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Abstract
Methods for Blind Source Separation (BSS) aim at recover-
ing signals from their mixture without prior knowledge about
the signals and the mixing system. Among others, they pro-
vide tools for enhancing speech signals when they are dis-
turbed by unknown noise or other interfering signals in the mix-
ture. This paper considers a recent time-domain BSS method
that is based on a complete decomposition of a signal sub-
space into components that should be independent. The com-
ponents are used to reconstruct images of original signals using
an ad hoc weighting, which influences the final performance of
the method markedly. We propose a novel weighting scheme
that utilizes block-Toeplitz structure of signal matrices and re-
lies thus on an established property. We provide experiments
with blind speech separation and speech recognition that prove
the better performance of the modified BSS method.
Index Terms: blind speech separation, independent component
analysis, time-domain method, weighting

1. Introduction
Blind Source Separation (BSS) of convolutive mixtures of origi-
nal sources is important for speech enhancement and similar ap-
plications [1]. We consider the situation when several acoustical
sources sound simultaneously in a room and are recorded by an
array of microphones. Let there be m microphones. Natural
mixing conditions are underpinned by the convolutive model,
so a signal observed by the ith microphone is equal to

xi(n) =

d∑
k=1

Mik−1∑
τ=0

hik(τ)sk(n− τ), i = 1, . . . ,m, (1)

where s1(n), . . . , sd(n) are unknown original signals, and
hik’s are source-microphone room impulse responses, each of
length Mik. The goal is to find separating MIMO filters whose
outputs give the individual microphone responses (images) of
sources

sik(n) =

Mik−1∑
τ=0

hik(τ)sk(n− τ), (2)

i.e., the separated signals.
Many BSS methods assume the independence of original

signals. Independent Component Analysis (ICA) is then used

0This work was supported by Ministry of Education, Youth and
Sports of the Czech Republic through the project 1M0572 and by Grant
Agency of the Czech Republic through the project P103/11/1947.

as the hearth of separation. Since ICA algorithms primarily
work with instantaneous mixing model, the convolutive model
(1) must be transformed. A popular way is to transform sig-
nals into the frequency-domain, where the convolutive mixing
model changes to a set of instantaneous models, one for each
frequency. The main problem then consists in solving the per-
mutation problem since the order of separated frequency com-
ponents is random [2].

Time-domain approaches, addressed by this paper, usually
search independent signals in a signal subspace spanned by
rows of matrix

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(N1) . . . . . . x1(N2)
x1(N1 − 1) . . . . . . x1(N2 − 1)

.

.

.
.
.
.

.

.

.
.
.
.

x1(N1 − L+ 1) . . . . . . x1(N2 − L+ 1)
x2(N1) . . . . . . x2(N2)

x2(N1 − 1) . . . . . . x2(N2 − 1)
.
.
.

.

.

.
.
.
.

.

.

.
xm(N1 − L+ 1) . . . . . . xm(N2 − L+ 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(3)
where N is the number of available samples, and 1 ≤ N1 <
N2 ≤ N . The dimension of the subspace (the number of rows
of X) is equal to mL. L is a free integer parameter correspond-
ing to the length of separating MIMO filters.

Note that X can be written as X = S1 + · · · + Sd where
each Sk has the same block-Toeplitz structure (where each
block consists of L rows) as X but contains the responses (2) of
the kth source only, because xi(n) =

∑d
k=1 s

i
k(n). The goal

of BSS can be formulated as to find transforms Hk such that
HkX ≈ Sπ(k), where π(·) denotes an unknown permutation

of separated signals1. Final signal estimates are then derived
from HkX.

1.1. T-ABCD method

To find Hk, it was recently shown in [3] that it is advantageous
to apply ICA so that the whole X is first decomposed into mL
independent components (ICs) C = WX, where W is the ICA
decomposing square matrix. In fact, the components cannot be
all independent, but can be organized into d groups forming
independent subspaces corresponding to individual sources.

The grouping can be done by clustering ICs according to
their similarity. The founded clusters (groups) are represented

1The permutation uncertainty must be taken into account due to the
inherent indeterminacy of ICA. For ease of exposition, we can assume
that π(k) = k for all k.
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by diagonal matrices Λk, k = 1, . . . , d, whose diagonal ele-
ments determine how much the components belong to the kth
cluster. The estimate of Sk is then given by

Ŝk = W−1ΛkC = W−1ΛkWX, (4)

which corresponds to the choice Hk = W−1ΛkW. This ap-
proach was in [3] named T-ABCD and will be described in de-
tails in Section 3. Similar idea was used in, e.g., [1, 4].

The diagonal elements of Λk, from here referred to as
weights, can be chosen in several ad hoc ways; see e.g. [5].
However, experimental comparisons in [3] with weights that are
optimal in mean square error sense (computed when the target
matrices Sk are known) have shown significant difference in
performance. In other words, the separation performance of T-
ABCD might be significantly improved through the weights.

In this paper, we propose weights whose computation is not
ad hoc but comes from the Block-Toeplitz structure of the matri-
ces Sk. A criterion of “block-toeplitzity”, which is a quadratic
form subject to the weights, is derived. It is optimized through
finding eigenvectors of the quadratic form under constraints re-
specting groups (clusters) of components. Experiments with
real-world recordings demonstrate a better performance of the
resulting weights.

The computation of weights is derived in the following sec-
tion. The separation method using the weights is summarized
by Section 3. In Section 4, several experiments of blind speech
separation are presented. Section 5 concludes the paper.

2. Weights Adjustment
Let the diagonal elements of Λk be denoted by λk

1 , . . . , λ
k
mL.

Let Kk be the set of indices of ICs that were assigned to the kth
cluster. A binary weighting is defined as

λk
� =

{
1 for � ∈ Kk

0 otherwise
. (5)

This weighting is consistent in the sense that if all ICs contain
no residual interference (each component contains one source
only) and the clustering is correct then HkX must be exactly
equal to Sk since the original signals are independent.

Since in practice the residual interference remains present
in ICs, it is meaningful to select weights that reflect it. For in-
stance, in [5] the weights are selected according to a fuzzy clus-
tering, which allows making a trade-off between the achieved
signal-to-interference and signal-to-distortion ratios of sepa-
rated signals.

2.1. Block-Toeplitzity Criterion

Now we propose a way how to define weights respecting the
block-Toeplitz structure of Sk. We define a criterion that mea-

sures this property of Ŝk = HkX as

G(Ŝk) =
m∑

r=1

L∑
p=1

N2−L+1∑
n=N1

[
(Ŝk)(r−1)L+p,n+p−1−

1

L

L∑
q=1

(Ŝk)(r−1)L+q,n+q−1

]2

. (6)

Easily can be verified that if Ŝk has the block-Toeplitz struc-
ture with blocks of the length L, both terms in brackets are

the same, and G(Ŝk) = 0. For example, if Ŝk = Sk, then

(Ŝk)(r−1)L+p,n+p−1 = srk(n), which is independent of p.

From (4), the ijth element of Ŝk can be expressed as

(Ŝk)ij =

mL∑
�=1

(W−1)i,�(Λk)�,�C�,j =

mL∑
�=1

λk
� (W

−1)i,�C�,j .

It follows that G(Ŝk) is purely quadratic subject to the weights
λk
1 , . . . , λ

k
mL and can be represented by a symmetric matrix G

such that

G(Ŝk) = λT
k Gλk, (7)

where λk = [λk
1 , . . . , λ

k
mL]

T . The derivation of G is straight-
forward and is not shown here due to lack of space.

2.2. Finding Weights by Minimization of G(Ŝk)

Unfortunately, λk cannot be searched directly by minimizing

G(Ŝk). The reason is two-fold. First, a minimum is achieved

for λk = [1, . . . , 1]T , because then Ŝk = X, which means
no separation. This is because X has the exact block-Toeplitz
structure by its definition (3). Second, there are other local min-

ima of G(Ŝk) that might correspond to unwanted solutions such

as Ŝk ≈ Si1 + · · ·+Sis , 2 ≤ s ≤ d, because all these matrices
have the block-Toeplitz structure as well.

Therefore, we propose to constrain the minimization of G
by optimizing selected elements of λk only, while the other el-
ements are set equal to zero. In view of (5), it is natural to
optimize those elements whose indices are in Kk, which corre-
spond to ICs that were assigned to the kth cluster.

The solution of the constrained problem is obtained by the
following steps.

1. Put Gk equal to the submatrix of G with only those rows
and columns whose indices are in Kk.

2. Find the eigenvector vk of Gk corresponding to the min-
imum eigenvalue of Gk.

3. Put elements of λk in Kk equal to vk (keep the same
order) and the other put equal to zero.

2.3. Penalty term

We will show by experiments that signals separated by use
of the weighting derived above often have good signal-to-
interference ratio (SIR) but poor signal-to-distortion ratio
(SDR). It happens when the eigenvector vk is sparse, i.e., has
many elements close to zero, which means that only few ICs

from the kth cluster are used to reconstruct Ŝk.

In order to balance this effect, we propose to add a penalty
term to the criterion (6) that forces the elements of λk to be
closer to the binary weighting (5). To this end, we define a
term that penalizes differences between weights and their aver-
age value. The new criterion is therefore defined as

G̃(Ŝk) = λT
k Gλk + α

mL∑
�=1

[
(λk)� − 1

mL
λT

k 1mL×1

]2
(8)

= λT
k

(
G+ α

(
I− 1

mL
1mL×mL

))
λk, (9)

where α is a free non-negative parameter, I stands for the iden-
tity matrix, and 1 is the matrix of ones of given dimensions.
As follows from (9), the modified criterion remains purely
quadratic. Therefore, the computation of weights is the same
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as described in the previous subsection but with the modified
matrix

G̃← G+ α
(
I− 1

mL
1mL×mL

)
. (10)

2.4. Phase and scale correction

It is desired that the resulting weights are non-negative so that
the phase and scale of reconstructed signals is not changed.
Since an eigenvector is uniquely determined up to its scale and
sign2 (provided that it is only one eigenvector corresponding to
its eigenvalue), we normalize λk, k = 1, . . . , d, by taking ab-
solute values of its elements. To preserve the scale, λk is then
divided by its maximum element so that its largest element is
equal to one.

2.5. Choice of Kk

The sets Kk, k = 1, . . . , d, are normally determined by the
clusters founded by a clustering algorithm. A hard clustering
results in disjoint sets Kk. When using a fuzzy clustering, the
sets need not be disjoint and can share components that usually
contain high residual interference. The advantage of non-binary
weightings is then that such ICs are reasonably outweighted so
as not to decrease SIR of separated signals.

We therefore use the relational fuzzy C-means clustering
algorithm (RFCM) as in [5] and define Kk as the set of indices
of ICs whose degree of affiliation to the kth cluster is above a
given threshold τ .

3. Summary of the BSS Algorithm
Now we summarize our modification of the time-domain
method T-ABCD from [3] which is endowed by the novel
weighting approach. Also an improved similarity of compo-
nents is proposed here; details are given in the next subsection.

The input of the method are the signals from microphones
xi(n), i = 1, . . . ,m, n = N1, . . . , N2, and the parameters L,
α and τ . Then, the steps are as follows.

1. Construct X according to (3). Find the decomposing ma-
trix W by an ICA algorithm (we use the BGSEP algo-
rithm from [6]) giving mL independent components of
X, C = WX.

2. Group the ICs (rows of C) into clusters so that each
cluster contains ICs corresponding to the same original
source based on the similarity measure defined in sub-
section 3.1. Do the clustering by means of the RFCM
algorithm using known number of clusters (sources) d.

3. Define the sets Kk, k = 1, . . . , d, as described in Sub-

section 2.5. Then, evaluate G̃ defined by (10), compute
the weighting vectors λk following the steps in Subsec-

tion 2.2., and put Ŝk = W−1ΛkC, k = 1, . . . , d, where
Λk = diag[λk].

4. Compute estimates of the responses (2) of separated sig-
nals as

ŝik(n) =
1

L

L∑
p=1

(Ŝk)(i−1)L+p,n+p−1 (11)

(i.e. take averages over time-shifted rows within the

blocks of Ŝk).

2It is worth noting that the elements of λk are expected to have, prior
to the normalization, all the same sign. Although this is not guaranteed
in theory, our observation is that it happens very often.

3.1. Similarity of ICs

The clustering is done based on a similarity measure between
the components. Since components corresponding to the same
source should, ideally, be the same up to an unknown FIR filter,
projection of one component to a subspace spanned by delayed
copies of the other components were used in [3] as the measure
of their similarity. Here we propose to use a coherence mea-
sure, which yields comparable results as the projection, but is
computationally simpler.

Let ci and cj be the ith and jth component (row of C),
respectively. Let ci(ωk, n) denote the short-time Fourier Trans-
form of ci where n = 1, . . . , Q is the index of the time-window
of a length P , and ωk is the kth frequency. The coherence of
the ith and jth component is defined as

coh[ci, cj ] =
1

P

P∑
k=1

∣∣∑Q
n=1 ci(ωk, n)cj(ωk, n)

∣∣2
(
∑Q

n=1 |ci(ωk, n)|2)(
∑Q

n=1 |cj(ωk, n)|2)
.

(12)
In our experiments, we select P = 128 and use no overlap of
the time-windows.

4. Experimental Evaluation
4.1. Separation of SiSEC 2010 data

We test the proposed BSS method on data from the SiSEC 2010
evaluation campaign3. The data consist of two-microphone
recordings of two sources played over loudspeakers. There are
six couples of signals (a male or female speech with another
jammer source) each recorded at seven different positions in
room #1 and five positions in room #2. In summary, there are
12 different scenarios and 72 recordings altogether. The sam-
pling rate is 16 kHz. Each recording lasts for three seconds, but
the sources are active in first two seconds only. T-ABCD was
set to compute ICA using the first second only.

method SIR [dB] SDR [dB] SAR [dB]

original 8.7 4.4 9.6
proposed 9.0 4.9 10.1

Table 1: Achieved SIR, SDR and SAR on SiSEC data averaged
over all scenarios.

We separate the recorded signals by the T-ABCD method
with L = 20 using the original weighting from [3] and the
one proposed here to compare their performances. The sep-
aration quality is evaluated using the BSS EVAL toolbox [7].
Three criteria are used: the Signal-to-Interference ratio (SIR),
the Signal-to-Distortion ratio (SDR), and the Signal-to-Artifacts
ratio (SAR). SIR evaluates the ratio of energy of the target to
jammer signal in the separated signal, while SDR and SAR
measure deformations of the target signal; see [7] for exact defi-
nitions. The parameters of the compared approaches were tuned
to optimum values making a good trade-off between SIR and
SDR, namely, α = 0.1 and τ = 0.4 in the proposed method,
and α = 1 in the original method.

Table 1 summarizes achieved results averaged over both
separated responses of both separated signals and over all sce-
narios. The performance of the proposed weighting is signif-

3The task “Robust blind linear/non-linear separation of short two-
sources-two-microphones recordings” in the “Audio source separation”
category; online http://www.irisa.fr/metiss/SiSEC10/
robot/database2010.zip
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icantly better in terms of all the criteria than that of the origi-
nal weighting. Detailed results for each scenario are shown in
Fig. 1, where it is seen that the improvement is up to by 1.5 dB.
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Figure 1: Detailed performance of compared approaches in all
scenarios of SiSEC 2010 data.

4.2. Performance versus α

The parameter α controls the influence of the penalty term in
(10). A typical behavior of the separation performance in de-
pendence on α is shown by Fig. 2. For α close to zero, SIR is
better at the expense of lower SDR and SAR. By contrast, SDR
and SAR are better for higher α since the weighting is closer to
the binary one defined in (5).
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Figure 2: SIR, SDR and SAR of a separated source as functions
of α.

4.3. CHiME Challenge

The task of CHiME challenge, which is an evaluation campaign
organized as a satellite workshop of Interspeech 2011, is to sep-
arate distant speech from noise and recognize the keywords in
commands being spoken. The recordings are binaural and were
obtained by a dummy head from a distance of 2 meters from
speaker. Both the speaker and dummy head maintain fixed posi-
tions, but no such assumption can be made about noise sounds;
see the CHiME homepage4 or [8] for further details about the
task.

We apply the T-ABCD method endowed by the proposed
weighting to the CHiME development data that consist of 3600
utterances. The data were created at six different signal-to-noise
ratios (SNR: -6, -3, 0, 3, 6, and 9 dB) so that there are 600
recordings for each SNR. First, we separated the recordings by
T-ABCD with L = 10, which has the ability to capture direct-
path of the target signal and isolate it from other directions. To

4http://www.dcs.shef.ac.uk/spandh/chime/
challenge.html

further increase SIR, the separated signals were post-processed
by a non-linear mask (masked by the separated non-target sig-
nal), and the results were sent to a baseline recognizer that was
trained on noise-free commands. Table 2 compares recognition
score achieved, respectively, on untreated and enhanced signals
using the original and proposed modification of T-ABCD.

SNR [dB] -6 -3 0 3 6 9

untreated 31.08 36.75 49.08 64.00 73.83 83.08
original 35.25 38.58 51.00 64.67 73.83 83.58

proposed 35.25 41.58 53.33 67.42 74.58 84.08

Table 2: Keyword recognition accuracies (%) for the CHiME
development data sets.

The improvement of recognition accuracy is significant (1–
5%) but rather small. To explain, note that CHiME is a multidis-
ciplinary challenge that requires complex solutions to achieve
better recognition score. The separation here is fully blind (up
to finding the separated target signal), and no other information
such as the fixed position of the target source is exploited. Nev-
ertheless, this direct application of T-ABCD provides an illus-
tration pointing to the applicability of the method. We prepare
a more efficient and tailored solution of the CHiME task for the
respective satellite workshop.

5. Conclusions
We have proposed a novel weighting of independent compo-
nents in the T-ABCD method for blind separation of audio sig-
nals. Compared to previous ad hoc weighting schemes, the pro-
posed one relies on the block-Toeplitz structure of signal matri-
ces. The experiments show that it improves the separation per-
formance in various scenarios, and it is demonstrated that the
resulting method can be used to enhance noisy speech signal
prior to the recognition.
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