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Abstract Depending on application, temporal texture can
be viewed as either foreground or background. We address
two related problems: finding regions of dynamic texture in
a video and detecting moving targets in a dynamic texture.
We propose efficient and fast methods for both cases. The
methods can be potentially used in real-time applications of
machine vision. First, we show how the optical flow residual
can be used to find dynamic texture in video. The algorithm
is a practical, real-time simplification of the sophisticated
and powerful but time-consuming method (Fazekas et al.
in Int J Comput Vis 82:48–63, 2009). We give numerous
examples of detecting and segmenting fire, smoke, water and
other dynamic textures in real-world videos acquired by sta-
tic and moving cameras. Then we apply the singular value
decomposition (SVD) to a temporal data window in a video to
detect targets in dynamic texture via the residual of the largest
singular value. For a dynamic background of low-temporal
periodicity, such as water, no temporal periodicity analysis is
needed. For a highly periodic background such as an escala-
tor, we show that periodicity analysis can improve detection
results. Applying the method proposed in Chetverikov and
Fazekas (Proceedings of British machine vision conference,
vol 1, pp 167–176, 2006), we find the temporal period and
use the resonant SVD to detect moving targets against a time-
periodic background.
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1 Introduction

Detection of specific dynamic textures (DTs), such as smoke
or fire [37,38], is one of the most frequent surveillance appli-
cations of temporal texture analysis. In these applications,
the detection is usually based on specific features (colour,
frequency, etc.) of the phenomena to be detected. A differ-
ent task is detection of any dynamic texture in a video. To
solve this task, one has to define and use generic properties of
dynamic texture rather than specific properties of certain clas-
ses of dynamic textures. In the study [12], intrinsic dynamics
is identified as a generic property of dynamic texture. This
property can be expressed in terms of greyscale or colour
optical flow, resulting in robust and precise DT detection
and segmentation in real-world videos acquired by static and
moving cameras [11,12].

Most of the previous work on temporal texture segmen-
tation is based on DT modelling by linear models [3,7,10].
These models have been successful in synthesising differ-
ent dynamic textures, recognising pre-segmented DTs, and
segmenting artificial DT mosaics consisting of a small num-
ber of distinct dynamic textures, such as fire on the water.
However, due to their complexity, the linear models do not
seem to be suitable for applications where real-time process-
ing of real-world video data is needed, especially when the
data are acquired by a moving camera. Crivelli et al. [8] use
mixed-state Markov random fields to model motion textures
and segment artificial and natural texture mosaics consist-
ing of two classes of DTs. Ghoreyshi and Vidal [15] apply
Ising descriptors and autoregressive exogenous models in a
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level set framework to segment similar data. Rahman and
Murshed [33] consider a set of DTs combined to form differ-
ent two-class mosaics. They use spatiotemporal co-occur-
rence [34] to determine which two of the set are in the
mosaic.

In DT detection and segmentation, temporal textures are
regions of interest treated as foreground. A different but
related surveillance application of dynamic texture process-
ing is background modelling and target detection for dynamic
backgrounds such as waving trees, sea waves, or escala-
tors [22,26,39]. Here, moving targets are regions of interest
while temporal texture is the background of the targets.

Numerous methods and practical solutions for back-
ground subtraction and target (change, novelty) detection are
available [20,32]. In video surveillance, adaptivity to illumi-
nation changes and shadows is a basic requirement [30,36].
A fundamental assumption of most existing methods for
background modelling is that of the static background against
which changes and motion in the scene are detected and
tracked. Some recent techniques [22,26] allow for a limited,
low-periodicity motion of the background. Very few studies
(e.g., [39]) consider background formed by a dynamic tex-
ture with high temporal periodicity. The reason is that most of
the statistical models used for background modelling cannot
appropriately incorporate temporal or spatial periodicity.

In this paper, we propose two efficient and fast methods to
handle dynamic texture as foreground or background. Both
methods are based on the residual of a representation. To
find dynamic texture in video, we use the optical flow rep-
resentation which assumes that image motion complies with
the intensity constancy constraint [19]. We treat regions with
large residual of the optical flow as regions of high intrinsic
dynamics, which we attribute to dynamic texture. This algo-
rithm is a real-time simplification of the method [12] which
is accurate and robust but time-consuming. We demonstrate
that when the camera motion is relatively slow and smooth,
the performance of the proposed method is comparable to
that of the sophisticated algorithm [12].

Our second contribution is a novel SVD-based algorithm
for moving target detection in a dynamic texture. We use a
sliding temporal data window of n frames, obtain the SVD
of the window by a fast running algorithm, then detect tar-
gets by thresholding the residual of the largest singular value.
Previous attempts to use the PCA or SVD for dynamic back-
ground modelling [22,26] applied approximate solutions to
speed up the re-calculation of the SVD as the temporal data
window moves on. This leads to error accumulation and the
necessity to re-initialise the process when the error grows
beyond an acceptable limit. We use a precise (approxima-
tion-free) algorithm which is fast and needs no re-initialisa-
tion. Another advantage of our method is that it is applied to
the entire image, while the methods [22,26] split the image
into blocks in order to achieve acceptable processing times.

This solution introduces an additional sensitive parameter,
the block size, and makes the result patchy.

The fast running SVD can be applied to single-channel
as well as multi-channel data. In target detection against a
dynamic background, the motion of the background can be
random, slightly periodic, or highly periodic. We discuss the
issues of colour representation and background motion peri-
odicity in relation to the proposed approach. Recently, the
photometric invariants based on the dichromatic reflection
model [35] have been successfully used for illumination-
robust variational optical flow calculation [25]. We demon-
strate that for some backgrounds such as water, photometric
invariants are preferable to the intensity or the original colour
representation. Then we show that for a highly periodic back-
ground such as an escalator, temporal periodicity analysis
can improve detection results. To achieve this, we introduce
the notion of the resonant SVD as the SVD for the tempo-
ral spacing equal to the motion period of the background
dynamic texture. The method needs a good estimate of the
resonant spacing which is obtained by an algorithm based on
the principles proposed in Kanjilal et al. [23] for signals and
applied in Chetverikov and Fazekas [5] to dynamic texture.
The periodicity estimation algorithm can also be useful in
video mosaicking and dynamic texture recognition [13].

The structure of this paper is as follows. In Sect. 2, the
method [12] is briefly discussed to provide motivation and
background for the proposed simplified real-time algorithm.
The presentation of the proposed algorithm is followed by
test results on real-world data acquired by static and mov-
ing cameras. The results are qualitatively compared to those
obtained by the original method [12]. In Sect. 3, the fast
running SVD algorithm is presented and tested. A discus-
sion of colour representation, temporal periodicity and other
practical issues closes the section. Finally, conclusions are
drawn in Sect. 4.

2 Detecting dynamic texture in video

In this section, we demonstrate that the optical flow resid-
ual can be used as a tool to detect and segment dynamic
texture in video. Motion based segmentation methods often
use optical flow algorithms to estimate the motion. Efficient,
fast and precise optical flow estimation procedures are avail-
able [1,2,18,24]. Most of them are based on the brightness
constancy assumption and minimise the optical flow residual

Rof = 〈|I (x + u, y + v, t + 1) − I (x, y, t)|〉
w
, (1)

where I (x, y, t) is the image function at discrete time t , (u, v)

the displacement field,
〈 · 〉

w
a convolution with a Gaussian

kernel w. I (x + u, y + v, t + 1) is calculated with subpixel
accuracy by interpolation. Additional constraints are used
to overcome the aperture problem and provide a smooth
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Fig. 1 Top row: Sample frames of three video sequences with the dynamic texture regions detected. The videos were acquired by static camera.
Bottom row: The optical flow residual maps

flow. The accuracy and speed of optical flow calculation
can be enhanced by using a multi-resolution coarse-to-fine
approach.

Many methods for dynamic texture analysis are based on
optical flow [6,34]. Recently, Fazekas et al. [12] proposed a
sophisticated method for finding regions of dynamic texture
in video. In such regions, the traditional brightness constancy
assumption is not valid because of the intrinsic dynamics
which is a generic property of temporal textures. To better
account for this dynamics, in regions of temporal texture
brightness constancy should be substituted by the more gen-
eral assumption of brightness conservation. The task of find-
ing dynamic texture in video is formulated as a variational
problem which is solved by a level set method. The Lagrang-
ian incorporates an indicator function that switches on the
border of a dynamic texture region in a kind of competi-
tion between the two assumptions: areas with translational
motion are better described by brightness constancy, while
areas with intrinsic dynamics are better described by bright-
ness conservation.

The method [12] has been applied to numerous real-world
videos taken by static and moving cameras and containing
smoke, fire, water and other natural dynamic textures in nat-
ural contexts. A collection of impressive results is available
on the web site [11]. However, the method [12] is too slow to
be applied in real time. Providing a simplified fast approach
is desirable for real-time applications such as fire and smoke
detection in surveillance video.

We observe that the traditional brightness constancy based
optical flow mainly errs in areas of dynamic texture and areas
of occlusion. Next, we assume that occlusion borders are nar-
row while areas of dynamic texture are usually wider and
larger. The proposed algorithm then involves the following
steps:

1. Calculate the optical flow.
2. Calculate its residual (1) by mapping the first frame onto

the second one with subpixel accuracy using the dis-
placement field.

3. When three or more consecutive residual frames are
available, process them by a fast spatiotemporal median
filter of large spatial size and small temporal depth.

The result of this simple algorithm is the flow residual map
which can be thresholded to find regions of dynamic textures.
In the tests, the size of the spatiotemporal median filter for
the initial video resolution was 25 × 25 × 3. When reduced
resolution was used for faster operation, the spatial size of
the filter was reduced accordingly. The residual threshold
can be set manually; in most case, the value of 3 is appropri-
ate for greyscale images with 256 levels. Alternatively, one
can set the threshold in an adaptive way. Assuming that the
dynamic texture occupies a significant part of the data in the
first n frames, one can calculate the residual histogram in
the n frames, obtain the threshold by any histogram thres-
holding technique (we use [28]), then update the histogram
and the threshold by sliding the n-frame data window by one
frame.

Figure 1 shows frames of three sequences with dynamic
texture regions detected. The bottom row shows the optical
flow residual maps where the areas of dynamic texture are
visible. The first two sequences showing fire and smoke are
low-resolution videos taken by a static camera. These vid-
eos were kindly provided by the Bilkent University in the
framework of the MUSCLE Network of Excellence [27].
(See [9,38] on the related research in fire and smoke detec-
tion.) The third sequence, also acquired by a static camera,
comes from the public DynTex dynamic texture database [29]
created by the MUSCLE NoE.

Figure 2 gives more examples. The videos are from the
DynTex database. Here, the first three videos were taken
by a panning video camera of good quality. The ‘Cooking’
sequence contains both smoke and fire which are detected in
the same way, by a generic method selective to any dynamic
texture. In the ‘Candles’ video, the hand-held camera was
scanning the scene in a more irregular way. In all cases, the
camera motion was relatively slow.
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Fig. 2 Sample frames of six video sequences with the dynamic texture regions detected. The videos were acquired by moving camera

In the above test sequences, four different dynamic tex-
tures, smoke, fire, water and flag, were successfully detected.
The borders of fire and, especially, smoke are fuzzy, so one
cannot speak of precise segmentation. In the case of the flag,
only the blowing part can be detected, as the rest is not a
dynamic texture. The borders of the water stream are distinct;
here, one can speak of segmentation which was successful.

Using the proposed method, we have processed the vid-
eos presented at the web site [11]. Most of these videos come
from the DynTex dynamic texture database [29]. Currently,
the DynTex contains no ground truth. Qualitative comparison
to the results [11] is still possible, and some conclusions can
be made. The sophisticated method [12] is more precise and
more robust to camera motion. It works for faster and more
irregular camera motion than our simple method because it
has no threshold to set, and its motion estimation is more
precise. However, many of the videos [11] can be success-
fully processed by our method as well, at video rate or close
to video rate, depending on the resolution and the optical
flow used. We have tested our method with the fast Lucas–
Kanade [24] and the slower but more precise Horn-Schunck
[18] optical flow algorithms. Multi-resolution versions of
the OpenCV implementations [21] were used to cope with
fast motion. We concluded that the precision of the Lucas–
Kanade algorithm is sufficient to provide thresholdable resid-
ual maps in most cases. Reducing the full video frame size
by a factor of four (to 144 × 176) and using the fast Lucas–
Kanade algorithm, real-time operation can be achieved on a
modern laptop.

3 Target detection in dynamic texture

Detecting objects against a dynamic background is a chal-
lenging problem important for traffic and surveillance appli-
cations. Classical target detection algorithms using adaptive
background models [20] and more recent approaches, such
as those presented at the IEEE Workshops on Visual
Surveillance, have a limited capability to cope with varying

backgrounds such as trees in the wind. When the back-
ground is time-periodic, like an escalator or conveyor, tar-
get detection may become difficult. Very few studies show
results for time-periodic backgrounds. Zhong and Sclaroff
[39] describe dynamic textures by an autoregressive mov-
ing average (ARMA) model and use the Markov assumption
(dependence on the previous state only) and a Kalman filter to
estimate the dynamic background and detect objects. Exam-
ples of successful detection are shown for an object floating
in a waving river and a ball jumping on a moving escalator.
However, this approach is, in general, not suitable for time-
periodic dynamic textures where the Markov assumption is
not valid.

The singular value decomposition (SVD) is a robust and
powerful tool having numerous applications in signal pro-
cessing, computer vision, pattern recognition and other areas.
(See Appendix for a definition of the SVD.) In particular, it
is suitable for separation of dominant, ‘typical’ data from
‘untypical’ data. Recently, it has been successfully used for
adaptive modelling of non-stationary background and detec-
tion of novelty in image sequences [22,26]. For greyscale
images, the data matrix A of size m × n is formed by m
consecutive frames of a sequence, where n is the number of
pixels in a frame. Each image is read row-by-row and stored
in the appropriate column of A. n is the size of the temporal
data window which scans the sequence. For colour images,
each pixel is represented in A by three values, e.g., the RGB
codes. The detection is based on the residual error of the SVD
A = U SV T for a number of the largest singular values si

which are the elements of the diagonal matrix S.
The results presented in [22,26] are promising. However,

the algorithmic solutions used in these studies limit the appli-
cability of the SVD method. To decrease the computational
load of the batch PCA, images are split into blocks and an
approximate incremental PCA is applied in each block sepa-
rately. In this section, we propose a fast and approximation-
free incremental SVD which is applied to the whole image
at once. Then we use the proposed method for target detec-
tion in dynamic textures with different degrees of temporal
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periodicity and discuss the issue of colour representation.
For highly periodic backgrounds, we introduce and use the
resonant SVD. We demonstrate that using the resonant SVD
for periodic data and photometric invariants for DTs with
shadows and shading can improve detection results.

3.1 Using fast running SVD for target detection

Incremental eigenanalysis has been of interest for machine
vision since the publication of the first promising results by
appearance-based and active contour methods that rely on
the principal component analysis [17]. Eigenspace models
of large databases need to be incrementally modified when
the data are modified, added or deleted. When eigenanalysis
is applied in a sliding spatial or temporal data window, one
needs fast re-calculation of the eigenvalue decomposition or
SVD as a column enters the data matrix and a column leaves
the matrix. Algorithmically, the re-calculation consists of two
different operations, the update step and the downdate step.
Updating SVD models is usually considered to be a relatively
simple and robust operation, lending itself to stable and accu-
rate approximate solutions. Assuming that the SVD basis
does not change drastically, an iterative update procedure
can be used [22]. Downdating SVD models is a more difficult
problem: it was even argued that downdating is impossible
in closed form [17]. Fortunately, this is not the case.

We call the precise incremental method the running SVD
using the word ‘running’ in the same sense as it is used in the
term ‘running filter’. Our running algorithm combines two
existing procedures and includes a fast update step and a fast
downdate step [16]. Both steps are precise: no approxima-
tion is used. When applied to a video sequence, the update
step adds a new frame to the SVD of the current data win-
dow, while the downdate step removes the exiting frame from
the updated SVD. A detailed description of the method [4] is
quite lengthy and involved. For completeness, a brief descrip-
tion and the Matlab (Octave) codes of the update and down-
date procedures are given in Appendix.

The complexity of the complete running algorithm is
O((m + n)m2), where n is the image size, m the number
of frames in a temporal data window. (See [4,16] for der-
ivation and discussion.) Typically, m ≤ 50 and n � m,
so in practice the computational load is O(nm2). The linear
dependence on image size n means that splitting the image
into blocks as in [22,26] will not speed up the algorithm
and is unnecessary. (For comparison, note that in [39] this
dependence is quadratic which limits the image size.) The
quadratic dependence on the number of frames m is prohib-
itive for very large m > 100; however, this problem can be
tackled by reducing the temporal resolution.

To make the method less sensitive to illumination changes,
shadow and shading, one can use the photometric invariants
of the dichromatic reflection model [35], as proposed in [25]

Fig. 3 Sample frames of the ‘Bush’ sequence. Top row: Results of tar-
get detection by our method using the original RGB colours. Bottom
row: Residual maps

for illumination-robust optical flow estimation. (Note that
this can only be done for colour videos.) For an RGB-coded
video, the options insensitive to shadow and shading are the
normalised RGB values or the angles φ, θ of the spherical
(conical) transformation. The normalised RGB values are
defined as
(

R

N
,

G

N
,

B

N

)T

,

where N is either the arithmetic mean R +G + B or the geo-
metric mean 3

√
RG B. The spherical transformation is given

by

r =
√

R2 + G2 + B2 (2)

θ = arctan

(
G

R

)
(3)

φ = arcsin

( √
R2 + G2

√
R2 + G2 + B2

)
(4)

Note that r is not a photometric invariant, hence for the spher-
ical transformation two channels are only used.

Figures 3, 4, 5 and 6 show examples of target detection
in natural dynamic textures with low temporal periodicity.
In the ‘Bush’ sequence, a man passes a bush waving in the
wind. The motion of the bush becomes stronger in the end of
the sequence. Figures 3 and 4 compare the proposed meth-
ods to the classical adaptive Gaussian mixture method [36].
The latter fails when the background motion is strong, while
the proposed method works properly in the whole sequence.
One can observe, however, that the contours of the target as
detected by our method are less precise. This can be improved
by using a more sophisticated decision procedure: in this
study, we simply threshold the residual.
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Fig. 4 Results of target detection in the ‘Bush’ sequence by the
method [36]

Fig. 5 Sample frames of the ‘Duck’ sequence. Top row: Results of
target detection using our method with photometric invariants. Bottom
row: Residual maps

Fig. 6 Results of target detection using our method with the original
RGB colours

Figures 5 and 6 illustrate the application of the photometric
invariants to a dynamic background with frequent shading. In
the ‘Duck’ sequence, a duck floats away on the wavy water.
The proposed SVD based method applied to the normalised
RGB (Fig. 5), or to the angles φ, θ provides a stable solution,
while using the original RGB values (Fig. 6) results in errors
and loss of the target when it becomes smaller. The Gaussian
mixture method [36] cannot cope with this dynamic back-
ground at all.

3.2 Periodicity estimation for time-periodic background

When the dominant data are periodic, care should be taken to
understand the typical periodic structure and find untypical,
salient data as significant local deviations from this structure.
As discussed by Kanjilal et al. [23], understanding a periodic
signal means extracting the pattern which is repeated, the
period length, and the scaling factor of each period. The sig-
nal periodicity analysis approach proposed in [23] involves
signal pre-processing and normalisation steps followed by
the SVD of the signal data matrix for a range of potential
period lengths. For a signal x(k) and a hypothesised period
n, the columns of the data matrix An are the consecutive sig-
nal intervals of length n. When n coincides with the actual
period length N , the rank of An is close to one. This rank
can be robustly estimated by decomposing the matrix with
the SVD: An = USV T , where the diagonal matrix S con-
tains the sorted singular values si . The periodicity spectrum
(P-spectrum)

P(n) = 1 − s2(n)

s1(n)
(5)

has distinct maxima at n = N , 2N , 3N , etc. All maxima of
P(n) are tested and the periodicity index (P-index) is calcu-
lated to separate the true periodicity from noisy maxima.

In [5], we applied this method to estimation of the temporal
periodicity of dynamic textures. For more technical details,
including pre-processing and normalisation, the reader is
referred to the papers [5,23]. We use the periodicity esti-
mation method to find the dominant periodic structure as the
data representation u1s1v

T
1 for the largest singular value s1 at

the resonant value n = N . The vector v1 is the (normalised)
periodic pattern, the elements of u1s1 are the scaling factors.
The residual of this representation,

Rsvd = AN − u1s1v
T
1 , (6)

indicates defects in spatially periodic textures and targets in
temporally periodic sequences. We call the period length the
‘resonant spacing’ and refer to the corresponding SVD repre-
sentation for the largest singular value as the ‘resonant SVD
representation’.

For better understanding of the method, we first illustrate
its operation on a static greyscale texture with orthogonal
axes of periodicity, assuming for simplicity that one of the
axes is vertical. (See Fig. 7.) The texture contains a defect
which is not easy to perceive and detect. The period length
in the vertical direction is estimated as described above, by
putting two, three or more image rows into each column of
the data matrix An to test the period length n = 2, 3, etc.
Figure 8 shows the P-spectrum and P-index of the test pattern.
In the P-index, the true period of 36 rows is clearly visible.

Once the period N has been obtained, the matrix u1s1v
T
1

is transformed into the resonant SVD model, while the
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Fig. 7 Left: Periodic test pattern with an artificial defect. Middle: The
resonant SVD model for the row spacing equal to the period which is
36 pixels. Right: The residual map indicating the defect
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Fig. 8 The P-spectrum and P-index of the test pattern shown in Fig. 7

Fig. 9 Top row: Sample frames of the ‘Escalator Steps’ sequence. Mid-
dle row: The resonant residual maps highlighting the irregular step. The
period is 21 frames. Bottom row: The residual map for the temporal
spacing of 19 frames

residual matrix (6) is converted into the residual map tak-
ing the absolute values of the matrix. Figure 7 shows the
resonant SVD representation of the artificial test pattern and
the corresponding residual map highlighting the defect.

Let us now consider periodic dynamic texture viewed as
background. For time-periodic video, the columns of the
data matrix are composed of multiple consecutive images.
Note that a static camera is assumed to ensure correspon-
dence between pixels. Figure 9 shows frames of the greyscale
sequence ‘Escalator Steps’ whose total length is about 300
frames. In this video an irregular white step enters, passes the

Fig. 10 Top row: Sample frames of the ‘Man and Escalator’ sequence.
Middle row: The resonant residual maps. Bottom row: Residual maps
obtained in a sliding temporal data window with unit temporal spacing

viewfield, then exits. The rest of the video shows the empty
escalator in periodic motion. To speed up the period estima-
tion procedure, the original spatial resolution of 200 × 200
was significantly reduced. Then the algorithm was run again,
at the full resolution for the resonant spacing, to obtain the
full-resolution resonant SVD representation. The second row
of Fig. 9 shows the resonant residual map selective to the
irregular step. The bottom row illustrates the importance of
obtaining a good estimate of the period: for the temporal
spacing of 19 instead of the true period of 21, the result is
much worse.

Figure 10 shows frames of the greyscale sequence ‘Man
and Escalator’ whose total length is about 200 frames. In
this video a man leaves the escalator and exits. The rest of
the video shows the empty escalator in periodic motion. The
second row of the figure shows the residual map indicating
the man against the time-periodic background. Note that the
escalator has almost disappeared in the residual. On the other
hand, the contrast of the map is low where the intensity dif-
ference between the man and the escalator is small. Finally,
the bottom row again illustrates the importance of obtaining
the resonant SVD representation in the case of periodic data.

The periodicity estimation method and the resonant SVD
are only used for dynamic textures of high temporal peri-
odicity. In target detection applications, it is usually known
if the background is temporally periodic, or not. In the tests
presented in Sects. 3.1 and 3.2, we assumed that this is known
and applied the corresponding version of the method. When
the periodicity is unknown, one should first calculate the
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Fig. 11 Illustration to the SVD and the update procedure

P-spectrum (5) and decide if the dynamic texture if highly
periodic, or not.

4 Conclusion

We have given a summary of our recent results in dynamic
texture detection and target detection in dynamic back-
ground. Both tasks are relevant for machine vision appli-
cations such as surveillance, security and traffic or crowd
monitoring where fast and robust solutions are needed. The
proposed method for real-time temporal texture detection can
enhance the existing feature-based methods for detection of
smoke and fire, by efficiently discarding false positives like
moving objects whose colour resembles fire or smoke. An
important advantage is that this can be done by a moving cam-
era as well, allowing to survey a larger area. Our fast running
SVD can handle backgrounds with significant, possibly peri-
odic, dynamics. Depending on the video resolution and the
size of the temporal data window, the method can be used at
video rate, or close to video rate. We have successfully tested
the method on numerous traffic monitoring videos, including
snow, fog, and shadows. Using photometric invariants makes
the method applicable to backgrounds with shadows and fre-
quent shading. For periodic backgrounds, temporal periodic-
ity analysis may be desirable. We have provided a method for
periodicity estimation in video based on the resonant SVD.
The method tests a range of potential periods, which can be
done at a low, reduced resolution. This procedure is not real-
time. Fortunately, the period of man-made dynamic textures,
e.g., escalators, is usually stable. The period can be learned
prior to the real-time operation in which minor, fast correc-
tions will only be necessary.
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Appendix: Matlab (Octave) codes of the update and
downdate procedures

Let A ∈ R
m×n be a real-valued matrix. Then there always

exists a decomposition A = USV T , where

– The matrix U ∈ R
m×m , UT U = I , consists of m ortho-

normal eigenvectors which belong to the m eigenvalues
of AAT . (I is a unit matrix.)

– The matrix V ∈ R
n×n , V T V = I , consists of n ortho-

normal eigenvectors of AT A.
– S ∈ R

m×n is a diagonal matrix diag(s1, . . . , sm) contain-
ing the singular values of A which are the square roots
of the eigenvalues of AT A. It is usually assumed that
s1 ≥ s2 ≥ · · · ≥ sm ≥ 0.

The above decomposition is called the singular value decom-
position, or SVD. Its structure is illustrated in Fig. 11. Sev-
eral methods to calculate the SVD exist. The Golub–Reinsch
procedure [14,31] and its modification for rectangular matri-
ces are probably the best known. We use this procedure and
assume that m < n.

The update procedure receives the components of the pre-
vious SVD U , S, V 1, as well as the vector (row) aT to be
added to the matrix A. V 1 is the result of the following
decomposition:

V = (
V 1 V 2

)
, S = (

D 0
)
, (7)

where V 1 ∈ R
n×m , V 2 ∈ R

n×(n−m), D ∈ R
m×m , and 0 is a

zero matrix. (See Fig. 11.) In other words, V 1 is the ‘useful’
part of V that needs to be updated. The update procedure out-
puts the updated versions of the components. The downdate
procedure receives the components of the previous SVD U ,
S, V and outputs the downdated versions of the components
after removing the last row of the matrix A.

function [_U, _S, _V1] = svdUpdate
(U, S, V1, a);

N = size(V1)(1);
M = size(U)(1);
D = S(:,1:M);

z1 = V1’*a;
w = a - V1*z1;

[v,eta] = qr(w,0);

L = [D, zeros(M,1);
z1’, eta];

[Q,Omega,W] = svd(L);

_U = [ U , zeros(M,1);
zeros(1,M), 1 ] * Q;

_S = Omega;
_V1 = [V1, v]*W;
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function [_U,_S,_V] = svdDowndate
(U,S,V);

N = size(V)(1);
M = size(U)(1);

mu = U(M,M);

if(mu < 0)
U = -1*U;
V = -1*V;
mu = -1*mu;

end

D = S(:,1:M);
d = S(M,M);
U_11= U(1:M-1,1:M-1);
x = U(1:M-1,M);
u1 = U(M,1:M-1)’;

MM = eye(M-1) - (1/(1+mu))*u1*u1’;
X = U_11*MM-x*u1’;
C = [MM, -u1]*D;

[Q,Omega,W] = svd(C);
Omega = Omega(:,1:M-1);

_U = X*Q;
_S = Omega;
_V = (V*W)(:,1:M-1);
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