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Summary. In this paper a random regression coefficient model is used to provide
estimates of small area poverty proportions. As poverty variable is dichotomic at
the individual level, the sample data from Spanish Living Conditions Survey is
previously aggregated to the level of census sections. EBLUP estimates based on
the proposed model are obtained. A closed-formula procedure to estimate the mean
squared error of the EBLUP estimators is given and empirically studied. Results of
several simulations studies are reported as well as an application to real data.

1 Introduction

In small area estimation samples are drawn from a finite population, but estimations
are required for subsets (called small areas or domains) where the effective sample
sizes are too small to produce reliable direct estimates. An estimator of a small area
parameter is called direct if it is calculated just with the sample data coming from
the corresponding small area. Thus, the lack of sample data from the target small
area affects seriously the accuracy of the direct estimators, and this fact has given
rise to the development of new tools for obtaining more precise estimates. See a
description of this theory in the monograph of Rao [8], or in the reviews of Ghosh
and Rao (1994), Rao (1999), Pfeffermann [5] and more recently Jiang and Lahiri
[3]. Mixed models increase the effective information used in the estimation process
by linking all observations of the sample, and at the same time they can allow for
between-area variation. Further flexibility is obtained by using random coefficient
regression models, which allows the coefficient of auxiliary variables to vary across
sampling units or domains. Moura and Holt (1999) suggested the application of
random coefficient models in small area estimation. This paper follows their recom-
mendation and presents and application to the estimation of poverty proportions by
using data from the Spanish Living Conditions Survey.
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The paper is organized as follows. Section 2 introduces the considered random
coefficient model and Section 3 derives the corresponding EBLUP estimates. Section
4 deals with the problem of estimating mean squared errors. Section 5 presents
several simulation experiments designed to investigate some practical issues. Section
6 is devoted to the application to real data. Finally, Section 7 gives some conclusions.

2 A random regression coefficient model

We consider two models. The first one, which will be called Model B in the sequel,
is the random regression coefficient model

ydj =

p∑
k=0

βkxkdj +

p∑
k=0

ukdxkdj + edj , d = 1, . . . ,D, j = 1, . . . , nd, (1)

where ydj is the jth observation from area d, xkdj are auxiliary variables and
βk are unknown regression parameters. Further, random regression coefficients

ukd
iid∼ N(0, σ2

k) and random errors edj∼N(0, w−1
dj σ2

e) are independent, d = 1, . . . ,D,
j = 1 . . . , nd, k = 0, . . . , p. If x0dj = 1 for any d and j then model (1) contains a
random intercept of the form β0 +u0d for area d. The model variance and covariance
parameters are σ2

e , σ2
k, k = 0, . . . , p, (2 + p parameters).

In this paper we will compare model (1) with the standard nested regression
model (denoted as Model A)

ydj =

p∑
k=0

βkxkdj + u0d + edj, d = 1, . . . ,D, j = 1, . . . , nd, (2)

where u0d
iid∼ N(0, σ2

0) and edj
iid∼ N(0, w−1

dj σ2
e) are independent, d = 1, . . . ,D,

j = 1 . . . , nd. In this section we briefly describe some basic facts for the application
of Model B to small area estimation. The corresponding derivations for Model A are
straightforward.

In matrix notation model (1) can be written in the form

y = Xβ +

p∑
k=0

Zkuk + e, (3)

where n =
∑D

d=1 nd, β = β(p+1)×1, y = col
1≤d≤D

(yd), yd = col
1≤j≤nd

(ydj), e =

col
1≤d≤D

(ed), ed = col
1≤j≤nd

(edj), uk = col
1≤d≤D

(ukd), X = col
1≤d≤D

(Xd), Xd =

colt
0≤k≤p

(xk,nd), xk,nd = col
1≤j≤nd

(xkdj), Zk = diag
1≤d≤D

(xk,nd), Ia = diag
1≤j≤a

(1),

W = diag
1≤d≤D

(Wd), Wd = diag
1≤j≤nd

(wdj), with wdj > 0 known, d = 1, . . . ,D, j =

1, . . . , nd. Note that model (1) is a multilevel model that can alternatively be written
as in Moura and Holt [4], i.e.

yd = Xdγd + ed, γd = β + u.d, d = 1, . . . , D, (4)

where u.d = col
0≤k≤p

(ukd).
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Variance matrices of Model B are Ve = var(e) = σ2
eW

−1, Vuk = var(uk) = σ2
kID,

k = 0, 1, . . . , p, and

V = var(y) = Ve +

p∑
k=0

ZkVukZ
t
k = diag

1≤d≤D

(Vd),

where

Vd = σ2
eW

−1
d +

p∑
k=0

σ2
kxk,nd

xt
k,nd

, d = 1, . . . ,D.

For model fitting it is worthwhile to consider the alternative parameters σ2 = σ2
e ,

ϕk = σ2
k/σ

2
e , k = 0, 1, . . . , p, in such a way that V = σ2Σ and Vd = σ2Σd, where

Σ = diag
1≤d≤D

(Σd) and

Σd = W−1
d +

p∑
k=0

ϕkxk,ndx
t
k,nd

, d = 1, . . . , D. (5)

Let ϕ = (σ2, ϕ0, ϕ1, . . . , ϕp) be the vector of variance components, with σ2 > 0,
ϕ0 > 0, ϕ1 > 0, . . . , ϕp > 0. Let u = col

0≤k≤p
(uk) with variance Vu = var(u) =

diag
0≤k≤p

(Vuk) and Z = colt
0≤k≤p

(Zk). Using this notation the model (3) can be written

in the general form
y = Xβ + Zu + e.

If ϕ is known, then the BLUE of β = (β0, β1, . . . , βp)t is

β̂ = (XtV −1X)−1XtV −1y =

(
D∑

d=1

Xt
dΣ

−1
d Xd

)−1( D∑
d=1

Xt
dΣ

−1
d yd

)

and the BLUP of u is û = VuZ
tV −1(y − Xβ̂), i.e.

û = diag
0≤k≤p

(Vuk) col
0≤k≤p

(Zt
k) diag

1≤d≤D
(V −1

d ) col
1≤d≤D

(yd −Xdβ̂) .

The empirical BLUE and BLUP (EBLUE and EBLUP) are obtained by substituting
the variance parameters by convenient estimates. We will now describe the Fisher-
scoring algorithm to calculate the residual maximum likelihood estimates of the
variance components.

The REML log-likelihood is

lREML(σ) = −1

2
(n− p) log 2π − 1

2
(n− p) log σ2 − 1

2
log |KtΣK| − 1

2σ2
ytPy,

where

P = K(KtΣK)−1Kt = Σ−1 −Σ−1X(XtΣ−1X)−1XtΣ−1,

K = W −WX(XtWX)−1XtW

are such that PX = 0 and PΣP = P . From (5) it follows that Σ can be written in
the form
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Σ = W−1 +

p∑
k=0

ϕkAk,

where Ak = ZkZ
t
k = diag

1≤d≤D

(xk,ndx
t
k,nd

), k = 0, 1, . . . , p. As ∂P
∂ϕk

= −PAkP , by

taking partial derivatives with respect to σ2 and ϕk, k = 0, 1, . . . , p, one gets

Sσ2 = −n− p

2σ2
+

1

2σ4
ytPy, Sϕk = −1

2
tr{PAk} +

1

2σ2
ytPAkPy,

k = 0, 1, . . . , p. The second partial derivatives are

Hσ2σ2 =
n− p

2σ4
− 1

σ6
ytPy, Hσ2ϕi

= − 1

2σ4
ytPAiPy,

Hϕiϕj =
1

2
tr{PAiPAj} −

1

σ2
ytPAiPAjPy, i, j = 0, 1, . . . , p.

By taking expectations and multiplying by −1, we obtain the components of the
Fisher information matrix (i, j = 0, 1, . . . , p)

Fσ2σ2 =
n− p

2σ4
, Fσ2ϕj

=
1

2σ2
tr{PAj}, Fθiϕj =

1

2
tr{PAiPAj}.

To calculate the REML estimates, the Fisher-scoring updating formula is

ϕk+1 = ϕk + F−1(ϕk)S(ϕk).

The following seeds can be used as starting values in the Fisher-scoring algorithm

σ2(0) = θ
(0)
0 = ϕ

(0)
1 = . . . = ϕ(0)

p = S2/(p + 2),

where S2 = 1
n−p

(y − Xβ̃)tW (y − Xβ̃) and β̃ = (XtWX)−1XtWy.
The asymptotic distributions of the REML estimators of ϕ and β are

ϕ̂ ∼ Np+2(ϕ, F
−1(ϕ)), β̂ ∼ Np+1(β, (X

′V −1X)−1),

so that the 1 − α asymptotic confidence intervals for ϕk and βk are

ϕ̂k ± zα/2 ν
1/2
kk , and β̂k ± zα/2 q

1/2
kk , k = 0, 1, . . . , p,

where ϕ̂ = ϕκ, κ is the last iteration in the Fisher-scoring algorithm, F−1(ϕκ) =
(νk�)k,�=−1,0,...,p, (X ′V −1(ϕκ)X)−1 = (qk�)k,�=0,1,...,p and zα is the α-quantile of
the N(0, 1)) distribution. The confidence interval for σ2 is obtained in the same way
by using the corresponding diagonal element of the matrix F−1.

3 EBLUP of the domain mean

In this section we consider a finite population of N elements following the model
introduced in (1) with population sizes Nd in the place of sample sizes nd. From the
population a sample of size n with nd elements in area d, n =

∑D
d=1 nd, is selected.

Without loss of generality we can reorder the population so that y = (yt
s, y

t
r)t, where

ys is the vector of n observed elements and yr is the vector of N − n unobserved
elements. In the following, the index s for the sample and the index r for the rest
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of the population will be used when appropriate. In this notation and taking into
account the reordering we can write

V = var[y] =

(
Vss Vsr

Vrs Vrr

)
.

We are interested in the estimation of the mean of the small area d, i.e.

Y d =
1

Nd

Nd∑
j=1

ydj = aty = at
sys + at

ryr,

where at = 1
Nd

(
0t

N1 , . . . ,0
t
Nd−1

,1t
Nd

,0t
Nd+1, . . . , 0

t
ND

)
and 0t

m = (0, . . . , 0)1×m.

From the general theorem of prediction it follows that the BLU predictor of Y d,
under Model B, is

Ŷ
blupB

d = at
sys + at

r

[
Xr β̂ + V̂rsV̂

−1
ss (ys − Xsβ̂)

]
. (6)

In our case it holds Ve,rs = 0, Vrs = ZrVuZ
t
s + Ve,rs = ZrVuZ

t
s and û =

V̂uZ
t
sV̂

−1
ss (ys − Xsβ̂), so

Ŷ
blupB

d = at
sys + at

r

[
Xr β̂ + ZrV̂uZ

t
sV̂

−1
ss (ys −Xsβ̂)

]
= at

[
Xβ̂ +

p∑
k=0

Zkûk

]
+ at

s

[
ys −Xsβ̂ −

p∑
k=0

Zk,sûk

]
.

Since at can be written in the form at = 1
Nd

colt
1≤�≤D

{δd�1
t
N�

}, where δab = 1 if

a = b and δab = 0 if a 	= b, it holds that atXβ̂ =
∑p

k=0Xkd β̂k and

atZkûk =
1

Nd
colt

1≤�≤D
{δd�1

t
N�

} diag
1≤�≤D

(xk,N�)ûk = Xkdûkd,

where Xkd = 1
Nd

∑Nd
j=1 xkdj. Thus the EBLUP B of Y d is

Ŷ
eblupB

d =

p∑
k=0

Xkdβ̂k +

p∑
k=0

Xkdûkd + fd

[
yd,s −

p∑
k=0

Xkd,sβ̂k −
p∑

k=0

Xkd,sûkd

]
,

where yd,s = 1
nd

∑nd
j=1 ydj , Xkd,s = 1

nd

∑nd
j=1 xkdj and fd = nd

Nd
. EBLUP under

Model A is similarly introduced and it is denoted by EBLUP A in the sequel. The
mean squared error (MSE) of the EBLUP and its proposed estimator are given in
the next section.

4 MSE of EBLUP

Following Prasad and Rao [6] and Das, Jiang and Rao [1], the mean squared error
(MSE) of the EBLUP of Y d, under Model B, is
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MSE(Ŷ
eblupB

d ) = g1(ϕ) + g2(ϕ) + g3(ϕ) + g4(ϕ),

where

g1(ϕ) = at
rZrTsZ

t
rar,

g2(ϕ) = [at
rXr − at

rZrTsZ
t
sV

−1
e,s Xs]Qs[Xt

rar −Xt
sV

−1
e,s ZsTsZ

t
rar],

g3(ϕ) ≈ tr
{

(∇bt)Vs(∇bt)tE
[
(ϕ̂− ϕ)(ϕ̂− ϕ)t]} ,

g4(ϕ) = at
rVe,rar,

and Ts = Vu − VuZ
t
sV

−1
s ZsVu, Qs = (Xt

sV
−1Xs)−1, bt = at

rZrVuZ
t
sV

−1
s . The

Prasad-Rao (PR) estimator of MSE(Ŷ
eblupB

d ) is

mseB
d = mse(Ŷ

eblup B

d ) = g1(̂ϕ) + g2(̂ϕ) + 2g3(̂ϕ) + g4(̂ϕ),

where ϕ̂ is REML estimator of ϕ. In what follows we present the calculation of g1−g4

for Model B. The derivations under Model A are straightforward. We employ the

notation mse�
d = mse(Ŷ

eblup�

d ), � = A,B, under Models A and B.

4.1 Calculation of g1(ϕ) under Model B

To calculate g1(ϕ) = at
rZrTsZ

t
rar, basic elements are

at
r =

1

Nd
colt

1≤�≤D
(δd�1

t
N�−n�

), Zr = colt
0≤k≤p

(Zk,r), Vu = σ2 diag
0≤k≤p

(ϕkID)

and

Ts = Vu − VuZ
t
sV

−1
s ZsVu = σ2 diag

0≤k≤p
(ϕkID)

− σ2 col
0≤k≤p

(ϕkZ
t
k,s) diag

1≤�≤D
(Σ−1

�,s ) colt
0≤k≤p

(ϕkZk,s) = (Tk1k2)k1,k2=0,1,...,p .

where δk1k2 = 0 if k1 	= k2, δk1k2 = 1 if k1 = k2 and

Tk1k2 = σ2ϕk1δk1k2ID − σ2ϕk1ϕk2Z
t
k1,s diag

1≤�≤D
(Σ−1

�,s )Zk2,s.

Therefore

g1(θ) =
1

N2
d

colt
1≤�≤D

(δd�1
t
N�−n�

) colt
0≤k≤p

(Zk,r)Ts col
0≤k≤p

(Zt
k,r) col

1≤�≤D
(δd�1N�−n�)

= (1 − fd)2σ2

⎧⎨⎩
p∑

k=0

ϕkX
∗2
kd −

p∑
k1=0

p∑
k2=0

ϕk1ϕk2X
∗
k1dx

t
k1,nd

Σ−1
d,sxk2,nd

X
∗
k2d

⎫⎬⎭ ,

where fd = nd/Nd and X
∗
kd = 1

Nd−nd

∑
j∈r xkdj = (1 − fd)−1(Xkd − fdXkd,s).
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4.2 Calculation of g2(ϕ) under Model B

From the definition of g2(ϕ) it follows that it can be written in the form

g2(ϕ) = [at
1 − at

2]Qs[a1 − a2],

where Qs is defined on page 271. The first vector from the difference [at
1 − at

2] is

at
1 = at

rXr =
1

Nd
1t

Nd−nd
Xrd = (1 − fd)X

∗
d ,

where X
∗
d = (X

∗
0d,X

∗
1d, . . . , X

∗
pd). The second vector can be written as

at
2 = at

r colt
0≤k≤p

(Zk,r)Ts col
0≤k≤p

(Zt
k,s)σ−2WsXs

and after some straightforward algebra it takes the form

at
2 = (1 − fd)

{
p∑

k=0

ϕkX
∗
kdx

t
k,nd

−
p∑

k1=0

p∑
k2=0

ϕk1ϕk2X
∗
k1dx

t
k1,nd

Σ−1
d,sxk2,nd

xt
k2,nd

⎫⎬⎭Wd,sXd,s.

4.3 Calculation of g3(ϕ) under Model B

We recall that g3(ϕ) ≈ tr
{
(∇bt)Vs(∇bt)tE

[
(ϕ̂ − ϕ)(ϕ̂ − ϕ)t

]}
, where

bt = at
rZrVuZ

t
sV

−1
s = at

r

p∑
k=0

ϕkZk,rZ
t
k,s diag

1≤�≤D
(Σ−1

�,s ).

As
∂Σ�,s

∂σ2 = 0 and
∂Σ�,s

∂ϕk
= xk,n�

xt
k,n�

(k = 0, . . . , p), the derivative with respect to

σ2 is ∂bt

∂σ2 = 0 and the remaining derivatives are

∂bt

∂ϕk
= at

rZk,rZ
t
k,s diag

1≤�≤D
(Σ−1

�,s )

− at
r

(
p∑

i=0

ϕiZi,rZ
t
i,s

)
diag

1≤�≤D
(Σ−1

�,sxk,n�
xt

k,n�
Σ−1

�,s ), k = 0, 1, . . . , p.

As Zk,r = diag
1≤�≤D

(xk,N�−n�), we obtain for k = 0, 1, . . . , p

∂bt

∂ϕk
= (1 − fd)

[
colt

1≤�≤D
(δd�X

∗
k� x

t
k,n�

Σ−1
�,s )

− colt
1≤�≤D

(
δd�

(
p∑

i=0

ϕiX
∗
i� x

t
i,n�

)
Σ−1

�,sxk,n�
xt

k,n�
Σ−1

�,s

)]
.

Let us define H(ϕ) = (hk1,k2)k1,k2=−1,0,1,...,p , where h−1,k = hk,−1 = 0, k =
−1, 0, 1, . . . , p and
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hk1,k2 =
∂bt

∂ϕk1

Vs

(
∂bt

∂ϕk2

)t

= σ2(1 − fd)2
{
X

∗
k1dx

t
k1,nd

Σ−1
d,sxk2,nd

X
∗
k2d

− X
∗
k1dx

t
k1,nd

Σ−1
d,sxk2,nd

xt
k2,nd

Σ−1
d,s

p∑
i=0

ϕixi,ndX
∗
id

−
(

p∑
i=0

ϕiX
∗
idx

t
i,nd

)
Σ−1

d,sxk1,nd
xt

k1,nd
Σ−1

d,sxk2,nd

·
[
X

∗
k2d − xt

k2,nd
Σ−1

d,s

p∑
i=0

ϕixi,ndX
∗
id

]}
for any k1, k2 = 0, 1, . . . , p. Then

g3(ϕ) ≈ tr
{
H(ϕ)F−1(ϕ)

}
,

where F (ϕ) is the REML Fisher information matrix which approximates the co-
variance matrix E

[
(ϕ̂− ϕ)(ϕ̂− ϕ)t

]
.

4.4 Calculation of g4(ϕ) under Model B

We recall that g4(ϕ) = at
rVe,rar, where

at
r =

1

Nd
colt

1≤�≤D
(δd�1

t
N�−n�

), V −1
e,r = σ−2Wr = σ−2 diag

1≤d≤D

{Wd,r}.

Therefore

g4(ϕ) =
σ2

N2
d

1t
Nd−nd

diag
j∈r

{w−1
dj }1Nd−nd =

σ2

N2
d

∑
j∈rd

1

wdj
.

5 Simulation experiments

In this section we present several simulation experiments. The first one is designed
to check the behavior of the REML estimates under Model B. The second simulation
experiment is planned to study the behavior of EBLUP a, a = A,B, under Models
A and B. Finally, the fourth simulation experiment is carried out to analyze the
behavior of the MSE estimates.

In all the simulations, samples are generated as follows.

• Explanatory variable: Take ad = 1, bd = 2 + 8d
D

, d = 1, . . . ,D. For d = 1, . . . ,D,
j = 1, . . . , nd, generate

x1dj = (bd − ad)Udj + ad with Udj =
j

nd + 1
, j = 1, . . . , nd.

• Random effects and errors: For d = 1, . . . ,D, j = 1, . . . , nd, generate

u0d ∼ N(0, σ2ϕ0), u1d ∼ N
(
0, σ2ϕ1

)
, edj ∼ N(0, σ2),

with σ2 = ϕ0 = 1 and ϕ1 = 2.
• Target variable: For d = 1, . . . ,D, j = 1, . . . , nd, generate

ydj = β0 + β1xdj + u1dxdj + u0d + w
−1/2
dij edj , with β0 = 2, β1 = 1.

(Just skipping the term u1dxdj in the case of Model A.)
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5.1 Simulation 1

The steps of the simulation experiment are:

1. Repeat K = 104 times (k = 1, . . . ,K)
1.1. Generate a sample of size n =

∑D
d=1 nd and calculate the REML estimates

γ(k) ∈ {β̂0(k), β̂(1k), σ̂
2
(k), ϕ̂0(k), ϕ̂1(k)}.

2. Output:

EMSE(γ̂) =
1

K

K∑
k=1

(γ̂(k) − γ)2, BIAS(γ̂) =
1

K

K∑
k=1

(γ̂(k) − γ).

Table 1. BIAS and EMSE for K = 104 under Model B

n 300 600 1200 2400

nd 5 10 20 40

D = 60 BIAS EMSE BIAS EMSE BIAS EMSE BIAS EMSE

β0 = 2 -0.001 0.052 -0.001 0.032 -0.002 0.024 0.000 0.020

β1 = 1 -0.001 0.020 0.000 0.018 -0.001 0.018 0.000 0.017

σ2 = 1 0.006 0.010 0.002 0.004 0.001 0.002 0.001 0.001

ϕ0 = 1 -0.050 0.335 -0.007 0.129 -0.001 0.070 0.002 0.050

ϕ1 = 1 -0.020 0.055 -0.005 0.043 -0.002 0.038 -0.002 0.037

Table 1 presents the obtained performance measures. In all the presented cases we
observe that EMSE decreases as sample size increases. The conclusion is that the
implemented Fisher-scoring algorithm is running properly and thus the obtained
REML parameter estimates are reliable.

5.2 Simulation 2

The second simulation experiment is designed to investigate the behavior of EBLUPa,
a = A,B, under Models A and B. The steps of simulation experiment are:

1. Generate deterministically N =
∑D

d=1 Nd x-values with Nd = 100, D = 60 as
described at the beginning of this section and calculate Xd, d = 1, . . . ,D.

2. Repeat K = 104 times (k = 1, . . . ,K)
2.1. Generate a population of size N and extract a sample of size n =

∑D
d=1 nd

(nd = 10) under Model B (Model A).
2.2 Calculate the REML estimates under Models A and B.

2.3 Calculate the true value Y
(k)
d and its estimates Ŷ

eblup a(k)

d for a = A,B.
3. For any a = A,B the output is:

meana
d =

1

K

K∑
k=1

Ŷ
eblup a(k)

d , MEANd =
1

K

K∑
k=1

Y
(k)
d ,
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EMSEa
d =

1

K

K∑
k=1

(Ŷ
eblup a(k)

d − Y
(k)
d )2, EMSEa =

1

D

D∑
d=1

EMSEa
d ,

and

BIASa
d =

1

K

K∑
k=1

(Ŷ
eblup a(k)

d − Y
(k)
d ), BIASa =

1

D

D∑
d=1

BIASa
d .

Table 2 presents the basic performance measures of simulations 2. DIFr, r = A,B,
is used to denote the differences EMSEa −EMSEr, a = A,B, a 	= r. Figure 1 plot

EMSEa
d of estimators Ŷ

eblup a

d , a = A,B under Model A and B, respectively.
We observe that if Model B is true, EBLUP estimate may lose a significative

amount of precision by assuming the wrong Model A. However, the loss of efficiency
negligible in the reciprocal case.

Table 2. BIAS and EMSE for D = 60 and K = 104

Model B Model A

Nd = 100, nd = 10 eblupA eblupB eblupA eblupB

102BIAS 0.0046 0.0065 0.0992 0.0993

102EMSE 10.7272 8.513 8.2237 8.2253

102DIFr 2.2142 0.0016

Fig. 1. EMSEd values under the true Model B (left) and Model A (right)

5.3 Simulation 3

The third simulation experiment is designed to analyze the behavior of the MSE
estimates. The steps of the simulation experiment under Model B (Model A) are:

1-2. Do steps 1-2.3 as in Simulation 2. Do new step 2.4 as follows.
2.4. Calculate the MSE estimates mse

A(k)
d and mse

B(k)
d .
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3. For a = A,B the output is:

Ea
d =

1

K

K∑
k=1

(mse
a(k)
d − EMSEa

d )2, Ba
d =

1

K

K∑
k=1

(mse
a(k)
d − EMSEa

d ).

Ea =
1

D

D∑
d=1

Ea
d , Ba =

1

D

D∑
d=1

Ba
d ,

where the values EMSEa
d are taken from the results of Simulation 2.

Table 3 presents basic performance measures of Simulation 3. From the table it can

Table 3. Ba and Ea values for K = 104

Nd = 100 Model B Model A

nd = 10 mseA
d mseB

d mseA
d mseB

d

102B 46.5629 0.0098 -0.0146 0.0054

102E 23.0612 0.0029 0.0025 0.0026

be seen that the two estimators mseB
d and mseA

d have basically the same behavior
under the true Model A. However, under the true Model B mseA

d has a very poor

behavior when it is used to estimate MSE(Ŷ
eblupA

d ).

6 Estimation of poverty proportions

In this section we use data from the 2006 Spanish Living Conditions Survey (SLCS)
with global sample size 34694. The SLCS is the Spanish version of the European
Statistics on Income and Living Conditions (EU-SILC), which is one of the statistical
operations that have been harmonized for EU countries. Its main goal is to provide
a reference source on comparative statistics on the distribution of income and so-
cial exclusion in the European environment. The sample includes 16000 dwellings
distributed in 2000 census sections.

We consider D = 52 domains (provinces) and we are interested in estimating
the domain averages of the household normalized net annual incomes. The aim of
normalizing the household income is to adjust for the varying size and composition
of households. The definition of the total number of normalized household members
is the modified OECD scale used by EUROSTAT, where OECD is the acronym for
the Organization for Economic Cooperation and Development. This scale gives a
weight of 1.0 to the first adult, 0.5 to the second and each subsequent person aged
14 and over and 0.3 to each child aged under 14 in the household. The normalized
size of a household is the sum of the weights assigned to each person. So the total
number of normalized household members is

Hdi = 1 + 0.5(Hdi≥14 − 1) + 0.3Hdi<14

where Hdi≥14 is the number of people aged 14 and over and Hdi<14 is the number
of children aged under 14. The normalized net annual income of a household (z)
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is obtained by dividing its net annual income by its normalized size. Following the
standards of the Spanish Statistical Office, the Poverty Threshold is fixed as the
60% of the median of the normalized incomes in Spanish households. The Spanish
poverty thresholds (in euros) in 06 is z2006 = 6556.60. This is z0-value used in the
calculation of the direct estimates of the poverty proportion

Y d =
1

Nd

Nd∑
j=1

ydj , ydj = I(zdj < z0),

where I(zdj < z0) = 1 if zdj < z0 and I(zdj < z0) = 0 otherwise.
The considered auxiliary variables are nationality (x0) and employed (x1), both

with values 0-1 at the individual level (1 for Spanish citizenship and employed). In
the SLCS the target variable y is measured at the household level and the auxiliary
variables x1 and x2 at the individual level. For this reason a data file has been built
containing the survey data aggregated at the level of census sections (territories with
around 2000 people). In the census section file the y variable remains unchanged and
the x-variables are calculated by taking weighted averages on the territory.

Table 4 presents the REML estimates of model parameters and the corresponding
90% confidence intervals. We observe that confidence intervals for parameters ϕ0 and
ϕ1 are strictly positive, suggesting that Model B fits better to data than Model A.

Figure 2 presents the domain mean estimates and their estimated mean squared
error. It shows that EBLUP B has slightly different behavior from EBLUP A esti-
mates. Figure 2 also shows that the EBLUP estimates behave more smoothly than
the direct ones, which are calculated by means of the formula

Ŷ
dir

d =
1

N̂d

nd∑
j=1

ωdjydj , N̂d =

nd∑
j=1

ωdj ,

where the ωdj ’s are SLCS calibrated sampling weights.
Concerning mean squared errors, EBLUP B is the estimators giving the best re-

sults. EBLUP estimators produce some gain of efficiency with respect to the direct
ones. For comparison purposes, design-based mean squared errors of direct estima-
tors where approximated by

mse(Ŷ
dir

d ) =
1

N̂2
d

nd∑
j=1

ωdj(ωdj − 1)
(
ydj − Ŷ

dir

d

)2
. (7)

The last formula is taken from Särndal et al. [9], pp. 43, 185 and 391, with the
simplifications ωdj = 1/πdj , πdj,dj = πdj and πdi,dj = πdiπdj , i 	= j in the second
order inclusion probabilities.

By observing the signs of the regression parameters, we interpret that poverty
proportion tends to be smaller in those domains with larger proportion of people
with non Spanish citizenship (may be because immigrants tends to go to regions
with greater richness where it is easier to find job) and larger proportion of employed
people.
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Table 4. Parameter estimates and 90% confidence intervals for models B and A

Model A Model B

Estim. 90% CI Estim. 90% CI

β0 0.2942 ( 0.1722 , 0.4162 ) 0.3336 ( 0.2197 , 0.4475 )

β1 -0.2900 ( -0.4946 , -0.0854 ) -0.2958 ( -0.5294 , -0.0621 )

σ2 0.0453 ( 0.0430 , 0.0477 ) 0.0457 ( 0.0433 , 0.0480 )

ϕ0 0.1481 ( 0.0865 , 0.2098 ) 0.0689 ( 0.0061 , 0.1317 )

ϕ1 0.1382 ( 0.0478 , 0.2287 )

Fig. 2. Direct estimates and EBLUP estimates (left) and its estimated mean square
error (right)

7 Conclusions

This paper investigate the use of EBLUPs, based on random regression coefficient
models, in small area estimation. By looking at the presented simulations and appli-
cation to real data, we may conclude that fixed regression coefficients are sometimes
too rigid for modeling real data. Some extra variability, and better performance of
EBLUP estimates, might be obtained by allowing some variability on the regression
(beta) parameters.
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