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1 Introduction

In this report we investigate theory of stable distributions and their role in prob-
ability theory. We are interested in derivation of canonical measure, semigroup
operator and mainly parametrizations of characteristic exponents. We finally
introduce the new parametrization.

Let us start with a simple motiovation. Having a random variable X, its
probability distribution F is characterized by functionals describing e.g. its
shape, location or scale. In a very common problem, we have two random
variables X1, X2, which probability distributions F1, F2 have different scale and
location characteristics. We are interested whether the shape of their probability
distributions is similar otherwise. A very simple procedure, allowing us to carry
the comparison, is called normalization of random variable. It is a transforma-
tion shifting the expectations of the probability distributions to the same point
of space, often origin of Cartesian System, and changing the scales to a certain
unit. The transformed variable is in some sence ”dimensionless”, or expressed
in dimensionless units. The most natural normalization is X∗ = (X − m)/σ,
where m is the first moment and σ2 variance of probability distribution F of
random variable X.

The pressumption on existence of finite first and second moments of con-
sidered probability distribution can be in some applications rather restricting.
Depending on the nature of the modelled problem, it can be sometimes more
convenient to consider transformation (X − b)/a, where b ∈ R corresponds to
change of location, whereas a > 0 to units of measurement. The change of
location can be perform by considering artificial centerings, such as truncated
moments or median. The new distribution of random variable X∗ in dimension-
less units is related to original distribution F (x) as F (ax+ b).

In this report we consider basic problems and theory connected with the
investigation of collections of ”dimensionless” random variables, which leads
us to stable distributions. In the following section we start with definitions,
preliminary consideration and more detailed outline of the report.

2 Definitions. Preliminaries

Consider two probability distributions F1, F2 on the real line with densities
f1, f2. We will say that these two distributions F1, F2 are of the same type if
F2(x) = F1(ax + b), a > 0, b ∈ R, where a is a scaling factor and b a centering
constant. For their densities holds f2(x) = af1(ax + b). We understand that
two distributions F1, F2 differ only by scale and location, it will be also denoted

as F2
d
= aF1 + b.

Consider mutually independent random variables X,X1, X2, . . . with com-
mon distribution F and denote sum of n elements as Sn = X1 + . . .+Xn.

Definition 2.1. The distribution F is stable (in the broad sense) if for each n
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there exists constants an > 0 and bn ∈ R such that

Sn
d
= anX + bn (2.1)

and F is not concentrated at one point. If bn = 0 for all n, we call F strictly
stable distribution.

Returning to concept of ”dimensionless units”, let us dwell on norming con-
stants. The scaling constants for stable distributions are of the form an = n1/α,
see Feller [1] VI.1.1., p.171. We will refer to α as the stability parameter of
F . If F is stable in broad sense with stability parameter α, such that α 6= 1,
the centering constant b can be chosen such that F (x+ b) is strictly stable, see
Feller [1] VI.1.2., p.172.

Consider two independent random variables X1, X2 with common distribu-
tion F1, F2. The distribution of their sum X1 +X2 is obtained as a convolution
of distributions F1 and F2. We denote it as F1 ∗ F2 and

P{X1 +X2 ≤ x} = F1 ∗ F2(x) =

∫ ∞
−∞

F1(x− y)F2{dy}. (2.2)

If F1, F2 have densities, then the convolution of their densities is:

f1 ∗ f2(x) =

∫ ∞
−∞

f1(x− y)f2(y)dy.

The convolution operation is commutative and associative among distributions.
The continuity property and differentiability is preserved by convolution, i.e. if
F2 is continuous, the distribution resulting from F1 ∗ F2 remains continuous. If
F2 has density f2 then f1 ∗ f2 is a density of distribution F1 ∗ F2. We refer to
Feller [1] V.4.2, V.4.3, V.4.4, p.144-6, for Proofs.

The distribution of sum Sn of mutually independent random variables with
common distribution F is then Fn∗. We will call Fn∗ the n-th fold convolution
of F with itself. For stable distributions, from condition from (2.1), follows that
Fn∗(x) = F (anx + bn), i.e. the n-th fold convolution of F with itself differs
from F only by scale and location. The condition on stability of distribution
implies that the distribution of sum of independent identically distributed ran-
dom variables is of the same type as distribution of each random variable in
the sum. Stable distribution belongs to larger group of probability distributions
called infinitely divisible.

Definition 2.2. A distribution F is infinitely divisible if for each n there exists
a distribution Fn such that F = Fn∗n .

It will turn out that limit distributions of sums of independent random
variables are infinitely divisible. In the following text we will when necessary
develop the theory firstly for infinitely divisible distributions and then consider
properties of stable distribution as a special case. The main focus of this work
is however on stable distributions and thus the study of infinitely divisible dis-
tribution is not aimed to be systematic, but rather complementary.
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In the section I.2 we will develop the approach to central limit theorems via
semigroups of operators associated to probability distributions. It will allow
us to derive a canonical measure for stable distributions and a partial integro-
differential operator generating the semigroup. Consider probability distribu-
tion F and abbreviate its expectation as

E(u) =

∫ ∞
−∞

u(x)F{dx}. (2.3)

The convolution of probability distribution F and a bounded point function
u(t, x) = u(t− x) is then

E[u(t)] =

∫ ∞
−∞

u(t− x)F{dx}. (2.4)

With the probability distribution we associate the operator F from C[−∞,∞]
to C[−∞,∞] such that integral in (2.4) is abbreviated as Fu = F ∗ u. Having
distributions F1, F2, we denote the operator associated with the convolution
F1 ∗F2 as F1F2. We will understand it as a result of F1 operating on F2u. The
n-th fold convolution of F with itself, denoted as Fn∗, has associated operator
Fn. The operators associated to probability distributions are positive, i.e. u ≥ 0
implies Fu ≥ 0. Further they inhere the property of convolution and thus they
commute and are associative. To see this, it is very simple exercise, which uses
Fubini Theorem:

F1F2(x) =

∫ ∞
−∞
F2u(x− y)F1{dy} =

∫ ∞
−∞

∫ ∞
−∞

u(x− y − z)F2{dz}F1{dy} =

=

∫ ∞
−∞
F1u(x− z)F2{dz} = F2F1(x),

which proves the commutativity. The associativity follows from Fubini Theorem
and linearity of the integral. The operators have norm 1 and so

||Fu|| ≤ ||u||. (2.5)

In section I.3 we will show its importance in convergence of probability
measures problems. The alternative approach is based on the Fourier transform
of probability measure. As the measures have unit mass, the term ’characteristic
function’ is used.

Definition 2.3. For probability distribution F with a density f , the charac-
teristic function of F is defined as:

F̂ (k) =

∫ ∞
−∞

eikxF{dx} = u(k) + iv(k) (2.6)

where

u(k) =

∫ ∞
−∞

cos(kx)F{dx}, v(k) =

∫ ∞
−∞

sin(kx)F{dx}. (2.7)
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The ordinary Fourier transform of density f is defined as:

f̂(k) =

∫ ∞
−∞

eikxf(x)dx. (2.8)

Of course, if f̂ is integrable over R, the Fourier inversion of density f exists,
Feller [1] XV.3.3, p. 509:

f(x) =
1

2π

∫ ∞
−∞

e−ikxf̂(k)dk. (2.9)

If probability distribution F has finite second moments m2 and let us denote
m1 as its first moment, then

F̂ ′(0) = im1, F̂ ′′(0) = −m2. (2.10)

Also if F̂ ′′(0) exists, then second moment m2 of probability distribution F is
finite, see Feller [1], XV.4, p. 512. The characteristic function of probability
distribution of sum of two independent random variables X1, X2 with common
distributions F1, F2 is the product of their characteristic functions F̂1F̂2. The
probability distribution of sum Sn then has characteristic function [F̂ (k)]n and
F (ax+b) is transformed into eibF̂ (ak). For strictly stable distributions we then
have relation:

[F̂ (k)]n = F̂ (ank) = F̂ (n1/αk). (2.11)

For infinitely divisible distributions we define infinitely divisible characteristic
function, which can be used as an alternative definition for infinitely divisible
distributions:

Definition 2.4. A characteristic function F̂ is infinitely divisible iff for each n
there exists a characteristic function F̂n such that

F̂nn = F̂ . (2.12)

We will use this transformation in section I.4 for deriving the general form
of characteristic function of stable distribution. In section I.5 we will intro-
duce different parametrizations of stable characteristic functions introduced by
Zolotarev [3]. These play significant role in deriving forms of stable densities. In
the text will be also useful other integral transformations, namely Mellin trans-
form, Laplace transform, which we briefly introduce in section I.6. We finish
this section by recalling the probability distributions which plays central role in
the theory of infinitely divisible distributions and derivation of the central limit
theorems. These will be find useful in further sections. Consider again mu-
tually independent random variables X1, X2, . . . with common distribution F .
Consider random variable N with common distribution G independent of each
random variable Xn. We will call random variable X =

∑N
k=1Xk a random

sum, the distribution of random sum will be called a compound distribution.
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From law of total probability and due to independence of N with each Xn, we
have for compound distribution:

P{X = x} =

∞∑
n=0

P{N = n}P
{ n∑
k=1

Xk = x
}
. (2.13)

If random variable N has Poisson distribution with parameter a > 0, i.e. the
probability, that there is n elements in random sum is:

P{N = n} = e−a
an

n!
, (2.14)

independent of each random variable Xn, then we will call the distribution of
the random sum X =

∑N
k=1Xk compound Poisson distribution. Using (2.13)

we have for random variable X with compound Poisson distribution:

P{X ≤ x} = e−a
∞∑
n=0

an

n!
Fn∗(x). (2.15)

Obviously, if F is concentrated at point 1, i.e. Dirac measure assigning value 1
to point 1 and 0 otherwise, we have Poisson distribution with parameter a. As
a simple exercise let us compute characteristic function of compound Poisson
distribution H:

Ĥ(k) = e−a
∫ ∞
−∞

eikx
∞∑
n=0

an

n!
Fn∗{dx} = e−a

∞∑
n=0

an

n!

∫ ∞
−∞

eikxFn∗{dx},

where we used linearity of integral and convergence of the sum. Using rela-
tion that F̂n∗ = F̂n we obtain characteristic function Ĥ of compound Poisson
distribution:

Ĥ(k) = e−a
∞∑
n=0

[aF̂ (k)]n

n!
= exp{a[F̂ (k)− 1]}. (2.16)

3 Semigroups

Consider space of all continuous functions vanishing at infinity and define a
family {ut} by u(t, x) = u(t−x). Consider probability distributions {Qt, t > 0}
satisfying a convolution equation

Qt+s = Qt ∗Qs.

The convolution operator associated to distribution Qt is

Q(t)u(x) =

∫ ∞
−∞

u(x− y)Qt{dy}, (3.1)

6



and operators {Q(t)}, t > 0 form convolution semigroup, i.e. Q(t + s) =
Q(t)Q(s).

Denote 1 as identity operator. We will say that the convolution semigroup
{Q(t)} is continuous if Q(h)→ 1 for h→ 0+, we define Q(0) = 1.

Let us dwell longer on the semigroup continuity. Because operators are
transition, ||Q(t)u|| ≤ ||u||. Natural question to ask is what are the properties
of the semigroup {Q(t)} with respect to time. For h > 0 we get:

||Q(t+ h)u−Q(t)u|| = ||Q(t)[Q(h)− 1]u|| ≤ ||(Q(h)− 1)u||

By making h small, from continuity of the semigroup the left-hand side can be
estimated by ε, independently of t. The continuous semigroup is then uniformly
continuous. Considered inequality also implies that we learn the most about
behaving of semigroup from its behaviour on the neighbourhood of 0. The
following definition brings some enlightment.

Definition 3.1. An operator A from C∞ to C∞ is the generator of the convo-
lution semigroup Q(t) if

1

h
[Q(h)− 1]→ A for h→ 0+. (3.2)

Being given the probability distribution, the form of generator is obviously
a question.

Let us define a measure Ωt by its density as:

Ωt{dx} = t−1x2Qt{dx}. (3.3)

In case Qt has finite second moments, Ωt is finite on the whole real line. It
corresponds to a probability distribution induced by its second moments. The
assumption of finiteness of second moments is however unnecessary. In the
sequel we do not assume that Ωt is finite on R. We will assume that Ωt{I} <∞
for every finite interval I. The following definition provides a clear summary.

Definition 3.2. A measure Ω on the real line is called canonical if Ω{I} is
finite for every finite interval I and if integrals

M+(x) =

∫ ∞
x

y−2Ω{dy} M−(−x) =

∫ −x
−∞

y−2Ω{dy}

converges for every x > 0.

For the reason of having the distributions in semigroup connected to one
location, we need to center them. As the introduction of canonical measure
allows us to relax assumption on finiteness of the moments, we further introduce
the artificial centering:

Definition 3.3. We call a real function τs a truncation function, if τs is con-
tinuous, monotone, and for s > 0 arbitrary but fixed assigns values τs(x) = x
for |x| ≤ s and ±s otherwise.
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This allows us to define truncated moments of probability distribution Qt
as:

E[τs] =

∫ ∞
−∞

τs(x)Qt{dx} =

∫ s

−s
xQt{dx}. (3.4)

Thus we do not require x to be integrable with respect to each Qt over whole
real line, but only on finite intervals, where the integrals will always exist. In
fact, we can choose as truncation function any bounded continuous function,
which is twice differentiable near the origin and τ(0) = τ ′′(0) = 0, τ ′(0) = 1.
The assumption on truncation function being bounded guarantees integrability.
The continuity is rather strong and can be replaced by continuity around the
origin.

We can now carry on the investigation of the form of generator of semigroup
{Q(t)}:

Q(t)− 1

t
u(x) =

1

t

∫ ∞
−∞

[u(x− y)− u(x)]Qt{dy} =

∫ ∞
−∞

u(x− y)− u(x)

y2
Ωt{dy},

where relation (3.3) ensures that y−2 is integrable with respect to Ωt over any
domain excluding origin. We further incorporate the centering:

bt =
1

t

∫ ∞
−∞

τs(x)Qt{dx} =

∫ ∞
−∞

τs(x)x−2Ωt{dx}. (3.5)

The assumption on truncation function τ(0) = 0 is essential for existence of
finite value bt, because y−2 is not necessarily integrable with respect to Ωt.
Putting it all together we arrive to:

Q(t)− 1

t
u(x) =

∫ ∞
−∞

u(x− y)− u(x)− τs(x)u′(x)

y2
Ωt{dy}+ btu

′(x). (3.6)

The choice of truncation function influences only the location shifts of the semi-
group and so we denote:

Aτu(x) =

∫ ∞
−∞

u(x− y)− u(x)− τs(y)u′(x)

y2
Ω{dy},

where we replaced Ωt by any canonical measure Ω. The integral makes sense
for any canonical measure.

Because we replaced the probability distribution Qt by canonical measure
Ωt, it is obviously essential to ask if Ωt converges to some Ω for t → 0+, what
are assumptions on convergence of canonical measures and what is the relation
of the limit measure Ω to generator of the semigroup. The following theorem
from Feller [1], Theorem IX.5.1, p.302, gives an answer:

Theorem 3.1. A continuous convolution semigroup {Q(t)} has a generator A
of the form

Au = Aτu+ bu′
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where

Aτu(x) =

∫ ∞
−∞

u(x− y)− u(x)− τs(y)u′(x)

y2
Ω{dy}

and where Ω is a canonical measure. Conversely, every operator A of this form
generates a continuous convolution semigroup {Q(t)}. The measure Ω is unique,
and

Ωt{I} → Ω{I} for t→ 0+

for infinite intervals I and

1−Qt(x)

t
−→M+(x)

Qt(−x)

t
−→M−(−x).

Let us now derive the generator of stable semigroup. Consider probability
distribution Qt and divide interval [0, t] into n equidistant partitions, where n is
integer. Then from semigroup property Qt = Qn∗t/n Recalling the definition ??,

Qt(x) = F (atx+ bt). Let us summarize it in the definition of stable semigroup:

Definition 3.4. A semigroup {Q(t)} is called stable if its distributions are of
the form

Qt(x) = F (at(x− bt)) (3.7)

where bt ∈ R, at > 0 are continuous functions of t, such that as t→ 0+ : at →
∞ and bt → 0. Function F is a fixed probability distribution which is not
concentrated at one point.

The assumption on continuity of functions at, bt is important for continuity of
stable semigroup. In what follows our aim is to determine the form of canonical
measure Ω. Using the results of previous theorem we obtain for x > 0:

1− F (at(x− bt))
t

−→M+(x),
F (at(−x− bt))

t
−→M−(−x). (3.8)

We observe that for t sufficiently small F (at(x− bt)) behaves like F (atx). It is
because bt → 0 for t → 0 and F is monotone. Further for t approaching origin
at →∞ and so F (at)→ 1, thus 1− F (at) ≈ t for ct sufficiently small. We can
now rewrite (3.8) as:

1− F (atx)

1− F (at)
−→ c1M

+(x),
F (−atx)

1− F (at)
−→ c2M

−(−x), (3.9)

where x > 0. Consider now x1, x2 > 0 such that x = x1x2. Then:

1− F (atx1x2)

1− F (at)
=

1− F (atx1x2)

1− F (atx1)

1− F (atx1)

1− F (at)
. (3.10)
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From the definition of canonical measure relation (3.10) converges to finite pos-
itive limit M+(x) = M+(x1x2). Because also:

1− F (atx1x2)

1− F (atx1)
−→M+(x2),

F (atx1)

1− F (at)
−→M+(x1), (3.11)

we obtain functional equation M+(x1x2) = M+(x1)M+(x2). Transform x = ez

and define m(z) := M+(ez). We see that limit satisfies the logarithmic version
of Cauchy functional equation:

m(z1 + z2) = m(z1)m(z2). (3.12)

Let us solve the equation. We look for the solutions that are bounded in finite
intervals. Obviously from (3.12) follows m(z) = m(z/2)m(z/2) and thus m(z) ≥
0 for all z. Assume first that m(z) = 0 for some z, then m(z/2) = 0 and by
induction m(z/2n) = 0. Obviously also m(nz) = mn(z), thus if m(z1) = 0,
then m(z) = 0 for any z > z1 and so m(z) = 0 for any z > 0. We obtained one
solution of equation (3.12), that is identical 0 for all z > 0, i.e. the limit in (3.9)
vanishes identically. Let us consider only strictly positive solutions. Solutions
of type eαz for α ∈ R are good candidates. Consider m(1) = e−α and define
g(z) = eαzm(z). Because g(z1 + z2) = g(z1)g(z2) for any z1, z2 and g(1) = 1,
we would like to prove that g(z) = 1 for all z > 0. For any positive integers
m,n we have: g(m/n) = gm/n(1) = 1. Thus g(y) = 1 for any y, where y is
rational number. By considering s = z + y, where z is arbitrary real and y
rational number. Then g(y) = g(y − s)g(s) = g(y − s) for arbitrary y and thus
g(z) = 1 for any real z. We have thus showed that the second solution is of
the form m+(z) = e−α1z for all z and some constant α1. Substituting back we
obtain M+(x) = x−α1 .

Repeating the same procedure for left tail in (3.9), we conclude that either
limits M+,M− vanish identically or these are of the following form:

M+(x) = c1x
−α1 , M−(−x) = c2x

−α2 , (3.13)

where x > 0 and c1, c2 > 0. To show that α1 = α2 consider sum of tails and
use relation (3.9):

1− F (atx) + F (−atx)

1− F (at)
−→M+(x) +M−(−x).

Because the same argumentation as in (3.10) holds even for sum of tails, we
again obtain for sum M+(x) + M−(−x) the solution of logarithmic version
of Cauchy functional equation in the form: x−α. Comparing this result with
(3.13), we conclude that α = α1 = α2. Finally, we determine canonical measure
Ω. Because for x > 0:

M+(x) =

∫ ∞
x

y−2Ω{dy} = c1x
−α, M−(−x) =

∫ −x
−∞

y−2Ω{dy} = c2x
−α,
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a density of canonical measure Ω is Ω{dx} = αc1x
1−α for x > 0 and Ω{dx} =

αc2|x|1−α for x < 0. Because integrals M+(x),M−(−x) are supposed to be
finite for every x > 0, we conclude that α > 0. Further for x > 0, we have

Ω{(−x, x)} =
α

2− α
(c1 + c2)x2−α = Cx2−α,

for some C > 0. To fulfil condition that canonical measure Ω assigns to every
finite interval I finite value, we obtain the second condition α < 2. We conclude
that 0 < α < 2.

Limits M+(x),M−(−x) determine the measure Ω up to possible atom at
origin. Such an atom exists only if both M+(x),M−(−x) vanish identically
and Ω is concentrated at the origin. In that case, using Taylor expansion for
u ∈ C3b (R):

u(x− y) = u(x) + yu′(x) +
1

2
y2u′′(x) +

1

6
y3u′′′(x− θy),

and so the generator A from Theorem 3.1 takes the form

Au(x) = c lim
y→0

u(x− y)− u(x)− yu′(x)

y2
=

1

2
cu′′(x). (3.14)

This is however generator of the semigroup of normal distributions with vari-
ance ct. We conclude that for α = 2, and limits M+(x),M−(−x) vanishing
identically, we obtained normal distribution.

Definition 3.5. The stable canonical measure is defined as:

Ω{(−x, x)} =

{
Cp1x

2−α for x > 0,

Cp2|x|2−α for x < 0.

Using Theorem 3.1, we can now formulate the operator generating the stable
semigroup {Q(t)} as:

A = c1A1 + c2A2 + b
d

dx
, (3.15)

where operator A1 describes the contribution on positive axis, whereas A2 on
negative.

For 0 < α < 1 we have:

A1u(x) =

∫ ∞
0

u(x− y)− u(x)

yα+1
dy, (3.16)

A2u(x) =

∫ 0

−∞

u(x− y)− u(x)

|y|α+1
dy. (3.17)

For 1 < α < 2, the first moments exists and so we use the natural centering to
zero expectation:

A1u(x) =

∫ ∞
0

u(x− y)− u(x)− yu′(x)

yα+1
dy, (3.18)

A2u(x) =

∫ 0

−∞

u(x− y)− u(x)− yu′(x)

|y|α+1
dy. (3.19)
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Finally for α = 1, the first moments do not exists and thus we use truncation
function τs as artificial centering:

A1u(x) =

∫ ∞
0

u(x− y)− u(x)− τs(y)u′(x)

y2
dy, (3.20)

A2u(x) =

∫ 0

−∞

u(x− y)− u(x)− τs(y)u′(x)

|y|2
dy. (3.21)

The following corollary is simple consequence of previous derivation, yet its
benefit is tremendous. It explains the role of constants c1, c2 in the generator of
the stable semigroup. In fact, as we will see later, constants c1, c2 significantly
influence the shape and scale of stable distribution.

Corollary 3.1. For 0 < α < 2 and c1 ≥ 0, c2 ≥ 0, c1 + c2 > 0 there exists
exactly one stable distribution function F such that as x→∞ :

xα[1− F (x)]→ c1, xαF (−x)→ c2. (3.22)

For α = 2, c1 = c2 = 0 and stable distribution function F corresponds to normal
distribution.

4 Characteristic Function

In virtue of previous section, consider a sequence of probability distributions
{Fn}. We ask now what is the relation between a proper convergence of proba-
bility distributions and a convergence of their characteristic functions. For the
sequence {Fn} of probability distributions to converge properly to a probability
distribution F , it is necessary and sufficient that the sequence of their charac-
teristic functions {F̂n} converges pointwise to a limit F̂ and F̂ is continuous at
the origin, see Continuity theorem in Feller [1] XV.3.2, p.508. When the limit
{F̂} of sequence of characteristic functions is continuous everywhere on the real
line and satisfies condition (2.12), the limit distribution is infinitely divisible.
The next theorem, Feller [1] XVII.1.1, p.555, gives condition for continuity of
the limit.

Theorem 4.1. Let {F̂n} be a sequence of characteristic functions. For existence
of a continuous limit

F̂ (k) = lim
n→∞

F̂nn (k) (4.1)

it is necessary and sufficient that

n[F̂n(k)− 1] −→ ψ(k) (4.2)

where ψ is a continuous function. Then

F̂ (k) = eψ(k) (4.3)
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We will call ψ(k) a characteristic exponent of infinitely divisible distribu-
tion. The theorem is crucial for the theory of infinitely divisible distributions
with useful consequences. One of them is that the class of infinitely divisible
distributions coincides with the class of limit distributions of compound Pois-
son distributions, see Feller [1] XVII.1.3, p.557. We will show later how we can
approximate stable distributions by a sequence of compound Poisson distribu-
tions. It remains to determine the form of characteristic exponent. We firstly
show the derivation of canonical form of characteristic exponent for infinitely
divisible distributions to see the connection to canonical measures introduced
in Definition 3.2. As we already determined the canonical measure for stable
distributions, we will use it for deriving the canonical form of the characteristic
exponent of the stable characteristic function.

Consider sequence of compound Poisson distributions Fn with characteristic
functions exp{an(Ĝn − 1)}, where an > 0. Denote mn the first moment of
probability distribution Gn and note that mn does not need to be finite. It
is easy exercise to see, that compound Poisson distribution has a first moment
equal to anmn. As we are investigating the convergence of random variables
and it is useful to investigate them in dimensionless units, we add the artificial
centering real valued constants bn to characteristic functions in the considered
sequence of compound Poisson processes, so the characteristic exponents of this
sequence are of the following form:

ψn(k) = an[Ĝn(k)− 1− ikbn]. (4.4)

Let us dwell on the choice of centering constant. Whenever the first moments
of probability distributions {Gn} are finite, it is obviously reasonable choice
to center to zero. In general case, Feller in [1], discussion on p.558, Lemma
XVII.2.1, p.559, argues that reasonable choice of bn is such that IF̂n(1) = 0,
i.e. ψn is a real function at point 1 and so from Definition 2.3:

bn =

∫ ∞
−∞

sinxGn{dx}. (4.5)

The argumentation proceeds as follows: consider sequence ψn(k) from (5.4),
with bn chosen such that ψn → ψ and ψ is continuous. Consider real val-
ued functions un, vn, u, v, such that ψn(k) = un(k) + ivn(k), ψ(k) = u(k) +
iv(k), respectively. Because bn is chosen such that un(k) + ivn(k) → u(k) +
iv(k), then un(k) = an[

∫∞
−∞ cos(kx)Gn{dx} − 1] converges to u(k) and vn(k) =

an[
∫∞
−∞ sin(kx)Gn{dx} − bnk] converges to v(k). For choice k = 1, we have for

imaginary part of ψn(1) an[
∫∞
−∞ sinxGn{dx} − bn] → v(1). We can subtract

ikvn(1) from ψn(k) and obtain an[Ĝn(k)− 1− ik
∫∞
−∞ sinxGn{dx}], which con-

verges to ψ(k)− ikv(1). Thus we see, that if we choose bn as in (5.5), our choice
of centering function influences only the location of the limiting distribution.
As we integrate bounded functions in (5.5), the integral always exists and the
centering is always possible. Rewriting (5.4) as

ψn(k) = an

∫ ∞
−∞

[eikx − 1− ik sinx]Gn{dx}, (4.6)
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by using L’Hospital Theorem we see that integrand in ψn(k) behaves like− 1
2k

2x2

at the neighbourhood of origin.
In virtue of Theorem 5.1, we seek for conditions under which sequence of

characteristic exponents ψn converges to continuous limit ψ. Let us define
measure:

Ωn{dx} = anx
2Gn{dx}. (4.7)

If Fn have finite second moments, Ωn defines a finite measure with a total mass
µn = an

∫∞
−∞ x2Gn{dx} on the whole real line. Making use of (2.10), we also

have µn = −ψ′′n(0). By assuming that ψn → ψ and also ψ′′n → ψ′′, we have
µn → −ψ′′(0) and so

an
µn

∫ ∞
−∞

eikxx2Gn{dx} −→
ψ′′(k)

ψ′′(0)
.

Thus −ψ′′(k) =
∫∞
−∞ eikxΩ{dx}. It can be easily verified that

ψ(k) =

∫ ∞
−∞

[
eikx

x2
+ c1k + c2

]
Ω{dx},

From condition ψ(0) = 0, we determine c2 = −x−2. Second condition ψ(1) =∫∞
−∞ cosxG{dx} implies c1 = −i sin xx2 . Contrary to first condition, which is basic

property of characteristic function and needs to be always satisfied, the second
condition can be chosen differently. As we see, the choice of the second condition
determines the choice of centering.

The good candidate for canonical form of a characteristic exponent is:

ψ(k) =

∫ ∞
−∞

eikx − 1− ik sinx

x2
Ω{dx}. (4.8)

The measures Ω does not necessarily need to be finite and can be replaced by
canonical measure defined in Definition 3.2. For any canonical measure Ω and
function ψ defined in (5.8), exp{ψ} is a unique representation of characteris-
tic function of infinitely divisible distribution, see Feller [1], Lemma XVII.2.2,
XVII.2.3, p.560-561 for Proofs.

Consider sequence of canonical measures Ωn, we then describe the charac-
teristic exponents of {F̂n} as

ψn(k) =

∫ ∞
−∞

eikx − 1− ik sinx

x2
Ωn{dx}+ ibnk. (4.9)

The following theorem summarizes our investigation:

Theorem 4.2. Let Ωn is a canonical measure and ψn is defined in (5.9). In
order that ψn tends to continuous limit ψ it is necessary and sufficient that there
exist a canonical measure Ω, such that Ωn → Ω properly and bn → b. Then ψ
is given by:

ψ(k) =

∫ ∞
−∞

eikx − 1− ik sinx

x2
Ω{dx}+ ibk. (4.10)
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Let us now focus on the characteristic exponent of stable distributions. In
section I.2 we derived the form of canonical measure for stable distributions. Let
us now use this result: canonical measure connected with stable distribution is
for x > 0: Ω{(0, x)} = Cp1x

2−α and Ω{(−x, 0)} = Cp2x
2−α, where p1, p2 ≥ 0

and p1 + p2 = 1.
As Ω{dx} = C(2− α)p1x

1−αdx for x > 0, then

ψ(k) = C(2− α)p1

∫ ∞
−∞

eikx − 1− ik sinx

x2
x1−α1{x>0}dx. (4.11)

For x < 0 we have Ω{dx} = C(2 − α)p2|x|1−αdx and so the characteristic
exponents rewrites as:

ψ(k) = C(2− α)p2

∫ ∞
−∞

eikx − 1− ik sinx

x2
|x|1−α1{x<0}dx. (4.12)

Consider case when 0 < α < 1. The integral∫ ∞
0

eikx − 1

xα+1
dx (4.13)

converges for all x, thus we omit centering. To see that integral converges, use
Taylor expansion in 0 and use boundedness of eikx and vanishing of x−α−1 at
infinity. To derive form of characteristic exponent we assume first that k > 0.
Because eikx is univalent in any strip (c, c+ 2πn) for some real c and integer n
and there exists analytic continuation of integrand on strip (0, iε) for ε > 0, we
compute ψ(k) as limε→0+ ψ(k + iε):

ψ(k) = lim
ε→0+

C(2− α)p1

∫ ∞
0

e−(ε−ik)x − 1

xα+1
dx =

= −C(2− α)p1 lim
ε→0+

ε− ik
α

∫ ∞
0

e−(ε−ik)xx−αdx =

= −C(2− α)p1
Γ(1− α)

α
lim
ε→0+

(ε− ik)α,

where we used integration by parts and substitution. Let us compute the limit.
Because (ε− ik)α = (ε2 + k2)α/2eiθε with tan θ = − ε

k and for ε→ 0+ argument
θ tends to −π/2, we have:

lim
ε→0+

(ε− ik)α = lim
ε→0+

(ε2 + k2)α/2eiθε = kαe−iαπ/2. (4.14)

Then for k > 0 we obtain:

ψ(k) = −Cp1
2− α
α

Γ(1− α)kαe−iαπ/2 = Cp1
Γ(3− α)

α(α− 1)
kαe−iαπ/2.

To threat the case when k < 0 we consider ψ(−k) and keep k > 0. Because
ψ(−k) lead us to integral: ∫ ∞

0

e−ikx − 1

xα+1
dx,
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which is complex conjugate to (5.13) and so we conclude that ψ(k) = ψ(−k).
Thus for x > 0 we obtained:

ψ(k) = Cp1
Γ(3− α)

α(α− 1)
|k|αe−i sgn(k)απ/2. (4.15)

For x < 0 we have convergent integral:∫ ∞
0

e−ikx − 1

xα+1
dx

and extend integrand on strip (−iε, 0) for ε > 0. We proceed analogically as for
x > 0 and obtain:

ψ(k) = Cp2
Γ(3− α)

α(α− 1)
|k|αei sgn(k)απ/2. (4.16)

Finally, we express the general form for characteristic exponent of stable distri-
bution as:

ψ(k) = C
Γ(3− α)

α(α− 1)
|k|α

[
p1e
−i sgn(k)απ/2 + p2e

i sgn(k)απ/2
]
. (4.17)

Using Euler formulas we can further reformulate later as:

ψ(k) = C
Γ(3− α)

α(α− 1)
|k|α

[
cos(απ/2)− i sgn(k)(p1 − p2) sin(απ/2)

]
=

= C
Γ(3− α) cos(πα/2)

α(α− 1)
|k|α

[
1− i sgn(k)(p1 − p2) tan(πα/2)

]
. (4.18)

Consider case when 1 < α < 2. Because first moments exist, we use centering
to 0 and obtain:

ψ(k) = C(2− α)p1

∫ ∞
0

eikx − 1− ikx
xα+1

dx+ C(2− α)p2

∫ 0

−∞

eikx − 1− ikx
|x|α+1

dx.

Assume first that k > 0. The integral:∫ ∞
0

eikx − 1− ikx
xα+1

dx

converges for all x. Contrary to previous case, in case we omit centering, the
integral does not converge. We consider analytic contiuantion of integrand on
the strip (0, iε) and compute limit ψ(k) = limε→0+ ψ(k + iε):

ψ(k) = lim
ε→0+

C(2− α)p1

∫ ∞
0

e−(ε−ik)x − 1 + (ε− ik)x

xα+1
dx =

= −C(2− α)p1 lim
ε→0+

ε− ik
α

∫ ∞
0

e−(ε−ik)x − 1

xα
dx =

= C(2− α)p1 lim
ε→0+

(ε− ik)2

α(α− 1)

∫ ∞
0

e−(ε−ik)xx−α+1dx =

= C(2− α)p1
Γ(2− α)

α(α− 1)
lim
ε→0+

(ε− ik)α,
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where we used twice integration by parts and substitution. Using (5.14) and
fact that ψ(−k) equals complex conjugate to ψ(k) we arrive to same formula as
in case 0 < α < 1:

ψ(k) = Cp1
Γ(3− α)

α(α− 1)
|k|αe−i sgn(k)απ/2. (4.19)

Analogically, we compute situation for x < 0 and finally obtain:

ψ(k) = C
Γ(3− α) cos(πα/2)

α(α− 1)
|k|α

[
1− i sgn(k)(p1 − p2) tan(πα/2)

]
. (4.20)

5 Parametrizations of Characteristic Exponent

Zolotarev introduced and studied different parametrizations of the characteristic
exponent of stable characteristic functions. Motivation for this effort stems from
the fact that different parametrizations allows one to study different properties
of stable distributions. In this section we will investigate these parametrizations
and inspired by these we introduce the new one which will be systematically
used in the rest of the text.

We will assume that distributions are strictly stable, because obviously the
shift in location can be easily performed by adding ibk into characteristic expo-
nent ψ(k).

Let us start with discussion. We firstly show different way of argumentation
on how to determine the characteristic exponent of stable distribution. Recall
relation (2.11) and Theorem (5.1), then for the characteristic exponent of stable
distribution holds following relation:

nψ(k) = ψ(n1/αk). (5.1)

As the relation above is a special example of Cauchy functional equation which
we solved in section I.2, the good candidate for the solution is:

ψ(k) = −zkα, (5.2)

where z ∈ C is a constant. To verify that F̂ (k) = e−zk
α

is a characteristic
function, we need to check that F̂ (0) = 1, |F̂ (k)| ≤ 1 for all k and that F̂ (k)
is continuous everywhere. First and third property is obviously satisfied. The
second condition holds only if Rz > 0. Denote the real part of z as c and
represent z as z = c(1 + id), then

ψ(k) = −c|k|α − icd sgn k|k|α. (5.3)

If d = 0, ψ(k) is real-valued function and the stable distribution is symmetric.
Let us introduce kernel of asymmetry ω(k;α, d) and rewrite ψ(k) as:

ψ(k) = −c|k|α − icω(k;α, d). (5.4)
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The asymmetry kernel is then:

ω(k;α, d) = d sgn k|k|α. (5.5)

To show good reason for introducing asymmetry kernel, consider representation
of constant z from (6.2) in polar form: z = reiθ for r > 0. To guarantee
boundedness of F̂ (k) we have restriction: −π/2 < θ < π/2. The asymmetry
kernel is then:

ω(k;α, θ) = sgn(k)r|k|α sin θ. (5.6)

The transformation between these parametrizations is obviously:

r = c
√

1 + d2,

θ = arctan d.

Let us investigate the formula from previous section. We see that

c = C
Γ(3− α) cos(πα/2)

α(α− 1)
, (5.7)

d = (p1 − p2) tan(πα/2). (5.8)

Zolotarev refers to this parametrization as parametrization A:

ψA(k) = −λ|k|α + iλβk|k|α−1 tan(πα/2), (5.9)

where obviously λ = c corresponds to scale of the distribution, β = p1 − p2
influences the skewness of the distribution. Characteristic exponent under
parametrization A is often used as an alternative definition of stable distri-
bution.

Transforming into polar form:

r = C
Γ(3− α) cos(πα/2)

α(α− 1)

√
1 +

c1 − c2
c1 + c2

tan(απ/2)

We refer to this parametrization as form B:

ψB(k) = iλbk − |k|αe−i sgn(k)β .

Parameters α, β, λ, b are considered under parametrization B. For this reason
we will determine the transformation of parameters α, β, λ, b. Finally we would
like to introduce new parametrization, which we will use in the following and we
hope it will find its popularity. The proposed parametrization is very practical
and logical as will be explained later. Consider numbers p1, p2, such that 0 ≤
p1, p2 ≤ 1 and p1 + p2 = 1. Then we parametrize z in (6.2) as z = ceiα(p1−p2)

π
2

and so:

ψ(k) = −c|k|αeiα(p1−p2)π
2 sgn k. (5.10)

18



Then the asymmetry kernel rewrites as:

ω(k;α, p1) = sgn(k) sin((α(p1 − p2)
π

2
). (5.11)

Let us denote this parametrization as ψP (k), where P stands for practical. Yet,
the last statement may be seen as obscure, it will be shown in following chapter
that p2 = P{X ≤ 0} where random variable X has stable probability function.

6 Discussion. Summary

Putting Ω, M+,M− into context with Lévy measure as in Sato. In literature
Lévy measure is alternativelly defined as ... It corresponds to ν(x) = y−2Ω{dy}.

Historical comment of Lévy Khinchine and choice of measures, comment on
Felle choice of measure M: deriving of stable charact. exp.: difference between
Feller and Zolotarev.

Semigroup approach: infinitely divisible distributions are limits of compound
poisson distribution. Add comment on trajectories ...
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