhanced” GE

0 ¼ DxLðx; yÞ;
0 ∈ gðxÞ þ NQðyÞ:ð2:32Þ

By virtue of (2.28), the variable y in (2.32) can be eliminated, and in this way we arrive
at the GE

0 ∈ Df ðxÞ þ ðDgðxÞÞ⊤NQðgðxÞÞð2:33Þ

in variable x only.
Remark 10. The GE (2.33) can also be constructed directly on the basis of the op-

timality condition

0 ∈ Df ðxÞ þ N̂ΓðxÞ;

where Γ is the (generally nonconvex) set g−1ðQÞ. It suffices to realize that under the
posed assumptions
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N̂ΓðxÞ ¼ ðDgðxÞÞ⊤NQðgðxÞÞ

for x close to x�; cf. [25, Exercise 10.26 (d)].
The solutions to (2.33), i.e., the x-parts of the solutions to (2.32), are called the

critical points of SOCP. Clearly, under (2.26) each (local) solution of SOCP is a critical
point.

Via canonical perturbations of GE (2.32) and (2.33), we define now the
multifunctions

Se∶Rn ×
YJ
j¼1

Rmjþ1 ⇉ Rn ×
YJ
j¼1

Rmjþ1 and S∶Rn ⇉ Rn

by

Seðδ1;δ2Þ ≔ fðx; yÞjδ1 ¼ DxLðx; yÞ;δ2 ∈ gðxÞ þNQðyÞg;
SðηÞ ≔ fxjη ∈ DfðxÞ þ ðDgðxÞÞ⊤NQðgðxÞÞg:

Multifunction S will be called the critical point map of SOCP. Both Se and S play a
crucial role in the further development. Clearly, x ∈ SðηÞ if and only if there is a y such
that

ðx; yÞ ∈ Seðη; 0Þ:ð2:34Þ

The remainder of this section is devoted to two additional notions that are exten-
sively used in the following. First, we recall from [5, Lemma 2.5] the characterization of
the tangent cone to the second-order cone.

LEMMA 11. Consider the second-order cone Q ≔ Qmþ1 and let s ∈ Q. Then,

TQðsÞ ¼
8<
:

Rmþ1 if s ∈ intQ;
Q if s ¼ 0;
d ∈ Rmþ1∶hd̄; s̄i− s0d0 ≤ 0 if s ∈ ∂Q \ f0g:

ð2:35Þ

Another important set associated with a point x�, feasible for SOCP, is termed the
cone of critical directions at x� and defined by

Cðx�Þ ≔ Df ðx�Þ⊥ ∩ Dgðx�Þ−1TQðgðx�ÞÞ:ð2:36Þ

If Λðx�Þ is nonempty, and y� ∈ Λðx�Þ, then

Cðx�Þ ¼ fh∶Dgðx�Þh ∈ TQðgðx�ÞÞ ∩ ðy�Þ⊥g:

From now on, we use the notations sj ≔ gjðx�Þ and djðhÞ ≔ Dgjðx�Þh (for a
given h ∈ Rn).

COROLLARY 12. Let x� be a critical point of problem SOCP and y� ∈ Λðx�Þ. Then, the
cone of critical directions Cðx�Þ is given by
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Cðx�Þ ¼

8>>>>><
>>>>>:
h ∈ Rn

���������

djðhÞ ∈ TQmjþ1
ðsjÞ if y�j ¼ 0

djðhÞ ¼ 0 if y�j ∈ intQmjþ1

djðhÞ ∈ Rþðy�j0 ;−ȳ�jÞ if y�j ∈ ∂Qmjþ1 \ f0g; sj ¼ 0

hdjðhÞ; y�ji ¼ 0 if y�j; sj ∈ ∂Qmjþ1 \ f0g

9>>>>>=
>>>>>;
:ð2:37Þ

2.4. Strong regularity and its relationship with constraint qualification
and second-order optimality conditions. The notion of strong regularity has been
introduced and investigated by Robinson in the landmark paper [24]. To the GE (2.32),
it can be adapted as follows.

DEFINITION 13. We say that the GE (2.32) is strongly regular at ðx�; y�Þ (satisfies the
strong regularity condition (SRC) at ðx�; y�Þ), provided the (partially linearized)
mapping Σ½Rn × ΠJ

j¼1R
mjþ1 ⇉ Rn × ΠJ

j¼1R
mjþ1� defined by

Σðδ1;δ2Þ ¼ fðx; yÞj δ1 ¼ D2
xxLðx�; y�Þðx− x�Þ−Dgðx�Þ⊤ðy− y�Þ;

δ2 ∈ gðx�Þ þ Dgðx�Þðx− x�Þ þ NQðyÞg

has a single-valued Lipschitz localization around ð0; 0; x�; y�Þ; i.e., there exist a neigh-
borhood U of 0 inRn × ΠJ

j¼1R
mjþ1 and a neighborhood V of ðx�; y�Þ such that the mapping

Δ∶ðδ1;δ2Þ ↦ Σðδ1;δ2Þ ∩ V

is single-valued and Lipschitz on U and Δð0; 0Þ ¼ fðx�; y�Þg.
From [10, Theorem 2C.2] we know that the strong regularity of (2.32) at ð0; 0;

x�; y�Þ is equivalent to the existence of a single-valued Lipschitz localization of Se around
ð0; 0; x�; y�Þ.

Already in [24] the author examined the relationship between strong regularity and
the SSOSC in the context of a classical mathematical programming problem. In SOCP,
this relationship has been analyzed in [5]. To present this result, we invoke first the
notion of nondegeneracy from section 2.2.

DEFINITION 14. Let x� be a feasible point of SOCP.We say that x� is nondegenerate if

Dgðx�ÞRn þ linðTQðgðx�ÞÞÞ ¼ ΠJ
j¼1R

mjþ1:ð2:38Þ

Observe that (2.38) amounts exactly to condition (2.18) with K ¼ Q.
One can easily see that x� is nondegenerate whenever Dgðx�Þ is surjective. On the

other hand, from (2.30), nondegeneracy directly implies Robinson’s CQ condition (2.26)
and, consequently, the existence of a Lagrange multiplier when x� is a local minimizer
of SOCP. Moreover, in this case nondegeneracy also implies the uniqueness of this
multiplier.

To introduce the SSOSC in SOCP, we define first the n× n matrix Hðx; yÞ as
Hðx; yÞ ¼PJ

j¼1 H
jðx; yjÞ, where, for j ¼ 1; : : : J , we set

Hjðx; yjÞ ≔
(
− yj0

sj0
DgjðxÞ⊤Rmj

DgjðxÞ if sj ∈ ∂Qmþ1 \ f0g;
0 otherwise:

ð2:39Þ
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In (2.39) one has (as defined above) sj ¼ gjðxÞ, j ¼ 1; : : : J , and

Rmj
≔
�
1 0⊤

0 −Imj

�
:

DEFINITION 15. (cf. [4, equation (3.20)] and [5, equation (46)].) Let x� be a critical
point of SOCP and y� ∈ Λðx�Þ. We say that the second-order sufficient condition (SOSC)
holds at ðx�; y�Þ, provided

Q0ðhÞ ≔ h⊤D2
xxLðx�; y�Þhþ h⊤Hðx�; y�Þh > 0 ∀h ∈ Cðx�Þ \ f0g:ð2:40Þ

We say that the SSOSC holds at ðx�; y�Þ, provided
Q0ðhÞ > 0 ∀h ∈ SpðCðx�ÞÞ \ f0g:ð2:41Þ

On the basis of (2.37), when x� is nondegenerate, we easily derive that

SpðCðx�ÞÞ ¼

8>><
>>:h ∈ Rn

�������
djðhÞ ¼ 0 if y�j ∈ intQmjþ1

djðhÞ ∈ Rðy�j0 ;−ȳ�jÞ if y�j ∈ ∂Qmjþ1 \ f0g; sj ¼ 0

hdjðhÞ; y�ji ¼ 0 if y�j; sj ∈ ∂Qmjþ1 \ f0g

9>=
>;:ð2:42Þ

In particular, there is no condition on djðhÞ if y�j ¼ 0.
The main result of Bonnans and Ramírez [5, Theorem 30] can now be stated as

follows.
THEOREM 16. Let x� be a local solution of problem SOCP and y� ∈ Λðx�Þ. Then the

GE (2.32) (KKT conditions) is strongly regular at ðx�; y�Þ if and only if x� is nondegene-
rate (Definition 14) and SSOSC holds at ðx�; y�Þ.

In a recent paper [28], the previous characterization was extended in the follow-
ing way.

THEOREM 17. Let x� be a local solution of the problem SOCP satisfying Robinson’s
CQ condition (2.30). Consider y� ∈ Λðx�Þ. Then, the following statements are
equivalent:

(a) x� is nondegenerate and fulfills SSOSC at ðx�; y�Þ;
(b) the GE (2.32) is strongly regular at ðx�; y�Þ;
(c) any matrix of the form�

D2
xxLðx�; y�Þ −ðDgðx�ÞÞ⊤

ðI − V ÞDgðx�Þ V

�
with V ∈ conv∂̄BPðgðx�Þ− y�Þð2:43Þ

is nonsingular.
This statement is strongly related to the results in the article of Sun [27], developed

in a nonlinear semidefinite programming context; see also [6].
Besides these crucial results, we will also make use of the second-order necessary

optimality conditions stated below.
THEOREM 18. Let the assumptions of Theorem 17 be fulfilled. Then, it holds that

sup
y∈Λðx�Þ

h⊤D2
xxLðx�; yÞhþ h⊤Hðx�; yÞh ≥ 0 ∀h ∈ Cðx�Þ:ð2:44Þ

Proof. See, for instance, [7], [5]. ▯
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3. Aubin property and SSOSC. In this section we prove the main result of this
paper: the characterization of the Aubin property of the critical point map S in terms of
the SSOSC condition.

We limit first our attention to the problem SOCP with J ¼ 1; i.e.,

Min
x

fðxÞ; gðxÞ ∈ Qmþ1:ð3:1Þ

Hence,

SðuÞ ¼ fxju ∈ DfðxÞ þ ðDgðxÞÞ⊤NQmþ1
ðgðxÞÞg:ð3:2Þ

The first aim of this section is to characterize the Aubin property of S around ð0; x�Þ,
where x� is a (local) solution of (3.1). To this purpose we utilize the Mordukhovich
criterion (2.9) and employ the following auxiliary statement. We recall that P denotes
the metric projection onto Qmþ1.

LEMMA 19. Let ðā; c̄Þ ∈ GrNQmþ1
. Then

p ∈ D�NQmþ1
ðā; c̄ÞðqÞ if and only if − q ∈ D�Pðāþ c̄; āÞð−q− pÞ:

Proof. Since the well-known projection theorem (e.g., [10, p. 63]), we clearly have

GrNQmþ1
¼
�
ða; cÞ

����
�
aþ c
a

�
∈ GrP

	
:

Hence one has by virtue of [20, Theorem 1.17]

NGrNQmþ1
ðā; c̄Þ ¼ fðp; rÞjp ¼ uþw; r ¼ u; ðu;wÞ ∈ NGrPðāþ c̄; āÞg;

and the result follows from the definition of the coderivative. ▯
Throughout the following we will assume that x� is nondegenerate (Definition 14).

This implies in particular the Robinson CQ condition. In the following result we estab-
lish a workable rule for verification of the Aubin property.

THEOREM 20. Assume that x� is nondegenerate. Then the multifunction S, given by
(3.2), has the Aubin property around ð0; x�Þ if and only if in any solution pair ðv; bÞ of the
relations

0 ¼ D2
xxLðx�; y�Þvþ ðDgðx�ÞÞ⊤ðb−Dgðx�ÞvÞ;ð3:3aÞ

−Dgðx�Þv ∈ D�Pðgðx�Þ− y�; gðx�ÞÞð−bÞð3:3bÞ

one has v ¼ 0.
Proof. In order to compute the coderivative of S , we first note that

SðuÞ ¼
�
x

����
�

x
u− Df ðxÞ

�
∈ GrNΓ

	
; where Γ ¼ g−1ðQmþ1Þ:

GrS is thus the preimage of GrNΓ in the mapping

Φðu; xÞ ¼
�

x
u− Df ðxÞ

�
:

Since
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DΦð0; x�Þ ¼
�
0 I n
I n −D2f ðx�Þ

�

is surjective, we can invoke [25, Exercise 6.7] and conclude that for all z ∈ Rn,

D�Sð0; x�ÞðzÞ ¼ −fv ∈ Rnj0 ∈ z þ D2fðx�Þvþ D�NΓðx�;−Dfðx�ÞÞðvÞg:

On the other hand, since the nondegeneracy assumption is fulfilled, the coderivative
D�NΓ can be computed via (2.21) of Theorem 7, which yields

D�Sð0; x�ÞðzÞ ¼ −fv ∈ Rnj0 ∈ z þ D2
xxLðx�; y�Þv

þ ðDgðx�ÞÞ⊤D�NQmþ1
ðgðx�Þ;−y�ÞðDgðx�ÞvÞg

for all z ∈ Rn. On the basis of the Mordukhovich criterion we now infer that S possesses
the Aubin property around ð0; x�Þ if and only if the GE

0 ∈ D2
xxLðx�; y�Þvþ ðDgðx�ÞÞ⊤D�NQmþ1

ðgðx�Þ;−y�ÞðDgðx�ÞvÞ

has only the trivial solution v ¼ 0. So, it only remains to apply Lemma 19 with
p ¼ b−Dgðx�Þv, q ¼ Dgðx�Þv (consequently −b ¼ −p− q), and relations (3.3a)
follow. ▯

On the basis of (3.3a) and Theorems 5 and 6, we are now in position to state our
main result of this section.

THEOREM 21. Let x� be a local solution of the problem SOCP, and let y� be a corre-
sponding Lagrange multiplier. Then, the following assertions are equivalent:

(i) x� is nondegenerate (Definition 14) and SOCP fulfills the SSOSC (2.41)
at ðx�; y�Þ;

(ii) the GE (2.32) (KKT conditions) is strongly regular at ðx�; y�Þ;
(iii) x� is nondegenerate, and S has the Aubin property around ð0; x�Þ;
(iv) x� is nondegenerate, and in any solution pair ðv�; b�Þ of (3.3a) one has v� ¼ 0.

Proof. Equivalence between statements (i) and (ii) has been established in [5,
Theorem 30]. From statement (ii) it follows in particular that the mapping Se has a
single-valued Lipschitz localization around ð0; ðx�; y�ÞÞ. Consequently, S has a single-
valued Lipschitz localization around ð0; x�Þ by virtue of (2.34). It follows that S
possesses the (less stringent) Aubin property around ð0; x�Þ. Statements (iii) and (iv)
are equivalent by virtue of Theorem 20 and so it remains to prove the implication

ðivÞ ⇒ ðiÞ:

This statement is proved by contradiction. We split the proof according to the posi-
tion of gðx�Þ and y� in Qmþ1 into six different cases:

Case 1. y� ∈ intQmþ1; gðx�Þ ¼ 0. Since second-order necessary condition (2.44)
holds at x�, it is easy to see that SSOSC (2.41) is violated if and only if there is a nonzero
vector h ∈ Rn such that

Dgðx�Þh ¼ 0 and D2
xxLðx�; y�Þh ¼ 0:

Indeed, it suffices to consider the standard spectral decomposition

D2
xxLðx�; y�Þ ¼

X
λiqiq

⊤
i :
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Necessary condition (2.44) amounts exactly to condition hqi; hi ¼ 0 for all i ∈
ff1; 2; : : : ; ngjλi < 0g and all h ∈ KerDgðx�Þ. Consequently, if SSOSC (2.41) is vio-
lated, say by a nonzero vector h̄, it follows that hqi; h̄i ¼ 0 for all i. This argumentation
will also be used in the remaining cases, possibly with other matrices, different from
D2

xxLðx�; y�Þ.
In this case, it is easy to check that v ¼ h and b ¼ 0 satisfy (3.3a) and, since

D�Pð−y�; 0Þð0Þ ¼ f0g, they also satisfy (3.3b). We thus obtain a solution ðv; bÞ of
(3.3a) satisfying v ≠ 0.

Case 2. gðx�Þ ∈ intQmþ1 and y� ¼ 0. The second-order necessary condition (2.44) is
equivalent to positive semidefiniteness of the Hessian D2

xxLðx�; y�Þ. Thus, in this case,
(2.41) is violated if and only if there is a nonzero vector h ∈ Rn such that
D2

xxLðx�; y�Þh ¼ 0. Hence, since Imþ1 ∈ D�Pðgðx�Þ; gðx�ÞÞ, vectors v ¼ h ¼ h−D2
xxLðx�;

y�Þh and b ¼ Dgðx�Þh are a solution of (3.3a) satisfying v ≠ 0.
To simplify the notation, from now on we set s ≔ gðx�Þ and d ≔ Dgðx�Þh.
Case 3. gðx�Þ; y� ∈ ∂Qmþ1 \ f0g. In this case, (2.41) does not hold if and only if there

is a nonzero vector h such that hd; y�i ¼ 0 and

Q0ðhÞ ¼ h⊤D2
xxLðx�; y�Þh− αh⊤Dgðx�Þ⊤RDgðx�Þh ≤ 0;

where α ≔ y�0
s0
ð> 0Þ and we have set R ≔ Rmþ1 ¼ ð10 0⊤

−Im
Þ. This together with second-

order necessary optimality condition (2.44) (which says that the quadratic function
Q0ðhÞ is nonnegative over the linear space ðy�Þ⊥) yields

D2
xxLðx�; y�Þh ¼ y�0

s0
Dgðx�Þ⊤RDgðx�Þh:ð3:4Þ

We claim that the vectors v ¼ h and b ¼ ðImþ1 − αRÞd satisfy (3.3a). Indeed, by repla-
cing v by h and using equality (3.4), the right-hand side of (3.3a) is written as

Dgðx�Þ⊤½αRdþ b− d�;

which is equal to 0 if and only if b ¼ ðImþ1 − αRÞd.
In order to prove (3.3b), we need only prove that d solves

d ¼ AðzÞðImþ1 − αRÞd;ð3:5Þ

where z ¼ gðx�Þ− y�, and

AðzÞ ¼ 1

2

�
1 w̄⊤

w̄ H

�

with w̄ ¼ z̄
kz̄k, H ¼ ð1þ z0

kz̄kÞIm − z0
kz̄k w̄w̄⊤. This is a particular form of inclusion (3.3b) in

this case. To prove the above claim, observe that

ðImþ1 − αRÞd ¼
� ð1− αÞd0
ð1þ αÞd̄

�
:

From the orthogonality of s ¼ gðx�Þ and y�, it follows that s0ðx�Þy�0 þ hs̄; ȳ�i ¼ 0, and

kz̄k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ks̄k2 þ kȳ�k2 − 2hs̄; ȳ�i

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs0Þ2 þ ðy�0Þ2 þ 2s0y

�
0

q
¼ s0 þ y�0:ð3:6Þ
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The first row in (3.5) attains the form

2d0 ¼ ð1− αÞd0 þ ð1þ αÞhw̄; d̄i;

which reduces to

d0 ¼ hw̄; d̄i:ð3:7Þ

This is equivalent to the orthogonality condition

d;

�
1

−w̄

��
¼ 0:ð3:8Þ

By virtue of (3.6),

d;

�
1

−w̄

��
¼ 1

s0 þ y�0
½d0ðs0 þ y�0Þ− hd̄; s̄− ȳ�i� ¼ 1

s0 þ y�0
½d0s0 þ hd̄;−s̄i�;

because hy�; di ¼ 0. Moreover, since the vector ðs0;−s̄Þ is orthogonal to s ¼ gðx�Þ and
belongs to ∂Qmþ1 \ f0g, it is colinear with y� (see (2.4)) and equality (3.8) holds true.

The “second" row of the right-hand side of (3.5) attains the form

1

2

�
s0 − y�0

s0
d0w̄þ 2d̄−

s0 − y�0
s0

w̄w̄⊤d̄

�
:

From (3.7) it follows that d0w̄ ¼ w̄w̄⊤d̄ and so the whole above expression reduces
to d̄. Consequently, we have found a solution ðv; bÞ of (3.3a) such that v ≠ 0, which
contradicts (iv).

Case 4. y� ∈ ∂Qmþ1 \ f0g; gðx�Þ ¼ 0. In this case, (2.41) does not hold if and only if
there is a nonzero vector h ∈ Rn such that

Dgðx�Þh ∈ RRy� and D2
xxLðx�; y�Þh ¼ 0:ð3:9Þ

Indeed, note that in this case the second-order necessary condition (2.44)

h⊤D2
xxLðx�; y�Þh ≥ 0 ∀h∶Dgðx�Þh ∈ RþRy�

is actually equivalent to

h⊤D2
xxLðx�; y�Þh ≥ 0 ∀h∶Dgðx�Þh ∈ RRy�;

deducing that if (2.41) does not hold, then there exists h ≠ 0 satisfying (3.9). The equiva-
lence follows.

Now, from the spectral decomposition of y�, it follows that

y� ∈ Rc2ðy�Þ ¼ R

�
1
ȳ�

kȳ�k

�
so thatRy� ∈ R

�
1

− ȳ�
kȳ�k

�
¼ Rc2ð−y�Þ

and from Theorem 5 (ii) it follows that for any u� ∈ Rmþ1

u� − Projðc2ð−y�ÞÞ⊥ðu�Þ ∈ D�Pð−y�; 0Þðu�Þ:
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Hence, with u� ¼ −Dgðx�Þh, we conclude that the element

−Dgðx�Þh− Projðc2ð−y�ÞÞ⊥ð−Dgðx�ÞhÞ ¼ −Dgðx�Þh

definitely belongs to the coderivative D�Pð−y�; 0Þð−Dgðx�ÞhÞ. It follows that (3.3a) has
a solution

v ¼ h ≠ 0; b ¼ Dgðx�Þh:

Case 5. gðx�Þ ∈ ∂Qmþ1 \ f0g; y� ¼ 0. The second-order necessary condition (2.44)
attains the form

h⊤D2
xxLðx�; y�Þh ≥ 0 ∀h∶gðx�Þ⊤RDgðx�Þh ≥ 0;

which is equivalent to positive semidefiniteness of the Hessian D2
xxLðx�; y�Þ. Indeed,

for any vector h such that the real number gðx�Þ⊤RDgðx�Þh is negative, it suffices to
take −h instead of h in the above relation, and the positive semidefiniteness of
D2

xxLðx�; y�Þ follows directly. Thus, in this case, (2.41) is violated if and only if
there is a nonzero vector h ∈ Rn such that D2

xxLðx�; y�Þh ¼ 0. Hence, since
Imþ1 ∈ D�Pðgðx�Þ; gðx�ÞÞ, vectors v ¼ h and b ¼ Dgðx�Þh are a solution of (3.3)
satisfying v ≠ 0.

Case 6. y� ¼ gðx�Þ ¼ 0. In this case Cðx�Þ ¼ fh ∈ Rn∶Dgðx�Þh ∈ Qmþ1g ¼
fh ∈ Rnjd0 ≥ kd̄kg. Consequently, we have

ðDgðx�ÞÞ−1ðQmþ1 ∪ −Qmþ1Þ ¼ fh ∈ Rnjd20 ≥ kd̄k2g
¼ fh ∈ Rnjh⊤Dgðx�Þ⊤RDgðx�Þh ≥ 0g;

and then the second-order necessary condition attains the form

h⊤D2
xxLðx�; y�Þh ≥ 0 ∀h∶h⊤Dgðx�Þ⊤RDgðx�Þh ≥ 0:ð3:10Þ

On the other hand, since in this case SpðCðx�ÞÞ ¼ Rn, we infer that the SSOSC (2.41) is
violated if and only ifD2

xxLðx�; y�Þ is not positive definite. Then, thanks to S-lemma (see,
e.g., [3, Theorem 4.3.3]), we know that (3.10) is equivalent to saying that there exists
γ > 0 such that

D2
xxLðx�; y�Þ− γDgðx�Þ⊤RDgðx�Þ ≽ 0:ð3:11Þ

We split here our proof into two subcases:
(a) Let us suppose that (2.41) is violated due to the existence of a nonzero vector h

satisfying h⊤D2
xxLðx�; y�Þh < 0. Then we can reduce γ (if necessary) until the

matrix D2
xxLðx�; y�Þ− γDgðx�Þ⊤RDgðx�Þ loses its positive definiteness but not

its positive semidefiniteness (note this is always possible due to the continuity of
the eigenvalues). Hence, in its kernel, there exists a nonzero vector which is, for
the sake of simplicity, also denoted by h. We thus obtain

D2
xxLðx�; y�Þh ¼ γDgðx�Þ⊤RDgðx�Þh:

We claim that the vector −d ¼ −Dgðx�Þh belongs to the set
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∂̄BPð0Þð−dþ γRdÞ ¼ ∂̄BPð0Þ
�
−
� ð1− γÞd0
ð1þ γÞd̄

��

(where ∂̄BPðaÞb stands for the set of elements of the form Ab with A ∈ ∂̄BPðaÞ).
Indeed, it suffices to select in (2.15) a matrix specified by a unit vector w such
that d⊤ð1;−wÞ ¼ 0 and α ¼ 1 ∕ ð1þ γÞ. Note that the existence of such w is
ensured due to inequality h⊤D2

xxLðx�; y�Þh < 0 which, together with (3.11), im-
plies that kd̄k2 > d20 or, equivalently, kd̄k > jd0j. This condition clearly ensures
the existence1 of a unit vector w such that hd̄; wi ¼ d0. Now, since D�Pð0Þu�

contains ∂̄BPð0Þu� for all u� (see (2.14)), we conclude that −d belongs to
D�Pð0Þð−dþ γRdÞ. Our claim is proven.
Finally, it is easy to see that relations (3.3a) are solved by the vectors v ¼ h and
b ¼ d− γRd ¼ ðImþ1 − γRÞDgðx�Þh. This contradicts the statement (iv).

(b) Otherwise, if this situation is due to the existence of a nonzero vector h
satisfying h⊤D2

xxLðx�; y�Þh ¼ 0 (so that D2
xxLðx�; y�Þ is positive semidefinite),

it necessarily follows that

D2
xxLðx�; y�Þh ¼ 0:

Here, from the fact that Imþ1 ∈ ∂̄BPð0Þ, the vector −d ¼ −Dgðx�Þh trivially
belongs to the set

∂̄BPð0Þð−dÞ:

Now, since D�Pð0Þu� contains ∂̄BPð0Þu� for all u� (see (2.14)), we conclude that
−d belongs to D�Pð0Þð−dÞ in this case. We thus deduce that relations (3.3a) are
solved by v ¼ h and b ¼ Dgðx�Þh, arriving at a contradiction with the statement
(iv). ▯

Remark 22. As pointed out by one of the reviewers, the statement of Theorem 21
can also be derived directly on the basis of available results from standard nonlinear
programming whenever g0ðx�Þ > 0. Then, namely, under the imposed assumptions,

Ng−1ðQmþ1Þðx�Þ ¼ ðDgðx�ÞÞ⊤

2
66664
−2g0ðx�Þ
2g1ðx�Þ

..

.

2gmðx�Þ

3
77775NR−

ðh ∘ gðx�ÞÞ;

where hðyÞ ≔ ȳ2 − y20. Moreover ∇ðh ∘ gÞðx�Þ is surjective and so one can employ the
results in [9] concerning variational inequalities with polyhedral convex sets. When
g0ðx�Þ ¼ 0, however, this direct way is not passable.

Remark 23. The previous proof could be much shortened by using the results of [28]
(see Theorem 17). Indeed, by comparing Theorem 17, condition (c) and Theorem 20, the
proof of Cases 1–5 is straightforward, and so it remains only to prove (the most difficult)

1Notice that this argument fails when m ¼ 1, i.e., when w is a real value. However, in this case, constraint
gðxÞ ∈ Q2 can be rewritten as two nonlinear constraints hiðxÞ ≤ 0, i ¼ 1; 2, where hiðxÞ ≔ g0ðxÞ þ ð−1Þig1ðxÞ.
In this context, nondegeneracy (Definition 14) coincides with the linear independence of ∇h1ðx�Þ and∇h2ðx�Þ
(both functions are clearly active at x�), and consequently, known results on nonlinear programming (e.g., [9])
give us the desired implication ðivÞ ⇒ ðiÞ.
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Case 6 (when y� ¼ gðx�Þ ¼ 0). However, the arguments used in the above proof are ne-
cessary in order to extend our main result to the several cone framework conducted in
Theorem 26.

4. Extension to several second-order cones. In this section we intend to
extend Theorem 21 to the general SOCP problem

Min
x∈Rn

fðxÞ; gjðxÞ ∈ Qmjþ1; j ¼ 1; 2; : : : ; J :

By following the same arguments as in Lemma 19 and Theorem 20 we can prove the
following equivalence.

THEOREM 24. Assume that x� is nondegenerate. Then the multifunction S, given by
(3.2), has the Aubin property around ð0; x�Þ if and only if the equality v ¼ 0 holds for any
solution pair ðv; bÞ of the relations

0 ¼ D2
xxLðx�; y�Þvþ ðDgðx�ÞÞ⊤ðb−Dgðx�ÞvÞ;ð4:1aÞ

−Dgðx�Þv ∈ D�Pðgðx�Þ− y�; gðx�ÞÞð−bÞ;ð4:1bÞ

where P now stands for the projection operator onto the Cartesian product of second-
order cones Q ¼ ΠJ

j¼1Qmjþ1.
Proof. It follows from Lemma 19 and the fact that the limiting normal-cone to the

Cartesian product of a finite number of sets amounts to the Cartesian product of the
normal-cones to the single sets; cf. [25, Proposition 6.41]. ▯

Remark 25. Note that condition (4.1b) can be written in a product form

−Dgjðx�Þv ∈ D�Pjðgjðx�Þ− y�j; gjðx�ÞÞð−bjÞ; j ¼ 1; : : : ; J ;

where Pj is the projection operator onto the second-order cone Qmjþ1.
On the basis of (4.1a) and Theorems 5 and 6, we are now in position to state our

main result.
THEOREM 26. Let x� be a local solution of the problem SOCP, and let y� be a corre-

sponding Lagrange multiplier. Suppose that there is at most one block j such that either
gjðx�Þ ¼ 0 and y�j ∈ ∂Qmjþ1 \ f0g or gjðx�Þ ∈ ∂Qmjþ1 \ f0g and y�j ¼ 0 or gjðx�Þ ¼ 0
¼ y�j. Then, the following assertions are equivalent:

(i) x� is nondegenerate (Definition 14) and SOCP fulfills the SSOSC (2.41)
at ðx�; y�Þ;

(ii) the GE (2.32) (KKT system) is strongly regular at ðx�; y�Þ;
(iii) x� is nondegenerate, and S has the Aubin property around ð0; x�Þ;
(iv) x� is nondegenerate, and in any solution pair ðv�; b�Þ of (4.1a) one has v� ¼ 0.

Proof. Since the results established in [5] and [22] are valid for the Cartesian
product of several second-order cones Q ¼ ΠJ

j¼1Qmjþ1, we can argue exactly as at
the beginning of the proof of Theorem 21. So, only the implication

ðivÞ ⇒ ðiÞ

needs to be demonstrated. This statement is also proved by contradiction and the
proof uses the same approach as the proof of Theorem 21, where only one cone has
been considered. However, the combination of different cases (corresponding to dif-
ferent positions of gjðx�Þ and y�j in Qmjþ1) is not straightforward and deserves to be
explained in detail. For this, let us denote by Ji, with i ¼ 1; : : : ; 6, the sets of indexes
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corresponding to cases 1 to 6 in the proof of Theorem 21. So, by our assumptions, we
know that jJ 4 ∪ J 5 ∪ J 6j ≤ 1.

For the sake of simplicity, we employ again the notation: sj ≔ gjðx�Þ and
djðhÞ ≔ Dgjðx�Þh.

Note that h⊤Hjðx�; y�jÞh ≠ 0 only when j ∈ J 3. Consequently,

h⊤Hðx�; y�Þh ¼
X
j∈J3

h⊤Hjðx�; y�jÞh ¼ −
X
j∈J3

y�j0
sj0

djðhÞ⊤Rmj
djðhÞ:

Then, the quadratic form Q0ð·Þ, appearing in SSOSC (2.41), is given by

Q0ðhÞ ≔ h⊤D2
xxLðx�; y�Þh−

X
j∈J3

y�j0
sj0

djðhÞ⊤Rmj
djðhÞ:

Second-order necessary optimality condition (2.44) says that Q0ðhÞ is non-
negative over the critical cone Cðx�Þ, and consequently, it is also nonnegative over
Cðx�Þ ∪ −Cðx�Þ. But, since jJ4 ∪ J 5 ∪ J 6j ≤ 1, the latter set is exactly equal to

~Cðx�Þ ≔ fh ∈ Rn∶djðhÞ ∈ �TQmjþ1
ðsjÞ ∩ ðy�jÞ⊥ ∀j ¼ 1; : : : ; Jg:

Assume now that J 6 ¼ ∅ so that we have to do with either J 4 ∪ J 5 ∪ J 6 ¼ ∅, or
with a unique j ∈ J 4 ∪ J 5. In both cases one has

~Cðx�Þ ¼ SpðCðx�ÞÞ:

This implies that (2.41) is violated if and only ifQ0ðhÞ ¼ 0 for some h ∈ SpðCðx�ÞÞ \ f0g,
or, equivalently, if and only if there exists a nonzero vector h ∈ SpðCðx�ÞÞ such that

D2
xxLðx�; y�ÞhþHðx�; y�Þh ¼ 0:ð4:2Þ

The proof can now be finished on the basis of arguments provided below after
formula (4.5).

To deal with the situation when jJ 6j ¼ 1, we introduce a subspace E of Rn defined
by

E ≔
�
h ∈ Rn

���� djðhÞ ¼ 0 if yj ∈ intQmjþ1

hdjðhÞ; yji ¼ 0 if yj ∈ ∂Qmjþ1 \ f0g ; j ¼ 1; 2; : : : ; J

	
ð4:3Þ

(there is no restriction on djðhÞ if yj ¼ 0). Clearly, one has the inclusions

~Cðx�Þ ⊆ SpðCðx�ÞÞ ⊆ E:

Moreover, we observe that for j ∈ J6 the condition h ∈ ~Cðx�Þ amounts to h ∈ Cðx�Þ and
the nonnegativity of the quadratic form

Q1ðhÞ ≔ djðhÞ⊤Rmj
djðhÞ ¼ ðdj0ðhÞÞ2 − kd̄jðhÞk2:

It follows that

~Cðx�Þ ¼ SpðCðx�ÞÞ ∩ Q−1
1 ðRþÞ ¼ E ∩ Q−1

1 ðRþÞ:
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Thanks to a slightly improved version of the S-lemma (e.g., [23, Proposition 3.9]), we
now infer that there exists a real γ > 0 such that

Q0ðhÞ− γQ1ðhÞ ≥ 0 ∀h ∈ E:ð4:4Þ

Suppose now the existence of h ∈ SpðCðx�ÞÞ \ f0g such that (2.41) does not hold;
that is,Q0ðhÞ ≤ 0. Now, following the arguments given in Case 6 of Theorem 21, we split
our proof into two subcases:

(a) If (2.41) is violated because Q0ðhÞ < 0, then (4.4) yields Q1ðhÞ < 0. In this case,
without loss of generality, we can assume (reducing γ if necessary) that
Q0ðhÞ− γQ1ðhÞ ¼ 0. So, we obtain from (4.4) that

D2
xxLðx�; y�ÞhþHðx�; y�Þh ¼ γDgjðx�Þ⊤Rmj

Dgjðx�Þh:

It can be proven that −d ¼ −djðhÞ ¼ −Dgjðx�Þh belongs to the set

∂̄BPjð0Þð−dþ γRmj
dÞ ¼ ∂̄BPjð0Þ

�
−
� ð1− γÞd0
ð1þ γÞd̄

��
:

Indeed, it suffices to choose a unit vector w such that d⊤ð1;−wÞ ¼ 0 and α ¼
1 ∕ ð1þ γÞ in (2.15). As in the proof of Case 6 of Theorem 21, the existence of
such w is ensured due to inequality Q0ðhÞ < 0 which, together with (4.4), im-
plies that kd̄k2 > d20 or, equivalently, kd̄k > jd0j. This condition clearly ensures
the existence of a unit vector w such that hd̄; wi ¼ d0. For the case when
mj ¼ 1, see Remark 28 below.
Now, sinceD�Pjð0Þðu�Þ contains ∂̄BPjð0Þðu�Þ for all u� (see (2.14)), we conclude
that−d belongs toD�Pjð0Þð−dþ γRmj

dÞ. Consequently, ðv; bjÞwith v ¼ h and
bj ¼ d− γRmj

d ¼ ðImjþ1 − γRmj
ÞDgjðx�Þh solves (4.1a) for the block j ∈ J 6.

(b) Otherwise, if this situation is due to the existence of a nonzero vector h satisfy-
ing Q0ðhÞ ¼ 0 (so that Q0ð·Þ is nonnegative), it necessarily follows that

D2
xxLðx�; y�ÞhþHðx�; y�Þh ¼ 0:ð4:5Þ

Then, from the fact that Imjþ1 ∈ ∂̄BPjð0Þ, it trivially holds that vector −d ¼
−djðhÞ ¼ −Dgjðx�Þh belongs to

∂̄BPjð0Þð−dÞ:
Once again, since D�Pjð0Þðu�Þ contains ∂̄BPjð0Þðu�Þ for all u�, we obtain that
−d belongs to D�Pjð0Þð−dÞ. We thus conclude that the solution of (4.1a), for
the block j ∈ J 6, is v ¼ h and bj ¼ Dgjðx�Þh.

For the other blocks j, the same arguments as in Theorem 21 ensure that the
respective vectors bj can be chosen as follows:

bj ¼
8<
:

0 if j ∈ J1;
djðhÞð¼ Dgjðx�ÞhÞ if j ∈ J2;
ðImjþ1 − αjRmj

ÞdjðhÞ withαj ¼ y�j0 ∕ sj0 if j ∈ J3:

If the unique index j belongs to J 4 ∪ J 5, then, on the basis of (4.2) and the
above discussion, one can put v ¼ h and bj ¼ Dgjðx�Þh (as in the case of J 2) and we
obtain again a solution of (4.1a) with a nonzero vector v. The statement has been
established. ▯
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Remark 27. If the index sets J 4, J5, and J6 are empty, one says that x� is a strict
complementary solution of SOCP. In this case, it is possible to prove the statement of
Theorem 26 in a simpler way, by using the classical implicit function theorem. In fact,
this statement then holds true even if Q is a general symmetric cone, provided the
projection onto Q is continuously differentiable at gðx�Þ− y�.

Remark 28. In the case when J4 and J 5 are empty, J6 is a singleton and, for this
index j ∈ J 6, one has mj ¼ 1; the statement of Theorem 26 follows from the previous
remark and the fact that constraint gjðxÞ ∈ Q2, with j ∈ J 6, can be cast as classical
nonlinear programming constraint (see footnote 1).

Let us now illustrate the situation when jJ 4 ∪ J5 ∪ J 6j > 1 by means of the para-
metric SOCP consisting of minimizing the function

f ξðx1; x2Þ ¼
1

2
kx1 − ak2 þ 1

2
kx2 − bk2 þ ξx11x

2
1 ðx1; x2 ∈ R3Þð4:6Þ

over the product of two second-order cones of dimension 3 (that is, x ¼ ðx1; x2Þ is con-
strained to Q3 ×Q3). Here ξ is a positive parameter and we have set the vectors a ¼
ðξ; ξ ∕ ð1þ ξÞ; 0Þ⊤ and b ¼ ðξ; 0; ξ∕ ð1þ ξÞÞ⊤.

It can be easily proved that x� ¼ ðx�1; x�2Þ, with x�1 ¼ ðξ∕ ð1þ ξÞ; ξ∕ ð1þ ξÞ; 0Þ⊤
and x�2 ¼ ðξ∕ ð1þ ξÞ; 0; ξ∕ ð1þ ξÞÞ⊤, is a critical point of this problem for each
ξ > 0, with y� ¼ 0 being its corresponding unique Lagrange multiplier. Moreover, x�

(in fact every feasible point) is nondegenerate, because gð·Þ is the identity function
and hence Dgðx�Þ is surjective. So, we have to do for all ξ > 0 with Case 5 of the pre-
ceding analysis (i.e., both blocks are in J 5). Let us first examine the Aubin property of
the corresponding map Sξ, where the subscript signalizes the dependence on ξ. Since gð·Þ
is the identity, the Hessian of the Lagrangian coincides with the Hessian of f ξ, which is
given (for all x) by the block matrix

∇2f ξðxÞ ¼
�

I 3 C ξ

C ξ I 3

�
;ð4:7Þ

where

C ξ ¼
0
@ ξ 0 0

0 0 0
0 0 0

1
A:

Moreover, condition (4.1a) attains a simpler form�
v1
v2

�
∈ ðI 6 −∇2f ξðx�ÞÞ

�
D�P1ðx�1Þðv1Þ
D�P2ðx�2Þðv2Þ

�
⇒ v1 ¼ v2 ¼ 0;ð4:8Þ

where P1 and P2 are both equal to the projection onto Q3. From now on, this projection
is simply denoted by P.

Thanks to the particular structure of the matrix (4.7), the relation of the left-hand
side of (4.8) can be written as

v1 ∈ C ξD
�Pðx�2Þðv2Þ and v2 ∈ C ξD

�Pðx�1Þðv1Þ:

Now, we observe that by part (i) of Theorem 5 each element u ∈ D�Pðx�1Þðv1Þ,w ∈
D�Pðx�2Þðv2Þ can be expressed in the form
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u ¼ Gðx�1Þv1; w ¼ Hðx�2Þv2
with appropriate matrices Gðx�1Þ, Hðx�2Þ ∈ R3×3 given by (2.12). This, along with the
fact that D�Pðx�1Þð0Þ ¼ D�Pðx�2Þð0Þ ¼ f0g (because P is Lipschitz), enables us to char-
acterize the Aubin property of Sξ around x� by the simple condition

ξ2g11ðx�1Þh11ðx�2Þ ≠ 1;ð4:9Þ

where g11ðx�1Þ and h11ðx�2Þ are the entries located in the position (1,1) of matricesGðx�1Þ
and Hðx�2Þ, respectively. In this way we have proved the following statement: The map
Sξ has the Aubin property around x� if and only if either ξ < 1 or ξ > 2.

The proof follows directly from (4.9) and the fact that, by (2.12), both entries
g11ðx�1Þ and h11ðx�2Þ range in the interval [0.5,1].

Next we will analyze for what values of ξ the point x� is a minimizer of our problem,
and when the perturbed KKT system is strongly regular at ðx�; y�Þ. Since the KKT sys-
tem is strongly regular at ðx�; y�Þ if and only if the SSOSC (2.41) is fulfilled at ðx�; y�Þ,
and since in this case SpðCðx�ÞÞ ¼ R6, this holds true if and only if the Hessian of f ξ is
positive definite. This is clearly equivalent to ξ < 1. Now, by using the characterization
of Cðx�Þ given in (2.37), we can verify that the second-order sufficient condition (2.40) is
fulfilled if and only if ξ < 2, but the second-order necessary optimality condition (2.44) is
fulfilled if and only if ξ ≤ 2. It follows that a discrepancy between the Aubin property
and the strong regularity appears only for ξ > 2, when x� is not a local minimum of the
analyzed SOCP. Finally, when ξ ¼ 2, we can verify by simple inspection that x� is not a
local minimum of our problem. Indeed, for x ¼ ðð0; 0; 0Þ⊤; ð2; 0; 2 ∕ 3Þ⊤Þ belonging to
Q3 ×Q3, it is easy to check that the directional derivative of f ξ at x� in the direction
d ¼ x− x� is negative.

On the basis of the preceding analysis we display a summary for this example in
Table 4.1.

5. Conclusions. This paper presents three new results associated with conical pro-
gramming. First, Theorem 7 contains a new formula for the coderivative of the normal-
cone mapping NAð·Þ, when A is a preimage of a convex set K in a smooth mapping gð·Þ.
This formula generalizes [21, Theorem 3.4] and has potential to be applied even when K
is not a cone.

On the basis of this result and [22], where the limiting (Mordukhovich) coderivative
of the metric projection onto the second-order cone has been computed, we have derived
a workable condition characterizing the Aubin property of a canonically perturbed
necessary optimality condition for SOCP under nondegeneracy (Theorem 24).

Our main result is Theorem 26, providing a relationship between the Aubin
property and Robinson’s strong regularity of the canonically perturbed KKT system
associated with SOCP. For this, we use a characterization for the strong regularity

TABLE 4.1
Summary of the example.

ξ x� is a local minimum Strong regularity Aubin property

0 ≤ ξ < 1 Yes Yes Yes
1 ≤ ξ < 2 Yes No No
ξ ¼ 2 No No No
ξ > 2 No No Yes
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property in terms of the SSOSC and the nondegeneracy condition given in [5] for SOCP.
It is very close to the relationship between the Aubin property and the strong regularity
of the canonically perturbed KKT system in the case of nonlinear programming.
Unfortunately, the equivalences stated in Theorem 26 have been proved only under
the assumption that, at the reference pair ðx�; y�Þ, among all blocks j ∈ f1; : : : ; Jg there
is at most one violating the strict complementarity condition; i.e., there is at most one
block j satisfying either gjðx�Þ ¼ 0 and y�j ∈ ∂Qmjþ1 \ f0g or gðx�Þ ∈ ∂Q \ f0g and
y�j ¼ 0 or gjðx�Þ ¼ 0 ¼ y�j. It is currently not clear whether this restriction is due to
the applied proof technique, based on the S-lemma, or whether it is principally related
to the geometry of the second-order cones.
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