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A visual appearance of natural materials significantly depends on acquisition circumstances, particularly
illumination conditions and viewpoint position, whose variations cause difficulties in the analysis of real
scenes. We address this issue with novel texture features, based on fast estimates of Markovian statistics,
that are simultaneously rotation and illumination invariant. The proposed features are invariant to in-
plane material rotation and illumination spectrum (colour invariance), they are robust to local intensity
changes (cast shadows) and illumination direction. No knowledge of illumination conditions is required
and recognition is possible from a single training image per material. The material recognition is tested
on the currently most realistic visual representation – Bidirectional Texture Function (BTF), using CUReT
and ALOT texture datasets with more than 250 natural materials. Our proposed features significantly out-
perform leading alternatives including Local Binary Patterns (LBP, LBP-HF) and texton MR8 methods.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Texture and colour are two major visual features used in most
low level image processing applications. Although a notion of tex-
ture is tied to the human semantic meaning, there is no mathemat-
ically rigorous definition of texture that would be widely accepted
by authors. We understand a textured image to be a realization of
random field and our effort is simply to find rotation and illumina-
tion invariant statistics for its reliable representation.

Although textures were found ‘‘ill-suited for retrieval applica-
tions in which the user wants to use verbal descriptions of the im-
age’’ at the end of the image retrieval early years (Smeulders et al.,
2000), this was rather a direct consequence of inferior textural fea-
tures than the textures themselves. Recent achievements (Filip and
Haindl, 2009) in the high quality Bidirectional Texture Function
(BTF) representation together with a steadily growth of an image
sensor resolution quite contrary emphasize textural approach to
the image retrieval. A promising method based on textural features
was recently introduced by Shotton et al. (2009). Still, recent image
retrieval methods suffer from a number of drawbacks and their er-
ror rate is too high for a routine operation. Other computer vision
tasks, which can benefit from textural features, are object (image)
recognition and real scene segmentation.

The invariance to image acquisition conditions is an important
aspect of computer vision applications. Without sufficient classes
of invariance the applications require multiple training images
captured under a full variety of possible illumination and viewing
ll rights reserved.
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conditions. The reason is that the appearance of natural materials
significantly varies with changing illumination and viewing direc-
tions (see example images in Figs. 1 and 2 or Dana et al., 1999). An
attempt to learn from all possible appearances is obviously clumsy,
expensive and very often even impossible if the required measure-
ments are not available. On the other hand, an undesired invari-
ance to a broad range of conditions usually reduces the
discriminability and aggravates the recognition. Diplaros et al.
(2006) proposed illumination-viewpoint invariant recognition
using combination of colour and shape. Burghouts and Geusebroek
(2009b) extended the grey-scale rotation invariant SIFT descriptor
(Lowe, 2004) to incorporate colour invariants. A texture segmenta-
tion can benefit from illumination invariants as well (Haindl et al.,
2009), although it is not rotation invariant.

Rotation invariant textural features can be divided into two main
groups. The first group contains filter based features such as modi-
fied Gabor features (Haley et al., 1999) and circular-Mellin features
(Ravichandran and Trivedi, 1995), which have additional advantage
of being scale insensitive. The second group composes of model
based features, which were in the invariant form introduced by
Kashyap et al. (1986), who used an autoregressive model of pixel va-
lue and averages on concentric circles around it. The disadvantage of
this model and its multiresolution extension (Mao and Jain, 1992) is
the insensitivity to anisotropic texture properties. This weakness
was removed in Anisotropic Circular Gaussian Markov Random
Field (ACGMRF) model (Deng et al., 2004), which computes the Fou-
rier descriptors of estimated model parameters. However, all the
previously mention textural features are illumination variant.

Another possibility to deal with rotated textures is a rotation
normalisation (Jafari-Khouzani and Soltanian-Zadeh, 2005), where
the principal texture direction is detected by the Radon transfor-
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Fig. 1. Example materials from the ALOT dataset and their appearance for different camera and light conditions.

Fig. 2. Example materials from the ALOT dataset and their appearance for different camera and light conditions.
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mation. Still, a detection of the principal direction may be ambig-
uous and it can be influenced by the illumination direction.

Combined rotation and illumination invariance is the property
of the following Local Binary Patterns (LBP) and texton MR8 fea-
tures. The rotation invariant version LBPriu2 of popular LBP features
was introduced by Ojala et al. (2002a). In general, LBP are histo-
grams of thresholded micropatterns, which guarantee invariance
to monotonous brightness changes. Unfortunately, they are sensi-
tive to noise and illumination direction changes (Vacha and Haindl,
2007; Vacha and Haindl, 2008). The vulnerability to noise was ad-
dressed by Liao et al. (2009), who selected dominant LBP and com-
bined it with circular Gabor features to include larger texture
relations. However, this method specifically selects patterns
according to the training set. A recently proposed LBP-HF (Ahonen
et al., 2009) extended LBPriu2 with relations between rotated pat-
terns. Varma and Zisserman (2005) characterize the texture by a
histogram of textons, which are clusters of MR8 filter responses.
Although the rotation invariance is provided by using the maximal
response of each filter orientations, the method requires multiple
training images with a full variety of illumination conditions for
each class. This drawback was reduced by Burghouts and
Geusebroek (2009a), who extended the MR8 texton method to in-
clude various degrees of illumination invariance – from colour
invariance to cast shadows and shading.

We introduce novel textural features, which are simultaneously
rotation and illumination invariant. They benefit from Markov ran-
dom field (MRF) illumination invariants (Vacha and Haindl, 2007),
which were derived with a restrictive assumption of Lambertian
surfaces. In this article (Section 3), we extend the invariance to nat-
ural illumination models and local intensity changes (e.g. cast
shadows). More importantly, we present two methods for adding
rotation invariance and combine these methods to take advantage
of their different approaches (Section 4). In Section 6, the proposed
features are tested on two BTF databases: Columbia–Utrecht
Reflectance and Texture Database (CUReT) (Dana et al., 1999)
and recently created Amsterdam Library of Textures (ALOT)
(Burghouts and Geusebroek, 2009a), which contains 250 natural
materials acquired with varying viewpoint and illumination
position.

2. Regression model

We use a textural representation based on fast estimates of
Markovian statistics. A texture is modelled by an autoregressive
random field model and the model parameters become the texture
characterisation. The special wide sense Markov model is used, be-
cause it enables fast analytical estimate of its parameters and thus
to avoid time-consuming Monte Carlo minimisation prevailing in
most MRF models.

2.1. Causal autoregressive random field

Let us assume that each multispectral (e.g. colour) texture is
composed of C spectral planes measured by the corresponding sen-
sors (usually C = 3). Yr = [Yr,1, . . . ,Yr, C]T is a multispectral pixel at
location r, where r = [r1,r2] is a multiindex with r1 row and r2 col-
umn index, respectively. The spectral planes are either modelled
by a 3-dimensional causal autoregressive random (CAR) field mod-
el or mutually decorrelated by the Karhunen–Loève transformation
(Principal Component Analysis) and subsequently modelled using
a set of C 2-dimensional CAR models.

The CAR representation assumes that the multispectral texture
pixel Yr can be modelled as a linear combination of its neighbours:

Yr ¼ cZr þ �r; Zr ¼ YT
r�s : 8s 2 Iu

r

h iT
; ð1Þ

where Zr is the Cg � 1 data vector with multiindices r, s, t,
c = [A1, . . . ,Ag] is the C � Cg unknown parameter matrix with sub-
matrices As. In the case of C 2D CAR models stacked into the model
equation (1) the parameter matrices As are diagonal otherwise they
are full matrices for a general 3D CAR model. Some selected contex-
tual causal or unilateral neighbour index shift set is denoted Iu

r and
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g ¼ cardinality Iu
r

� �
. The white noise vector �r has the normal density

with zero mean and unknown constant covariance matrix, same for
each pixel. For the 2D CAR model, we additionally assume uncorre-
lated noise vector components.

Given the known CAR process history Y(t�1) = {Yt�1,Yt�2, . . . ,Y1,
Zt,Zt�1, . . . ,Z1} the parameter estimation ĉ can be accomplished
using fast, numerically robust, and recursive statistics (Haindl
and Šimberová, 1992):

ĉT
t�1 ¼ V�1

zzðt�1ÞVzyðt�1Þ; ð2Þ

Vt�1 ¼ ~Vt�1 þ V0;

~Vt�1 ¼

Pt�1

u¼1
YuYT

u

Pt�1

u¼1
YuZT

u

Pt�1

u¼1
ZuYT

u

Pt�1

u¼1
ZuZT

u

0
BBB@

1
CCCA ¼

~Vyyðt�1Þ ~VT
zyðt�1Þ

~Vzyðt�1Þ ~Vzzðt�1Þ

 !
;

kt�1 ¼ Vyyðt�1Þ � VT
zyðt�1ÞV

�1
zzðt�1ÞVzyðt�1Þ; ð3Þ

where V0 is a positive definite matrix, kt�1 is statistic used in noise �r

structure estimation.

3. Illumination invariance

Illumination conditions of an image acquisition can change due
to various reasons. In our approach, we allow changes of brightness
and spectrum of illumination sources. We assume that a textured
surface is illuminated with several illumination sources and that
positions of viewpoint and illumination sources remain un-
changed. We start with the assumption of single illumination,
which is far enough to produce uniform illumination, and planar
Lambertian surfaces with varying albedo and surface texture nor-
mal. However, these restrictive assumptions will be further re-
lieved to incorporate more illumination sources, nonuniform
illumination, and surfaces with a natural reflectance model. Still,
the assumptions of fixed illumination positions might sound limit-
ing. Nevertheless, our experiments with natural surfaces show that
the derived features are very robust even if the illumination posi-
tions changes dramatically.

3.1. Illumination models

Let us assume that a textured Lambertian surface is illuminated
with one uniform illumination. The value acquired by the jth sen-
sor at the location r can be expressed as

Yr;j ¼
Z

X
EðxÞSðr;xÞRjðxÞdx; ð4Þ

where x is wavelength, E(x) is the spectral power distribution of a
single illumination, S(r,x) is a Lambertian reflectance coefficient at
the position r, Rj(x) is the jth sensor response function, and the
integral is taken over the visible spectrum X. The Lambertian
reflectance term S(r,x) depends on surface normal, illumination
direction, and surface albedo.

Following the works of Finlayson (1995), Healey and Wang
(1995), we approximate the surface reflectance S(r,x) by a linear
combination of a fixed basis Sðr;xÞ ¼

PC
c¼1dr;cscðxÞ, where func-

tions sc(x) are optimal basis functions that represent the data.
The method for finding suitable basis was introduced by Marimont
and Wandell (1992), they also concluded that, given the human
receptive cones, a 3-dimensional basis set is sufficient to model
colour observations. However, finding such basis set is not needed
in our method, because the key assumption is only its existence.
Provided that j = 1, . . . ,C sensor measurements are available
Yr;j �
XC

c¼1

dr;c

Z
X

EðxÞscðxÞRjðxÞdx;

Yr ¼ B0dr ;

where dr = [dr,1, . . . ,dr,C]T and B0 is a C � C matrix. The two images
~Y; Y acquired with different illumination spectra can be trans-
formed to each other by the linear transformation:

~Yr ¼ BYr ; 8r; ð5Þ

which is same for all the pixels. The formula (5) is valid even for
several illumination sources with variable spectra provided that
the spectra of all sources are the same and the positions of the illu-
mination sources remain fixed.

Let us generalise the surface reflectance to the natural model of
Bidirectional Texture Function (BTF) (Dana et al., 1999), where the
reflectance is function of surface position, wavelength, incoming
and outgoing light directions. Let L(r,x,vi,vo) is the surface reflec-
tance, vi is illumination direction and vo viewing direction then
Eq. (4) becomes

Yr;j ¼
Z

X
EðxÞLðr;x; v i;voÞRjðxÞdx: ð6Þ

On the condition that Q is an arbitrary number of reflectance com-
ponents in the reflectance model (e.g. Lambertian component, dif-
ferent isotropic or anisotropic spectacular components) and each
component is separable in x, the reflectance can be decomposed
and approximated:

Lðr;x;v i; voÞ ¼
XQ

q¼1

LðqÞðr;x; v i;voÞ ¼
XQ

q¼1

KðqÞðr;v i;voÞSðqÞðr;xÞ

�
XQ

q¼1

KðqÞðr;v i; voÞ
XC

c¼1

dðqÞr;c scðxÞ

¼
XC

c¼1

scðxÞ
XQ

q¼1

dðqÞr;c K
ðqÞðr; v i;voÞ;

where K(q)(r,vi,vo) is the qth reflectance component at position r
dependent on the angles, while S(q)(r,x) is the reflectance depen-
dent on x, which is again approximated with optimal basis func-
tions sc(x). Therefore, the images with a different illumination are
expressed as

Yr ¼ B0
XQ

q¼1

dðqÞr KðqÞðr;v i;voÞ ¼ B0d0r; 8r;

~Yr ¼ ~B0
XQ

q¼1

dðqÞr KðqÞðr;v i;voÞ ¼ ~B0d0r; 8r;

which is in accordance with the linear model (5). For a fixed posi-
tion r, the sum of functions K(q)(r,vi,vo) becomes the well-known
Bidirectional Reflectance Distribution Function (BRDF) (Nicodemus
et al., 1977).

The linear model (5) also includes linear transformations to
other colour models as CIE XYZ, Opponent colours and Gaussian
colour model (Geusebroek et al., 2003) as well.

3.2. Colour invariants

We assume that all pixels of textural images ~Y; Y can be trans-
formed to each other by the linear model (5) and the transforma-
tion matrix B is not singular. We proved relations of the model
parameter estimates (2) and (3): ~As ¼ B�1AsB, ~k ¼ BkBT , where ~� de-
notes the corresponding statistics for the different illumination.
Consequently, the following illumination invariant features were
derived (Vacha and Haindl, 2007):
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1. trace: trAs; 8s 2 Iu
r ,

2. eigenvalues: ms,j of As; 8s 2 Iu
r , j = 1, . . . ,C,

3. a1:1þ ZT
r V�1

zz Zr ,

4. a2:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

rðYr � ĉZrÞTk�1ðYr � ĉZrÞ
q

,

5. a3:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

rðYr � lÞTk�1ðYr � lÞ
q

,
l is the mean value of vector Yr.

These illumination invariants are easily evaluated during
the CAR parameter estimation process. In the case of 2D models,
the invariants 3–5 are computed for each spectral plane separately.

In this paper, we experiment with the less general illumination
model, where B is restricted to a diagonal matrix. This illumination
model still allows a change of illumination colour, but it forbids the
mutual switch of image spectral planes. For the diagonal B, the
multiplication B�1AsB do not change the diagonal elements of As.
Therefore we can alternatively define invariants ms,j:

2:0diagonals : ms ¼ diagðAsÞ; 8s 2 Iu
r :
3.3. Local intensity changes

The previous invariants were derived with the uniform illumina-
tion assumption. We show that most of the invariants are also
invariant to locally constant intensity changes, which can be caused
by cast shadows or objects with more textured planar surfaces.

Let us start with an auxiliary construction without intensity
changes. We assume that a textured image is composed of n copies
of the same small texture tile S, which is homogeneous and homo-
geneously illuminated. The tiles are placed side by side to cover the
whole image lattice I. Using the formula (2), the relation of tile
parameter estimate ĉðSÞ and the estimate for the whole image ĉðIÞ

is following

ĉðSÞ ¼
X
r2S

ZrZ
T
r

 !�1 X
r2S

ZrY
T
r

 !
;

ĉðIÞ ¼
X
r2I

ZrZ
T
r

 !�1 X
r2I

ZrY
T
r

 !
� n

X
r2S

ZrZ
T
r

 !�1

n
X
r2S

ZrY
T
r

 !
¼ ĉðSÞ;

ð7Þ

where the approximation (7) discards statistics at the seams of tiles,
if the tiles are seamless the equations are precise.

Provided that a modified image is composed of the same texture
tiles S, where the ‘th texture tile is modified by the multiplication
of all its pixels and spectral planes with some constant b‘. This sim-
ulates locally constant intensity changes in the image. The param-
eter estimate become

~̂cðIÞ ¼
X
r2I

~Zr
~ZT

r

 !�1 X
r2I

~Zr
~YT

r

 !

�
Xn

‘¼1

b2
‘

 !X
r2S

ZrZ
T
r

 !�1 Xn

‘¼1

b2
‘

 !X
r2S

ZrY
T
r

 !
¼ ĉðSÞ; ð8Þ

where ~̂c, ~Zr , ~Yr are related to the illumination modified image. The
approximation again discards the seam statistics, which addition-
ally includes local illumination changes. The previous assumption
of the tile composed image can be further weaken. The image tiles
could be even different on condition that the correlation statisticsP

r2SZrZ
T
r and

P
r2SZrY

T
r remain the same, which is implicated by

the homogeneous property of textures; natural examples are sto-
chastic textures. Eq. (8) instantly implies that illumination invari-
ants trAs, ms,j are approximately invariant to local intensity
changes. Analogically, it can be proved for the invariant a2.
4. Rotation invariance

We propose two different methods for the rotation invariance
of MRF features. The first method computes rotation invariant fea-
tures before the estimation of MRF parameters, while the second
method builds rotation invariants after the MRF parameter estima-
tion by means of moment invariants.

Theoretically, the both methods are invariant to image rotation,
which is imprecise approximation of rotation of rough materials
(3D textures) with variable illumination direction (Chantler and
August, 1995). However, our experiments show that the proposed
methods succeeded in recognition of real materials including the
rough ones.

4.1. Rotation autoregressive random model

The rotation autoregressive random (RAR) model is inspired by
the model of Kashyap et al. (1986), who estimated a regression
model of pixel values and averages on concentric circles around
these pixels. Although, this model is suitable for modelling of iso-
tropic textures, it has difficulties with anisotropic texture proper-
ties. Our model extends the regression data with maximum and
minimum from circular samples, which enables model to capture
some anisotropic texture properties.

The basic modelling equation is similar to (1):

Yr ¼ cZr þ �r; Zr ¼ YT
r;max;Y

T
r;min;Y

T
r;mean : 8s 2 I�r

h iT

with the difference in data vector Zr. The vector Zr is now composed
of averages Yr,mean of points, which are sampled on concentric cir-
cles from the circular contextual neighbourhood I�r . The bilinear
interpolation is used for the interpolation of sampled points. Addi-
tionally, we extend Zr by maximum Yr,max and minimum Yr,min of
the sampled points for each circle, which distinguish among isotro-
pic and anisotropic neighbourhood. The parameter estimate ĉ can-
not be computed using the analytical Bayesian estimate (2)
anymore, therefore we use the corresponding least square approx-
imation. This LS estimate leads formally to the same equations as
(2) with V0 = O (zero matrix).

4.2. Rotation moment invariants

The rotation moment invariants are used to describe aniso-
tropic texture properties, which are only briefly captured by the
previous model. The CAR model parameters are estimated (Sec-
tion 2.1) and the rotation moment invariants are computed from
the illumination invariants tr As, ms,j (Section 3.2), according to
their position in the neighbourhood Iu

r . Since the unilateral neigh-
bourhood Iu

r covers only the upper half plane, the values are
duplicated in the central symmetry to cover all the plane, which
is advantageous for the rotation invariance of moments. The mo-
ments are computed separately for each spectral plane of ms,j. We
also add moment invariants that describe inter spectral relations
of ms,j.

It is advantageous to compute the rotation invariants from com-
plex moments, because they change more simply in rotation than
other types of moments. The complex moment of the order p + q of
the function f(r1,r2) is defined

cðf Þpq ¼
Z 1

�1

Z 1

�1
ðr1 þ ir2Þpðr1 � ir2Þqf ðr1; r2Þdr1 dr2; ð9Þ

where i is an imaginary unit. We omit the superscript (f) if there is
no danger of confusion. It follows from the definition that only
the indices p P q are meaningful because cpq ¼ c�qp (the asterisk de-
notes complex conjugate).
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The complex moment c0pq after a rotation of f(r1,r2) equals

c0pq ¼ e�iðp�qÞa � cpq; ð10Þ

where a is the rotation angle. Therefore a product of complex
moments

Yn

‘¼1

ck‘
p‘q‘

ð11Þ

is invariant to rotation, if the sum of the first indices equals the sum
of the second indices, i.e.

Xn

‘¼1

k‘p‘ ¼
Xn

‘¼1

k‘q‘ or
Xn

‘¼1

k‘ðp‘ � q‘Þ ¼ 0:

The total number of moment invariants equals m � t, where m
is the number of real values of moments (complex moment with
p – q has two real values – real and imaginary parts) and t is the
number of transform parameters. In our case, the rotation has
one parameter (the angle), i.e. t = 1 and the number of real values
of the sth order moments is s + 1. Moment c00 is an exception
(there should be no zeroth-order invariant according to this rule,
but the transform parameter is dependent in this case and it is
not counted). The set of invariants should be chosen to be indepen-
dent, see Flusser et al. (2009), Flusser and Suk (2006) for more de-
tails and additional references.

In our case, we must consider the behaviour of the complex mo-
ments of symmetric functions. A function has so-called N-fold rota-
tion symmetry (N-FRS), if it repeats itself when it rotates around its
centroid by 2p‘/N for all ‘ = 1, . . . ,N. The central symmetry is a spe-
cial case of N-FRS, where N = 2. If f(r1,r2) has N-FRS and (p�q)/N is
not an integer, then cpq = 0. If f0 is the rotated version of f by the an-
gle 2p/N, then, because of its symmetry, it must be the same as the
original. Therefore, it must hold c0pq ¼ cpq for any p and q. At the
same time, it follows from Eq. (10) that

c0pq ¼ e�2piðp�qÞ=N � cpq:

Since e2pif = 1 for an integer f and (p � q)/N is assumed not to be an
integer, this equation can be fulfilled only if cpq = 0.

Since our neighbourhood is centrally symmetric, we cannot use
any odd-order moment. That is why we use these even-order rota-
tion moment invariants

� zeroth order: c00,
� second order: c11, c20c02,
� fourth and mixed order: c22, c40c04, c31c13,Reðc40c2

02Þ,Reðc31c02Þ.

We can utilise the fact that all colour channels are rotated to-
gether, by the same angle and construct joint colour rotation
invariants

� second order: cð‘Þ20cðjÞ02,
where ‘ = 1, j = 2, . . . ,C are the individual colour channels.
Fig. 3. Texture analysis algorithm which combines illumination invariants with two appr
statistics (RAR) in the upper line, or a causal autoregressive model followed by the com
We have the matrix of discrete values instead of a continuous
function here, therefore we must use a discrete approximation of
the complex moments (9):

ĉðf Þpq ¼
X

r1

X
r2

ðr1 þ ir2Þpðr1 � ir2Þqf ðr1; r2Þ: ð12Þ

Bilinear interpolation of f(r1, r2) is used to enhance its resolution and
precision of computed moments.

All single spectral plane moments ĉpq were computed for invari-
ants tr As and ms,j, j = 1, . . . ,C according to their position in the
neighbourhood Iu

r . Each matrix As¼ðs1 ;s2Þ is associated with the posi-
tion (s1,s2) in neighbourhood Iu

r , therefore the input function f is de-
fined from the matrix traces and made symmetric as

f ðr1; r2Þ ¼
trAðr1 ;r2Þ; ðr1; r2Þ 2 Iu

r ;

trAð�r1 ;�r2Þ; ð�r1;�r2Þ 2 Iu
r :

0; otherwise:

8><
>: ð13Þ

Similar construction applies for each spectral plane j of ms,j. The
interspectral moments are computed only for invariants ms,j, with
the same construction of f. Altogether, it makes 34 = 8 + 3 ⁄ 8 + 2
moment invariants for C = 3, which we denote as set m1. Since the
high order moments tend to be numerically unstable, especially
for roughly defined f, we also work with the reduced set of invari-
ants denoted as m2, which only includes invariants c00, c11, c20c02,
c22 and cð1Þ20 cðjÞ02 .

The illumination invariants a1, a2, a3 (Section 3.2) are not asso-
ciated with the position in the neighbourhood, therefore the rota-
tion invariant transformation is not necessary and they can be
added directly into the feature vector.
5. Texture analysis algorithm

The texture analysis algorithm starts with the factorisation of
texture into K levels of the Gaussian downsampled pyramid (it
captures larger spatial relations), followed by modelling with two
different MRF models. At first, each pyramid level is modelled by
the RAR model and the illumination invariants are computed from
its parameters. Secondly, each pyramid level is modelled by the
CAR model. After the estimation of CAR model parameters, the illu-
mination invariants and subsequently the rotation moment invari-
ants are computed from the parameters. Finally, the features from
all the models are concatenated into one feature vector. The algo-
rithm scheme is depicted in Fig. 3.

More precisely, we used K = 4 levels of Gaussian pyramid and
the CAR models with the sixth order hierarchical neighbourhood
(cardinality g = 14), which corresponds to maximum radius 3 used
in the RAR models. Actually, the optimal size of neighbourhood and
pyramid depends on the size of input images, because the models
require enough data for a reliable parameter estimation. The opti-
mal neighbourhood can be determined automatically (Haindl and
Šimberová, 1992), nevertheless we used the same parameters K,
g in all our experiments in order to make the results comparable.
The moment based features are composed of either a full or re-
oaches to rotation invariance. It is either a autoregressive model of rotation invariant
putation of rotation moment invariants (m(CAR-KL)) in the lower line.
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duced set of invariants, in the results they are denoted as ‘‘m1(mod-
el)’’ or ‘‘m2(model)’’, respectively.

It is possible to decorrelate image spectral planes by means of
the Karhunen–Loève transformation before the estimation of the
texture model. If the decorrelation is employed, the illumination
invariant features ms,j have to be implemented using diagonals in-
stead of eigenvalues (ms,j definition denoted as 2.0 in Section 3.2),
otherwise the eigenvalues would cancel the decorrelation. The
decorrelation is necessary for the 2D model, since this model is
not able to incorporate interspectral relations. In the results, the
decorrelation is denoted by ‘‘-KL’’ suffix in model names.

The distance between two feature vectors is computed using
the fuzzy contrast (Santini et al., 1999) in its symmetrical form:

FCbðT; SÞ ¼ P �
XP

p¼1

min sðf ðTÞp Þ; sðf ðSÞp Þ
n o(

�b
XP

p¼1

sðf ðTÞp Þ � sðf ðSÞp Þ
��� ���

)
;

sðfpÞ ¼ 1þ exp � fp � lðfpÞ
rðfpÞ

� �� ��1

;

where P is the feature vector size and l(fp) and r(fp) are average and
standard deviation of the feature fp, which were estimated on spe-
cial parameter tuning sets. The sigmoid function s models the truth
value of a fuzzy predicate. This feature normalisation is necessary
since the moments have different scales.

6. Experiments

In the first experiment, we focused on the robustness of textural
features under varying illumination and viewpoint direction,
which resembles real world scenes with natural materials. In the
second experiment, we tested features under varying illumination
spectrum and texture rotation, which simulates different day light
or artificial illuminations. In the third experiment, our results were
compared with other recently published features.

The proposed features were compared with the following illu-
mination and rotation invariant features:

� MR8-⁄. These representatives of filter based methods character-
ise a texture as the histogram of textons (Varma and Zisserman,
2005), which are clusters of MR8 filter responses. The extension
by Burghouts and Geusebroek (2009a) introduced four different
degrees of illumination invariance – from colour invariance to
cast shadows and shading. We compare our results with vari-
ants MR8-NC and MR8-LINC, which were reported with the best
performance.
Fig. 4. Accuracy of material recognition [%] for CUReT and ALOT datasets, using different
random selections of training images.
� LBPriu2
P;R . Local Binary Patterns (Ojala et al., 2002b) are the histo-

grams of micro patterns, which are thresholded values sampled
at each pixel neighbourhood (P is the number of samples with
radius R). LBPriu2

P;R consider only uniform patterns (a subset of
simpler patterns), regardless their orientations. The features
are computed either on grey-scale images or separately on all
spectral planes of colour images and concatenated into a com-
mon feature vector (denoted with ‘‘RGB’’ suffix).
� LBP-HF. This extension of LBPriu2

P;R (Ahonen et al., 2009) analyses
also the relations of micropattern orientations. The Fourier
transformation is computed from the histogram of single pat-
tern orientations and the amplitudes of Fourier coefficients
are rotation invariant features. The authors’ implementation is
provided in MATLAB.

6.1. Experiment 1

We follow the experimental setup of Burghouts and Geusebroek
(2009a) and evaluate the texture recognition accuracy on CUReT
(Dana et al., 1999) and ALOT (Burghouts and Geusebroek, 2009a)
datasets.

The ALOT library is a BTF database containing an extraordinary
collection of 250 natural materials, each acquired with varying
viewpoint and illumination positions (Figs. 1, 2). Most of the mate-
rials have rough surfaces, so the movement of light source changes
the appearance of materials. Moreover, the significant height vari-
ation of some materials (e.g. leaves) causes a large and variable
cast shadows, which makes recognition even more difficult. The
dataset (Burghouts and Geusebroek, 2009a) consists of images of
the first 200 materials divided into tune, train, and test parts, each
with 2400 samples. Let c stands for camera, l for light, i for reddish
illumination, and r for material rotation. The parameter tuning set
consists in samples with setup c{1,4}l{1,4,8}r{60�,180�}; the train-
ing set is defined as c{1,4}l{1,4,8}r{0�,120�} and finally, the test set
contains images with c{2,3}l{3,5}r{0�,120�}, c3l2r{0�,120�},c2l2r0�,
and c1ir0�. Additionally, we cropped all the images to the same size
1536 � 660 pixels.

The CUReT database also consists of real-world materials ac-
quired with different combinations of viewing and illumination
directions. The dataset provided by Varma and Zisserman (2005)
consists of 61 materials, each with 92 samples and resolution
200 � 200 pixels. We defined the parameter tuning set as the sub-
set the training set which contains the first four samples for each
material.

In the setup of Burghouts and Geusebroek (2009a), the classifi-
cation accuracy is tested with randomly selected training samples
and an ensemble of classifiers. The number of training samples per
material decreases from 8 to 1. The mean and standard deviation of
numbers of random training images per material. The values are averages over 103
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classification accuracy is computed over 103 repetitions (random
selections). We differ only in the classifier, where the simple near-
est neighbour (1-NN) is employed.

The results of correct classification and the progression for dif-
ferent number of training samples are shown in Fig. 4. The graphs
in Fig. 4 are directly comparable to the results of Burghouts and
Geusebroek (2009a), where the best classification accuracy monot-
onously decreases from 75% to 45% for MR8-LINC on the CUReT
and from 40% to 20% for MR8-NC on the ALOT dataset. Standard
deviations for the CUReT is below 0.5%, 0.7% and 1.2% for 8, 4
and 1 samples, respectively and for the ALOT dataset, it is below
0.4%, 0.5% and 0.6% for the same number of samples. The more de-
tailed comparison is displayed in Table 1, where also the separate
results of two rotation invariant approaches are shown. The best
results were achieved with the combination of these two ap-
proaches ‘‘3D RAR + m1(3D CAR-KL)’’, which performed signifi-
cantly better than LBP and MR8-⁄ alternatives on both datasets.
On the ALOT dataset, the proposed features surpassed the best
alternative by more than 20%. This remarkable improvement was
probably achieved by the combination of colour invariance and
robustness to local intensity changes. The performance difference
were maintained for all numbers of training images. Moreover,
the 3-dimensional model outperformed its 2-dimensional counter-
Table 1
Accuracy of material recognition [%] for CUReT and ALOT datasets, using 4 random
training images per material. The values are averages over 103 random selections of
training images. The bold values highlight the best results in groups and the last
column consists of feature vector sizes.

Method CUReT ALOT Size

2D RAR-KL 63.6 45.3 180
m1(2D CAR-KL) 75.6 38.8 172
m2(2D CAR-KL) 76.4 37.1 108
2D RAR-KL + m1 (2D CAR-KL) 79.5 53.4 352
2D RAR-KL + m2 (2D CAR-KL) 79.0 52.6 288
3D RAR 62.5 46.8 156
m1(3D CAR) 57.0 26.0 148
m1(3D CAR-KL) 71.7 41.1 304
m2(3D CAR-KL) 72.6 39.2 84
3D RAR + m1(3D CAR-KL) 78.1 58.3 304
3D RAR + m2(3D CAR-KL) 78.2 57.1 240
LBP8,1 + 8,3, RGB 71.2 32.0 1536

LBPriu2
8;1þ24;3, RGB 73.0 33.2 108

LBPriu2
8;1þ24;3, grey 67.3 24.3 36

LBP-HF8,1+24,3, grey 69.5 29.9 340
LBP-HF8,1+16,2+24,3, grey 69.9 29.4 448

Burghouts and Geusebroek (2009a)
MR8-NC 54 36 600
MR8-LINC 67 30 600

Fig. 5. Accuracy of material recognition [%] for the ALOT dataset, using 4 training sam
displayed the recognition accuracy per material, where the materials are sorted accord
acquired from top camera positions is compared to side viewed test samples (7–12).
part on the ALOT dataset, since large textures provided enough
training data for a precise estimation of interspectral relations.

The recognition accuracy per material is displayed in Fig. 5,
where the materials are sorted according to their recognition accu-
racy. This graph implies that the ALOT dataset includes some very
easily recognisable materials as well as extremely difficult ones. It
is worth noting that one half of the ALOT test set is acquired with
camera 3, which is closer to the material surface and which view-
point angle is more extreme than cameras used in the training set.
(Example images from camera 3 are in two bottom lines in Figs. 1,
2). As result, the classification accuracy for these side viewed
images is approximately half of the accuracy for the images from
top camera positions, or even worse for LBP features (Fig. 5). The
reason is that none of the compared features are invariant to per-
spective projection.

Moreover, large texture sizes in the ALOT enabled us to experi-
ment with an additional level of the Gaussian pyramid (a level with
lower resolution) than in the experiments with the other datasets.
This additional level captures larger spatial relations in textures,
which is confirmed with a significant performance increase in
the ALOT column in Table 2. The CUReT column in Table 2 displays
that the additional pyramid levels may decrease the performance
when the images do not provide enough data.

The average analysis time for large ALOT images was 20 s for
‘‘2D RAR-KL’’, 11 s for ‘‘m1(2D CAR-KL)’’, and 10 s for ‘‘LBPriu2

8;1þ24;3

RGB’’, all computed on AMD Opteron 2.1 GHz. The analysis of small
CUReT images spent 0.8 s, 0.5 s, and 0.4 s of CPU time per image,
respectively.

For comparison reasons, we included the results of the pro-
posed features with a widely used SVM classifier instead of FC3 dis-
similarity and 1-NN. The comparison was performed using LibSVM
implementation (Chang and Lin, 2001) and the results in Table 3
are slightly worse than those presented in Table 1. The presented
results were achieved with the linear C-SVC classifier, which was
preceded with whitening of features – scaling to have zero mean
and unit variance.
6.2. Experiment 2

In the second experiment, we demonstrate the performance of
the proposed features on the Outex database (Ojala et al., 2002a).
This database consists of natural material images acquired under
three illuminations with almost same positions but different spec-
tra. The illumination sources were 2856 K incandescent CIE A light
source – ‘‘inca’’, 2300 K horizon sunlight – ‘‘horizon‘‘, and 4000 K
fluorescent TL84 – ‘‘tl84’’.
ples per materials and 103 random selections of training images. On the left, it is
ing to their recognition accuracy. On the right, the accuracy for test samples (1–6)



Table 2
Accuracy of material recognition [%] for CUReT and ALOT datasets, experiment with
one additional Gaussian pyramid level. The setup is same as in Table 1.

Method CUReT ALOT Size

" 2D RAR-KL + m1(2D CAR-KL) 78.4 61.6 440
" 3D RAR + m1(3D CAR-KL) 74.9 65.3 380

Table 3
Accuracy of material recognition [%] for CUReT and ALOT datasets, using SVM
classifier preceded with whitening of features. Otherwise, the setup is same as in
Table 1.

Method + SVM CUReT ALOT Size

2D RAR-KL + m1(2D CAR-KL) 76.1 51.3 440
3D RAR + m1(3D CAR-KL) 75.1 56.6 380

Table 5
KTH-TIPS2: accuracy of material recognition [%] averaged over 104 random training
set selections. The last column consists of feature vector sizes.

Method Mean Size

2D RAR-KL 58.6 180
m1(2D CAR-KL) 59.6 172
m2(2D CAR-KL) 59.1 108
2D RAR-KL + m1(2D CAR-KL) 63.2 352
2D RAR-KL + m2(2D CAR-KL) 63.0 288
3D RAR 58.8 156
m1(3D CAR) 49.6 148
m1(3D CAR-KL) 58.7 148
m2(3D CAR-KL) 57.8 84
3D RAR + m1(3D CAR-KL) 65.0 304
3D RAR + m2(3D CAR-KL) 65.0 240
LBP8,1 + 8,3, RGB 56.0 1536

LBPriu2
8;1þ24;3, RGB 54.1 108

LBPriu2
8;1þ24;3, grey 49.6 36

Ahonen et al. (2009)

LBPriu2
8;1þ24;3, grey 50.7 36

LBP-HF8,1+24,3, grey 54.2 340
LBP-HF8,1+16,2+24,3, grey 54.6 448
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The experiment was performed on the classification test Out-
ex_TC_0012 (Ojala et al., 2002a). In this set, 24 materials were se-
lected from the Outex database, subsequently 20 subsamples with
size 128 � 128 were extracted for each of 9 rotations of each
material. The training set consists in 20 subsamples per material,
with 0� rotation, illuminated with the ‘‘inca’’ light source. On the
other hand, the each of two test sets consists of 20 subsamples
per material, with all 9 rotations. The first test set contains subs-
amples illuminated with ‘‘horizon’’, while the second one contains
images with ‘‘tl84’’ light. Consequently, the train set consists of 480
images, while the test sets are composed of 4320 images each.
Although this test is focused on colour invariance, all images are
available only in the grey-scale. This setup disables an exploitation
of interspectral dependences, which are the key properties in illu-
mination spectrum invariance.

We used the nearest neighbour classifier instead of three nearest
neighbours as Ojala et al. (2002b), since the performance differ-
ences were negligible. The mean and standard deviation of features,
used by FC3 dissimilarity, were estimated on the training set. The
averages of correct classification on both test sets are displayed in
Table 4. The recently published results of LBP-HF8,1+16,2+24,3 are
slightly better than the proposed features, however the feature vec-
tor of LBP-HF8,1+16,2+24,3 is almost five times longer. The proposed
features suffered from grey-scale input images, which are, in our
opinion, not suitable for testing of colour invariance.
6.3. Experiment 3

The third experiment compares the performance of the pro-
posed features on the KTH-TIPS2 database (Caputo et al., 2005),
Table 4
Outex_TC_0012: averages of material recognition accuracy [%] on both test sets. The
last column consists of feature vector sizes.

Method Total Size

2D RAR-KL 87.5 48
m1(2D CAR-KL) 64.6 44
m2(2D CAR-KL) 68.1 28
2D RAR-KL + m1(2D CAR-KL) 87.6 92
2D RAR-KL + m2(2D CAR-KL) 89.6 60

LBPriu2
8;1þ24;3, grey 87.6 36

Ojala et al. (2002b)

LBPriu2
8;1þ24;3, grey 87.2 36

Ahonen et al. (2009)

LBPriu2
8;1þ24;3, grey 88.3 36

LBP-HF8,1+24,3, grey 91.7 340
LBP-HF8,1+16,2+24,3, grey 92.5 448
which includes samples with different scales and rotations. Be-
cause the training set includes various scales and rotations, the
invariance is not a key issue.

The KTH-TIPS database contains 4 samples of 11 materials cate-
gories, each sample consists of images with 4 different illumina-
tions, 3 in-plane rotations and 9 scales. The illumination
conditions consist in 3 different directions plus 1 image with differ-
ent spectrum. There are 4572 images in total and their resolution is
varying around 200 � 200 pixels. We follow the experimental setup
of Ahonen et al. (2009), where the nearest neighbour classifier was
trained with one random sample (4 � 3 � 9 images) per material
category. The remaining images (3 � 108 per category) were used
for testing. This was repeated for 104 random partitioning to train-
ing and test sets. Since the setup do not define a parameter tuning
set, we defined it as the subset of training set which contains the
first sample of each material category.

Table 5 compares the average classification accuracy, where
standard deviation is 2% or below. Although, a large variety of
training image conditions allowed non-invariant features to per-
form comparably, still the proposed features took advantage of
their invariance and outperformed alternatives by more than 10%.
7. Conclusion

We have proposed rotation and colour invariant features, which
are simultaneously robust to illumination direction and local
intensity changes. The features advantageously combine illumina-
tion invariants with two constructions of rotation invariants:
either modelling of rotation invariant statistics or moment invari-
ants computed from direction sensitive model parameters. The
experiments were designed to closely resemble real life conditions
of natural material recognition. The tests were performed on 4 dif-
ferent texture databases, which included almost 300 natural mate-
rials in total and the materials were acquired with different
viewpoint, illumination colour and direction. The proposed fea-
tures outperformed leading alternative features as MR8-⁄, LBPriu2

and LBP-HF. As overall best method we suggest ‘‘3D RAR + m2(3D
CAR-KL)’’ or its 2D counterpart if less training data is available.1

In future research we are going to integrate a more elaborate
classifier for the combination of features.
1 Demonstration is available at http://cbir.utia.cas.cz/rotinv/.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
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