5% Annual International Travelling Conference Education

13" — 16" April 2011
Tatranska Kotlina — High Tatras - Slovakia ﬂ

/<Y

Research
m Innovation
SHEWHART'S CONTROL CHARTS OF SAMPLE MEANS FOR
NONNORMAL DISTRIBUTION OF QUALITY VARIABLES

Ing. Jan Kral *, RNDr. Ji /i Michalek, CSc. 2, Ing. Josef K Fepela *

Key words: Shewhart’s control chart; control limits; Box-Card Johnson transformations; CLT

1 INTRODUCTION

Using Shewhart’s control charts for process contrgiractice, we should assume the following two
conditions are fulfilled:

1) a manufacturing process is statistically managetistable (mean value and variability do not
change at time),
2) normal distribution of the monitored quality vdies.

The first condition is not often met in practidee tSix Sigma methodology assumes a fluctuating mean
value within a certain small rangel(5 o) about a target value. It causes a significanteiase in the

risk of false alarms, which is set in Shewhart arttata=0,0027, taking into account both control
limits. It implies that a point outside the conttiohits can only appear in average once in 740<ase
Hence, changes in mean value increase this risketsmes up tax=0,10, which means that a point
can appear randomly outside the control limits anc20 cases in average. These are false alarrs tha
operators have to solve although any interventsonat necessary. Such a situation leads to a worse
motivation in work and the application of contrblacts becomes ineffective.

The second condition — condition of normality -ugially in practice ignored because it is veryrofte
supposed that normality of sample means within saulgs is automatically satisfied. This approach is
motivated by the practical use of Central Limit ®ream (CLT) but its application is strongly
influenced by the range of a subgroup and the sbépbe probability distribution of an observed
quality variable. If we assumed incorrectly theidi&y of normal distribution this fact could cautie
enormous number of false alarms similarly as infitlsé condition.

While the first problem with nonstability in meaoan be relatively easily fixed by extended control
limits that are constructed on total variability iath contains both variability inside subgroups and
variability among subgroups caused by the behawbureans, for more details see e.qg. [1], [2].

The second condition is more complex as the cooa@culation of control limits is strongly depentlen
on the concrete probability distribution and tadfim suitable model describing the underlying vdeiab
can be difficult. The main goal of this contributics to show in a case study what danger is hidglden
a formal application of original Shewhart’s lim#sd to give an advice how to overcome this problem
by a suitable transformation of data.
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2 CONVERGENCE OF DISTRIBUTION FUNCTIONSAND CENTRAL
LIMIT THEOREM

In this part we need some theoretical notions anday something about Central Limit Theorem
(CLT) Let us have a sequence $Xof random variables and the sequence of theesponding
distribution funtions {K(x)}. Further, we have a random variable X havimgribution F(x). When

lim F.(X) = F(X) (1)

n-oo

at all pointsof continuity of F(x) we say that the sequence,{Xends to X in distribution.
Distribution function F(x) is then called the asywotc distribution for the given sequence of random
variables. In other words, for large n distributimmction F(x) can be approximated by F(x). A very
important case is when the limiting distributiomnisrmal N(1, 0%).Then we say that random variable
has asymptotic normal distribution and
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is valid at all real numbers. For the simplest calSELT we will assume that a sequence of random
variables is formed by mutually stochastically ipdedent variables and identically distributed véth
quite arbitrary distribution function having finitBspersion.

The Central Limit Theorem is a very important tagolprobability theory and mathematical statistics.
Formally, the theorem can be expressed as follows:

NEY X, =) - NO.6?) 3)

in distribution. This convergence means that distion function of \/ﬁ(f—,u) converges to
distribution function of N (0,0> Rt every real number. A very interesting quest®ihe rate of this

convergence. The classical result due to Berry-dsstates that the rate of convergence IS, more
precisely, under the existence of the absolutel ttmomentp, there exists a positive constahisuch
that for all reak and alln

Cp

F,(X) —®(x) < : 4

F 09 =00 s (4)
The value of constar@@ originally was estimated as 7,59, the last redutis the year 2010 show the
value 0,4785. On the other side, it is possiblgite for C a lower bound, namel@ must be greater
than 0,40973. Usually, based on experience, acgiitinumben of observations is 30-35 for a good
approximation by normal distribution. But, when s@ply control charts for subgroups the range of a
subgroup is much smaller, even two or three piecdg Then the behaviour of calculated averages
within subgroups may be very difficult to be apgmated by normal distribution. The convergence to
normal distribution is dependent not only on numhebut also on the shape of the underlying
distribution of a quality variable. The skewnessal&s very important factor. The following casedstu
shows that even by a very frequently used in texdimrractice the log-normal distribution the sitoat
with a formal application of classical Shewhartostrol limit can lead to a sufficiently greater nioen
of false alarms.
The convergence of sample means is very well ihistt on the following Figure 1 where three
histograms are depicted. The underlying data aginated from the uniform distribution. Histogram 1
depicts the original data, Histogram 2 shows thepda means of two values and Histogram 3 shows
the sample means of four values. The sample size2®@in every case.
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Figure 1: Convergence of sample means to nornsadiblution

3 CASE STUDY
3.1 INITIAL CONDITIONS

In the study we will analyze data coming from a ofanturing process and it is assumed to have a
relatively large sample for the possibility of aogoknowledge of probability distribution. The sampl
size of data in Fig.2 is 10000. The empirical disttion of data is seen from the corresponding
histogram and this histogram is compared to theecaf normal distribution with parametgerequal to
arithmetic mean and equal to sample standard deviation of data. Thatcillustrates an evident
difference between normal distribution and disttitau of given data.
One of goodness fit tests for testing normalitpased on sample skewness and sample kurtosis.
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Figure 2: Histogram of data with a curve of nodndéstribution



5" Annual International Travelling Conferenc&RIN 2011 - Education — Research - Innovation

Coefficient of skewness describes how a distribufinnction is symmetric about its mean value. For
normal distribution skewness is 0. This value isipared to the sample coefficient of skewness that i
1,60687 in our case. The test says the differenesgatistically significant and data cannot conwenfr
normal population. A similar situation we can $gekurtosis. Coefficient of kurtosis is a measufre o
concentration of probability about mean value anthe case of normal distribution is equal to 8. It
sample version obtained from data is 4,21652 an@lss significant. This fact also confirms
nonnormality of data.

Another possibility for comparing data to a suibhodel given by a distribution function is
probability chart. Here the considered distributisrtransformed together with data in a chart where
the distribution is depicted as a straight lineeTdloser data are to this line, the better fit vitik
model. The obtained result is quite clear, datancarbe described by the model with normal
distribution.
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Figure 3: Probability chart

The result is given by the application of Anderd2ering test, the corresponding p-value is almost
negligable, smaller than 0,005 and with the levedignificance 5% we must reject normality.

3.2 CONVENTIONAL APPROACH IN PRACTICE

Our task is to statistically control this procegsuse of Shewhart’s charts. The recommended ahart i
many cases is of the type (xbar, R). Each subgconpains three checked pieces.
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Figure 4: Control chart (xbar,R)

As seen from Fig.4 there are false alarms causdtidbyoo low upper control limit that is calculated
under the assumption of normality. This fact isvelaed by nonsymmetry in distribution of data and
sample means of the size 3 cannot remove thisainfle.

3.3 SUGGESTED APPROACH FOR SAMPLE MEANS

Observing a quality variable, which is not normaligtributed the first step is to attempt to idBnti
the probability distribution for sample means. dtquite natural to use some statistical software by
identifying a suitable model. E.g., Minitab 16 ofel4 types of models that are very frequent in
technical practice. At this moment there are tipessible scenarios.

3.3.1 Identification of a distribution function for sample means

In the next Fig. 5 we can see that from all thesjimkties offered by Minitab 16 only three are
acceptable, the case with normal distribution iy dor comparison. A potentional model expressing
our data is log-normal distribution, other posdiigi$ are based on transformations of original data
new data having normal distribution. The first sfnmmation is called Box-Cox, the other is Johnson
transformation, which transforms data even into m&ata with N(0,1). For the next decision, which
model should be chosen, we will progress accorttinbe greatest p-value of Anderson-Darling test.
As for the case of log-normal distribution the esponding p-value is 0,211, we cannot reject this
model. A similar result is given by Box-Cox transfation. But, we see that Johnson transformation
is the winner with p-value equal to 0,888 (see &dbl
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Figure 5: Identification of Distribution function

When we have chosen a priori the significance 1&%]| we cannot reject any of those three models
presented above. As Johnson transformation retilmnsmaximal p- value, we can proceed in the
following manner. The transformed data are distaduN(0,1) and hence the control limits with the
false alarm risk 0,27% must be theoretically -3, Wsing the inverse Johnson transformation, we wil
obtain new control limits respecting the probabitiistribution of sample means. If the winner were
log-normal distribution the progress would be tblofving. On the basis of the corresponding density
function we would calculate 0,135% and 99,865% tjleenand their values would be control limits
for subgroup means. Parameters of log-normal defgitction are usually estimated by the maximal
likelihood principle (see Table 2).

Table 1: Goodness of Fit

Goodrniess of Fit Test

Distribution AT P
Mormal 7 974 =0,00K
Logrormal 0,496 0,211 €—

Box—-Cox Trawnsformation 0,496 0,211
Johnson Tratsformation 0,127 0,388

In case no model and also no transformation wemaddhe situation is somewhat worse because in
such a case we are obliged to estimate 0,135% @86%% quantiles directly from the data. We will
need a statistical software to do it.
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In the next table we see the corresponding quarfolelog-normal distribution and these values lsan
used as modified control limits for sample meantwvisubgroups. The central line of the chart is
defined by sample median.

Table 2: Table of Percentiles

Lognornal:

Percent Percentiles
0,135 0,46178

50 1,08602
99,865 2,55414

3.3.2 Johnson transformation

Here the approach based on Johnson transformatabescribed more in detail. All the calculations ar
carried out in Minitab 16. First, we need to findransformation equation that will transform origiin
data into data with distribution N(0,1). In Fig.@Wwave everything prepared by software.
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Figure 6: Johnson transformation

The equation defining a suitable transformatiopressented in Fig.7.
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P-Value for Best Fit: 0,888098
Z for Best Fit: 0,85

Best Transformation Type: SU
Transformation function equals

-1,43502 + 1,89671 * Asinh( ( X - 0,730670) / 0,414048 )

Figure 7: Equation for transformation

Transformed values of sample means are depictactiassical Shewhart’s chart for individual values
and control limits were calculated from transforndata. As seen in Fig.8 these limits are almost
identical to theoretical ones -3 and +3.
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Figure 8: Control chart for individual transforrdevalues

The control limits found in this way will be tramsed by use of the inverse Johnson transformation
into original sample means and a modified contr@rt with new control limits can be constructed.
The result is seen in Fig. 9 where new limits asmpared to original Shewhart’s limits for sample
means of the size 3.
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Figure 9: Control chart with modified limits

At the first sight we immediately see no false mgrin this modified case, limits obtained by the
above described approach can serve for statistaatrol of our manufacturing process. The similar
progress based on estimated quantiles is appliedid® a concrete model with a suitable distribution
function is found.

3.3.3 Calculation based on empirical percentiles

In the worst case when no model nor any transfoomatvere found we in fact have the only
possibility to estimate suitable limits directlyofn original sample means via empirical percentiles
corresponding to 0,135% and 99,865%. But, thisasitn is very strongly dependent on number of
data and this case can very often occur in prabgoause reliable estimates of quantiles need & lot
data. There exists a possibility to use bootstegpriique for improving estimates. In the next Fig.1
we see the final result and we can compare allapoaches suggested in this contribution. The
original Shewhart’s limits are in red colour (sdliige), the limits based on Box-Cox transformation
with log-normal model are in green color (dash-dioe) and the limits given by Johnson
transformation are blue (dashed line).
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Figure 10: Histogram with all control limits

4 CONCLUSION

One can use a classical control chart for stasistontrol of a quality variable that is not norigal
distributed without any apprehension when the sitex subgroup is relatively large (n >> 10).
Unfortunately, such a case is rare in practice. dibe of subgroups is usually small, a few of psece

In this situation it is necessary to analyze th@bpbility distribution of sample means from subgreu
When a suitable model is found then the correspmnduantiles can serve as modified control limits.
If no model was identified the further approachasuse some transformations that would transform
original sample means into new normally distributlada. Statistical softwares very often offer Box-
Cox or Johnson transformations. Then the modifieatrol limits are calculated via inverse
transformations. On the basis of these facts hesessary to realize that a formal and automatic
application of classical Shewhart’s charts can gkewnpleasant reaction by the statistical corfal
manufacturing process caused by a series of fédsms CLT is a very mighty probabilistic tool but
needs a careful manipulation.
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