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Time-Domain Blind Separation of Audio Sources
on the Basis of a Complete ICA Decomposition

of an Observation Space
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Abstract—Time-domain algorithms for blind separation of
audio sources can be classified as being based either on a partial or
complete decomposition of an observation space. The decomposi-
tion, especially the complete one, is mostly done under a constraint
to reduce the computational burden. However, this constraint
potentially restricts the performance. The authors propose a novel
time-domain algorithm that is based on a complete unconstrained
decomposition of the observation space. The observation space
may be defined in a general way, which allows application of long
separating filters, although its dimension is low. The decomposi-
tion is done by an appropriate independent component analysis
(ICA) algorithm giving independent components that are grouped
into clusters corresponding to the original sources. Components
of the clusters are combined by a reconstruction procedure after
estimating microphone responses of the original sources. The
authors demonstrate by experiments that the method works
effectively with short data, compared to other methods.

Index Terms—Blind audio source separation, blind deconvolu-
tion, independent component analysis, observation space, time-do-
main processing.

I. INTRODUCTION

B LIND separation of simultaneously active audio sources
is a popular task of audio signal processing motivated

by many emerging applications, such as hands-free and
distant-talking speech communication, human/machine inter-
actions, and so on. The goal is to retrieve audio sources from
their convolutive mixtures recorded by microphones, which
is described by

(1)

where are the observed signals on micro-
phones and are the original (audio) signals un-
known in the “blind” scenario.
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In fact, the mixing system is a multi-input multi-output
(MIMO) linear filter with source-microphone impulse re-
sponses , each of length . The responses characterize
propagation of sound in the recording room and are also un-
known. It is assumed that the system is time-invariant, which
usually means that positions of the sources and the microphones
do not change within recording of samples.

The separation through a linear processing consists in seeking
a MIMO filter that inverts the mixing process (1). Any estimate
of the th original signal , thus has the form

(2)

where is the length of the separating filter. The blind separa-
tion that is based on the assumption of statistical independence
of the original signals is addressed here. The separating filters
will therefore be estimated via Independent Component Anal-
ysis (ICA) [1], [2].

Indeterminacies that are inherent to the ICA cause that each
original signal is estimated up to an unknown filtering [3], [4].
Without any prior knowledge, that is not available in the blind
scenario, an arbitrarily filtered source signal can also be consid-
ered a source signal. It is therefore meaningful to aim at esti-
mating responses of sources at microphones, which only have
properly defined colorations. Following from (1), the micro-
phone response of the th source at the th microphone is

(3)

Consequently, each source is estimated times (all its
responses are estimated). Once the responses

, are estimated, it might be desirable to com-
bine them in one-channel estimate of the th signal denoted by

.
Basically, the blind audio source separation can be performed

either in the frequency-domain or in the time-domain (TD). In
the frequency-domain approach [5]–[7], the signals are trans-
formed by the discrete Fourier transform (DFT), and the con-
volution operation in (1) changes to the ordinary multiplica-
tion.1 This translates the convolutive model into a set of com-
plex-valued instantaneous mixtures, one for each frequency, that
can be separated by complex-domain ICA methods. The fre-
quency-domain approach allows effective computation of long

1More precisely, the circular convolution changes to the ordinary multiplica-
tion.
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separating filters, which is favorable in audio applications. By
contrast, the computation of long filters requires long recordings
to generate sufficient amount of data for each frequency [8].

Time-domain approaches transform the convolutive model
into an instantaneous one by constructing data vectors or ma-
trices of a special structure, by which the convolution is trans-
lated into the vector/matrix product. The data structures, con-
structed from the only available signals from microphones, de-
fine the observation space. Most often a matrix is defined so that
its rows contain the time-lagged copies of signals from micro-
phones, and the observation space is spanned by these rows. In
general, TD methods aim at finding subspaces of the observa-
tion space that correspond to separated signals [9].

Decomposition of the observation space can be either com-
plete or partial [10]. In the former case, the original signals
are represented by independent subspaces spanning the whole
observation space. In the latter case, the signals are estimated
as one-dimensional subspaces (components) of the observation
space. A reconstruction procedure must follow the decomposi-
tion to retrieve the microphone responses of separated signals.

Performance of methods doing the partial decomposition
depends very much on initialization of a convergence scheme
[11]–[13]. It might also happen that the method finds two com-
ponents of the same source and skips another source. In this
respect, the complete decomposition is more reliable, however,
at higher computational demand.

To alleviate these problems, the decomposition may be done
with some constraint. The complete decomposition is usually
constrained by an assumption that the inverse of the decom-
posing transform (matrix) has a special structure, for example
block-Toeplitz or block-Sylvester; see articles of Kellermann et
al. and Belouchrani et al., e.g., [9], [14], [15]. Févotte et al. pro-
posed a two-stage separation procedure in [10] doing the com-
plete decomposition by an algorithm for the independent sub-
space analysis (ISA) through joint block diagonalization (JBD)
[9] utilizing the orthogonal constraint [17]. The algorithm of
Douglas et al. [18] is an example of a constrained partial decom-
position. It uses a para-unitary filter constraint and is compared
in experiments in this paper.

A potential drawback of the constrained decomposition is that
it assumes all independent subspaces to have the same dimen-
sion. The constraint might also cause some restrictions due to
the finite length of data or the limited length of separating filters.
In this respect, the complete unconstrained decomposition pro-
vides an effective way to utilize the available data as effectively
as possible, but it was considered to be computationally too ex-
tensive [10]. For instance, the JBD algorithm applied in [10] ap-
peared to fail with , which, in other words, means that this
algorithm cannot work on observation spaces of higher dimen-
sion. It is known that the stability and speed issues in high-di-
mensional spaces are the shortcomings of many ICA/ISA algo-
rithms.

In this paper, a novel method based on the complete uncon-
strained decomposition of the observation space is proposed. It
utilizes modern ICA methods that allow fast, accurate, and reli-
able separation of high-dimensional spaces. Especially, very fast
ICA algorithms that are based on approximate joint diagonaliza-

tion (AJD) by Tichavský and Yeredor [20] are used. Next, the
method involves an effective reconstruction step, which yields
effective results even when separating filters are much shorter
than the mixing filter. Moreover, a general construction of the
observation space is proposed, which allows the method to apply
long (even infinite) separating filters while preserving its com-
putational complexity (dimension of the observation space). In
real-world experiments, the proposed method yields very good
results in comparison with its competitors. It has several attrac-
tive features such as the ability to estimate the number of sources

, and it provides room for further development of its variants
in future, such as a sub-band version or an online version.

This paper is organized as follows. Section II provides a
comprehensive description of a basic version of the proposed
method, first introduced in [21], where classical time-lag
construction of the observation space is used. The method is
a five-step procedure, where each step can be solved in many
alternative ways. A few basic variants are proposed. This
also includes a novel oracle algorithm [8] that utilizes known
responses of the sources and provides a reference solution
that depends on the quality of the ICA decomposition only.
In Section III, an extension of the method that comes from a
generalized definition of the observation space is proposed.
A special case of the definition leads to the application of
infinite impulse response (IIR) Laguerre separating filters.
In Section IV, results of various real-world experiments that
demonstrate excellent performance of the proposed method in
comparison with other existing methods are presented.

II. BASIC VERSION OF THE PROPOSED METHOD

In the following subsection, a brief description of main steps
of the basic variant of the proposed method is given, and in the
other subsections each step is further commented and illustrated
by an example.

A. Outline

Assume that samples of simultaneously recorded signals
from microphones , are avail-
able. The method proceeds in five consecutive steps.

1) Form a data matrix , whose rows con-
tain time-lagged copies of the signals from microphones.
Each signal is delayed times, thus, rows correspond to
each signal, and . The matrix is given by

...
...

...
...

...
...

...
...

...
...

...
...

(4)
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where and , determine a seg-
ment of recordings that is used for computations. The sub-
space of spanned by rows of will be called
the observation space.

2) Apply an ICA method to the mixture given by to ob-
tain all independent components of . As there may be up
to (independent) components, the output is a
de-mixing (decomposing) matrix , and the components
are given by . The rows of will be denoted

and the components (the signals) defined by
them will be denoted by .

3) Group the components into clus-
ters, so that each cluster contains components that cor-
respond to the same original source. The number is
either estimated or equal to an a priori known (if avail-
able) number of sources . The grouping is done subject to
a similarity measure between the components.

4) For each cluster and each component, a weight that char-
acterizes a measure of confidence of the component to
belong to the cluster is computed. Then for each cluster, a
reconstructed version of the matrix is computed using
weighted components subject to the cluster, and rows
of the reconstructed matrix are used for estimation of
microphone responses of a source corresponding to the
cluster. Mathematically, the reconstructed matrix, for the

th cluster, , is

(5)

where denote the weights, each one from
, reflecting degrees of affiliation of components to

the th cluster. Their particular selection will be described
later in this section. Finally, microphone responses (3) of
an original source corresponding to the th cluster are
estimated as

(6)

where is the th element of . Obviously
, provides an estimate of

.
5) Apply a beamformer to the estimated responses of each

source to get the one-channel estimate of the source.
In the following subsections, the steps of this method are dis-

cussed in more details. To make the presentation clearer, an ac-
companying example is given with three original sources that
were artificially mixed into three signals. The mixing system
consists of filters of the length , whose
coefficients were randomly generated according to Gaussian
law with zero mean and unit variance. The original and the
mixed signals are, respectively, shown in Figs. 1 and 2.

B. Step 1: Construction of

As mentioned in the introduction, constructing according
to (4) allows to convey the separating convolution operation via

Fig. 1. Original sources considered in the demonstration example. The signals
are, respectively, a man’s speech, a woman’s speech, and a typewriter sound,
recorded at the sampling frequency 8 kHz.

Fig. 2. Three artificial convolutive mixtures of the sources from Fig. 1 simu-
lating signals obtained by three microphones.

Fig. 3. Independent components obtained by the BGSEP algorithm in the
demonstration example. As can be seen by comparing signals from Fig. 1,
some components clearly correspond to separated signals.

multiplying by a de-mixing matrix. is usually interpreted
as an instantaneous mixture, , where is a matrix con-
structed of delayed original signals analogously to , and is a
mixing matrix that has the block-Sylvester structure. However,
such mixture is equivalent with (1) in full if only has more
columns than rows, and is sufficiently large; see [9]
and [10].

In this paper, none of the above conditions is assumed. The
mixing or, equivalently, the de-mixing matrix is considered to
be square without any special structure. The structure of is
not specified either. It is only assumed that its rows consist of
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the filtered versions of original signals and form independent
subspaces. Consequently, can be estimated, up to indetermi-
nacies, as independent subspaces or components of via ISA
or ICA. This approach proves to be more flexible, among others,
because may be defined in different ways than (4) as proposed
in Section III.

In the accompanying example, consider and
. This means that the length of separating

filters is 4, and the matrix is 12 8000. Note that all com-
putations made with use data contained in first 8000 samples
(the first second) of recordings only. Once the separating MIMO
filter is found, it can be applied to the entire data set.

C. Step 2: ICA Decomposition

At the heart of the proposed separation procedure is a suit-
able ICA algorithm to be applied to . Because no constraint
is applied to the de-mixing matrix, many of the known ICA
and ISA algorithms can be considered including those based on
Non-Gaussianity, nonstationarity or spectral diversity (distinct
coloration) of signals; a survey of ICA algorithms is provided,
for example, by ICALAB [22].

The problem of the selection of ICA/ISA algorithm for
this purpose exceeds the scope of this paper. The study in
[23] showed that ISA algorithms do not have any obvious
advantage over ICA algorithms that are followed by clustering.
Potentially, ICA methods are computationally inefficient since
they not only separate independent subspaces, but also signals
within the subspaces. However, the ICA methods considered
here are computationally still much faster then up-to-date ISA
methods.

Owing to the need to separate mixtures whose dimension is
frequently 40 or more, two algorithms are considered: the Non-
Gaussianity-based EFICA algorithm from [24] and the nonsta-
tionarity-based algorithm from [20] called BGSEP.

EFICA is an improved version of the well-known FastICA
algorithm [25]. BGSEP consists in a special approximate joint
diagonalization of a set of covariance matrices of signals in data
matrix divided in blocks. Both methods achieve asymptotical
optimality within respective models of signals and perform very
well in [23].

D. Step 3: Clustering of Components

An independent component obtained by the ICA algorithm
equals, in an ideal case, to a filtered copy of an original source.
As the number of components is higher than the number of
sources, i.e., , there should be clusters of components
where each cluster contains components of one source. The uti-
lization of the ICA algorithm in the second step should be there-
fore followed by the clustering of components.

As already discussed above, the alternative way is to apply an
ISA method instead of ICA, which does not need the clustering
step [19], [26], [27]. However, the “ICA+clustering” approach
used here has the following advantages.

• ICA methods work reliably without knowing or estimating
the number of components of clusters.

• The approach is flexible because various criteria of simi-
larity of components and clustering methods can be used.

Fig. 4. Similarity matrix � between components from Fig. 3 computed ac-
cording to the definition (9).

1) Similarity of Components: If the th and the th compo-
nent belong to the same source and contain no interference, it
holds that there exists a filter such that

(7)

In practice, (7) holds approximately only, and can be searched
by minimizing the mean square distance between the two sides
of (7). Therefore, the value of

(8)

where denotes the sample mean operator, reveals whether the
two components belong to the same source. In practice, the min-
imization in (8) proceeds over filters of length .

Therefore, the similarity of the th and the th component,
, is defined as the th element of matrix , where

(9)

where denotes a projector on a subspace spanned by delayed
copies of the th component, that is, by signals

. Diagonal elements of have no sig-
nificance here and are set to zero. The computation of (9) can
be done efficiently using the FFT and Levinson–Durbin algo-
rithm; see [21]. An example of the similarity matrix is shown
in Fig. 4.

2) Clustering: The task now is to cluster the components
subject to the similarity matrix . This general task can be
solved by various methods. In this paper, attention is restricted
to the agglomerative hierarchical clustering algorithm that ap-
pears to perform well in this application.

The algorithm consists of levels, each giving a partitioning
of components. In the beginning (the first level), each compo-
nent forms a cluster, called singleton, thus, there are clus-
ters. At each subsequent level, the method merges two clusters
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whose similarity is maximal. The number of clusters is thus al-
ways equal to the level. In the last level, all components form
one cluster.

Finally, the most satisfactory level (partitioning) should be
chosen. If the number of sources is known in advance, the level
giving the desired number of clusters is selected. Otherwise, it
is possible to select the level according to a criterion such as

(10)

where is the level index within (i.e.,
the maximum number of estimated sources corresponds to the
number of microphones ), is a set of indices of compo-
nents in the th cluster of the th partitioning level, and is
the number of those indices. The argument of sum in (10) eval-
uates the ratio between the average intra-similarity of compo-
nents of the th cluster to the average inter-similarity of com-
ponents from the other clusters. The criterion thus reflects the
quality of the th partitioning as it averages the argument over
all of its clusters.

Maximization of (10) can be interpreted as a method of es-
timating the number of sources. However, since the results are
not always satisfactory in practice, there is room for further im-
provement. In this paper, we assume, for simplicity, that the
number of active sources is known a priori.

What is left is to define the similarity between clusters, called
the linkage strategy. A modified average linking strategy is to be
used, which is defined as follows. Let and contain indices
of components of two different clusters. The similarity of the
clusters is given by

(11)

where is the number of indices in . The modification
of the average linkage strategy consists in the division by

. It penalizes mutual similarity of “large” clusters
and highlights the similarity of “small” clusters with “large”
ones, which is preferable to this application. Pseudocode 1
summarizes the clustering algorithm.

Pseudocode 1 Hierarchical clustering of components

for to do

end for
if is known then

else
Select from to according to (10)

end if
return

Fig. 5. Components assigned to the three founded clusters.

The clustering algorithm was applied to the components from
Fig. 3. Three clusters shown by Fig. 5(a)–(c) were found; re-
ordered similarity matrix according to the clustering is shown
by Fig. 6. This example demonstrates clearly that each source
may consist of different number of components. In other words,
independent subspaces corresponding to the original sources
may have different dimensions.

It can also be seen that some components often exhibit cer-
tain closeness to more than one cluster. This is because of the
residual interference between components caused by various
practical limitations such as the finite length of separating fil-
ters. The method takes this important phenomenon into account
in the reconstruction step discussed in the following subsection.

E. Step 4: Reconstruction

The goal of the reconstruction step is to obtain the responses
of sources on microphones defined by (3). The response is a
signal observed by the microphone if the source is sounding
solo. Since all sources sound simultaneously, it holds that

(12)

Hence, can be written as a sum of matrices , where
is constructed in the same way as but using responses of

the th source only

(13)
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Fig. 6. Reordered similarity matrix � from Fig. 4 after the hierarchical ag-
glomerative clustering. Three detected clusters can be markedly seen from the
picture.

First, the binary weighting that reflects the results of the clus-
tering of components is introduced by setting the weights intro-
duced in (5) to

otherwise
(14)

where contains indices of components assigned to the th
cluster.

If there is no interference between components, and the clus-
tering proceeds without errors, then obtained by (5) satisfies

, and rows of contain delayed mi-
crophone responses of the th source . Equa-
tion (6) means that the th response is estimated as an average
of rows of with restored delays.

It is worth noting here that the length of filters found by
ICA producing independent components is . The reconstruc-
tion formula (6) can be interpreted as a filtering by another FIR
filter of the length . Therefore, the final separating filter has
the length up to .

F. Computation of Weights

A natural extension of the “hard” weighting given by (14) is to
consider as positive numbers from selected according
to an appropriate rule. The rule introduced in [21] is used, which
is given by

(15)

where is an adjustable positive parameter. The denominator in
(15) reflects the similarity of the th component to components
from different clusters than the th one. If the component clearly
belongs to the th cluster, the denominator is close to zero, and
the value of (15) becomes large.

Fig. 7. Weights of components from Fig. 3 computed according to the rule (15)
with � � �.

If , the reconstruction proceeds practically from a
single component with the maximum value of the fraction in
(15). On the other hand, with close to zero the weighting be-
comes uniform, which means no separation.

An example in Section IV. indicates that a good choice of
is . Fig. 7 shows resulting weights obtained in the

demonstration example for this choice.

G. Oracle Weighting

It is interesting to know what would be the best possible
weights for separation in theory, given the ICA decomposition
of the observation space. In other words, what are the best
possible weights independent of the similarity given by and
the clustering algorithm. Such weights can be derived using
known responses of sources. The authors call it an “oracle
weighting,” and the corresponding algorithm an “oracle algo-
rithm,” following the work of Vincent et al. [8].

The oracle weighting can be derived as the one that mini-
mizes , given the true responses of
sources on the microphones forming the matrix . Here,
denotes the Frobenius norm, and . Using (5), the oracle
weights are defined by

(16)

where . After some computations, it can be
shown that

(17)
and denotes the Hadamard (element-wise) product. The rest
of the oracle algorithm (reconstruction and beamforming) pro-
ceeds normally.

H. Step 5: Beamforming

A beamformer can be applied to the multi-channel estimate
of each source (microphone responses) to yield a mono-channel
estimate of the source. This problem is not addressed here, be-
cause it exceeds the scope of this paper. The beamforming re-
quires an additional definition of a principle that is not given
in the blind scenario considered here. The reader is referred to
[16].

Results obtained in the demonstration example after delay-
and-sum beamforming of estimated microphone responses are
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Fig. 8. Estimates of original sources obtained by the delay-and-sum beam-
former applied to estimated microphone responses.

shown in Fig. 8. The order of estimated signals with respect to
the original ones is arbitrary.

III. GENERALIZED OBSERVATION SPACE

In this section, the previous definition of the observation
space is altered (generalized) in order to enable the applica-
tion of long (IIR) separating filters while keeping the same
dimension of the observation space. This makes the method
computationally affordable even when long separating filters
are considered.

It is worth pointing out that maintaining a reasonable dimen-
sion of the observation space is also desirable from the prob-
abilistic theory point of view. The ICA is a stochastic method
whose accuracy measured in terms of the interference-to-signal
ratio is, in theory, proportional to the number of components ;
see for example [24], [28], and [29].

The original construction of given by (4) means that FIR
filters are applied to the mixed signals, because the outputs of
FIR filters can be seen as linear combinations of time-shifted
versions of the input signals (rows of (4)). The proposed gen-
eralization consists in constructing so that separating filters
have a well-known generalized feed-forward (FF) structure
[30], [31], which also embodies FIR filters as a special case.

The output of a generalized FF filter applied to an input signal
can be written as

(18)

where denotes the convolution, are the filter weights, and
the filters are called eigenmodes of the filter. The definition
of MIMO filters with the generalized FF structure is analogous.

A. Generalized Observation Matrix

For a given set of invertible eigenmodes , the th block of
the observation matrix can be defined as

...
...

...
...

(19)

The whole is then given by

... (20)

If is the all-pass filter that realizes backward time-shift by
samples, the construction in (20) coincides with the one in (4).
Example of perfect separation: Consider the general 2 2

scenario

(21)

(22)

Almost perfect separation can be achieved when taking
and applying special eigenmodes for each matrix and ,
namely,
and , where
assuming that the inversion exists. A trivial verification shows
that combinations of signals and

are, respectively, equal to the
original independent sources and . In other words, and

can be found as independent components in the observation
space.

The example demonstrates the great potential of the general
construction of in theory. For instance, it is indicative of the
possibility to tailor the eigenmodes to room acoustics.

After the ICA decomposition of the method proceeds nor-
mally up to the fourth reconstruction step. Let be the

th element of . Then, , pro-
vides an estimate of . Let be the inverse of
so that . The authors estimate the response of the

th separated source at the th microphone as

(23)

Obviously, (23) is a generalization of (6).

B. Laguerre Filters

A good example of FF filters for this study are Laguerre filters
parametrized by from , which were considered in [31].
They are defined recursively, through their transfer functions

(24)

(25)

(26)



8 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 0, NO. 0, 2010

where

(27)

Note that is either a low-pass filter (for ) or a
high-pass filter (for ), and is an all-pass filter.

The construction discussed here is a generalization of (4),
because for , that is

. This is the only case where separating filters
are FIR of the length . For , the filters are IIR.

The so-called memory depth denoted by is defined as the
minimum length needed to capture 90% of the total energy con-
tained in the impulse response. For the Laguerre filters it ap-
proximately holds that [31]

(28)

From here on, we will name the proposed method T-ABCD
(Time-domain Audio sources Blind separation based on the
Complete Decomposition of the observation space) keeping in
mind that its given variant must be specified at the place where
the acronym is used.

IV. EXPERIMENTS

A. Experiments With Short Recordings of Two Sources

The experiments described in this section were designed to
compare T-ABCD in setups for which the method was special-
ized. Those are mainly situations where only short recordings
are available, and short separating filters are
used (more precisely, the dimension of the observation space is
in the range of tens).

Data used for testing of T-ABCD consist of nine recordings
of two simultaneously talking persons articulating short com-
mands. The length of each recording is 2 s, which gives 16 000
samples at 8 kHz sampling. Different genders are considered
so that there are three recordings of male/male, three of fe-
male/male, and three of female/female speakers.

The recordings were obtained by two closely spaced micro-
phones when playing the speakers’ commands over two loud-
speakers. Microphone responses of each source were obtained
by recording the source when the other sources were silent.2

Three different positions of loudspeakers were considered
that differ in distance and angle between sources; see Fig. 9 and
Table I. Each scenario was situated in an ordinary living room
with the reverberation time of about 300 ms.

Two variants of T-ABCD were tested using the BGSEP and
the EFICA algorithm in the second step, respectively, marked as
T-ABCDb and T-ABCDe. For theoretical reasons performances
of the oracle algorithms (Section II-G) based on these ICA algo-
rithms were also studied. They are denoted as Oracle-b and Or-
acle-e, respectively. Finally, an ultimate performance bound de-
termined by the MMSE estimator [31] is shown, which is com-
puted for the separating filter length .

Two other algorithms were used for comparisons. The first
one is the STFICA algorithm from [18] using two stages of pre-
processing (prewhitening) of the length 300. The observation

2Equipment used for recordings consists of external sound device EDIROL
FA-101 and condenser omnidirectional microphones Audio-technica AT831b.

Fig. 9. Illustration of positions of sources (loudspeakers) and microphones.

TABLE I
TECHNICAL DETAILS OF SCENARIOS

space separated by STFICA is set to have the same dimension
as the proposed method, that is, for two microphones. The
second algorithm is that of Parra from [6] with two lengths of
FFT, respectively, 512 (Parra-1) and 128 (Parra-2); the other
parameters had the default values.

Results of these experiments are evaluated by two standard
measures [32]: Signal-to-interference ratio (SIR) and signal-to-
distortion ratio (SDR). The SIR determines the ratio of ener-
gies of the desired signal and the interference in the separated
signal. SIR is highly influenced by a filtering of the measured
signal, which might be misleading, especially, in audio separa-
tion. It is also influenced by the input SIR, which is the SIR mea-
sured before the separation. In our experiments, the input SIR
was always about 0 dB, which means that both sources were ap-
proximately equally loud. The SDR provides a supplementary
criterion of SIR that reflects the difference between the desired
and the estimated signal in the mean-square sense. SDR is, by
contrast, highly sensitive to the filtering, which may yield a rigid
evaluation of methods applying long separating filter. It is there-
fore advisable to consider both criteria.

Hereinafter, all results are evaluated in terms of averaged SIR
improvement and SDR over all separated sources and over all
their estimated microphone responses. The results are also av-
eraged over the nine recorded combinations of signals to reduce
the effect of statistical properties of the recorded signals.

1) Performance Versus : Here, the separation is done for
different lengths of separating filter , and the other parameters
are fixed. Namely, only 8000 samples of data (the first second)
are used for the computation. T-ABCD utilizes the basic con-
struction of the observation space corresponding to .

Fig. 10 shows results of separation obtained by processing
signals from scenario 1. SDR of T-ABCD improves with
growing , similar to the SDR of the MMSE estimator. SIR
does not improve with growing , but is good for all . This
is explained by the fact that for small , few components are
used to reconstruct sources, and SIR remains good, but SDR
is poorer, because the reconstructed sources have different
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Fig. 10. SIR and SDR as functions of the length of separating filter �. The
results were obtained by using data from scenario 1.

Fig. 11. SIR and SDR as functions of the length of data used for the computa-
tion of separating filter. Results corresponds to data from scenario 2.

coloration than the original responses. In this respect, the
behavior of oracle algorithms is different as they primarily
optimize SDR. The gap between the SIR/SDR of the oracle
algorithms and T-ABCD indicates that there might still be a
room for improvements of the performance through clustering
and weighting.

Separated signals obtained by the other algorithms, STFICA,
Parra-1, and Parra-2 are perceptually not bad, but not as good as
those of the proposed method. It does not improve with growing

neither in terms of SIR nor in terms of SDR. STFICA failed
to converge for .

2) Performance Versus Length of Data: A similar experiment
to the previous one was repeated for a fixed and varying
the length of data used for computations of separating filter in
scenario 2. This scenario is more difficult for the separation be-
cause of the higher distance of sources and lower ratio between
the energy of the direct-path source signals and the energy of
their reflections. The results are shown in Fig. 11.

Fig. 12. Performance of T-ABCD as a function of�. In this example, STFICA,
Parra-1, and Parra-2 performed, respectively, with 4.6, 4.4, and, 6 dB of SIR
improvement and 1, 1.8, and 2.2 dB of SDR.

Fig. 13. SIR and SDR as functions of the parameter � of Laguerre filters. Re-
sults corresponds to data from scenario 3. Note that for � � � the Laguerre
filters are FIR, and the generalized T-ABCD coincides with the original one de-
scribed in Section II.

It is noted that for a fixed filter length, there is a certain length
of the data beyond which performance of the algorithms does
not improve at all. In this experiment, the length was about
0.8–1 s. T-ABCD performs better than the other algorithms and
demonstrates its superior capability to work with short data.

3) Performance Versus : The parameter was introduced
in (15), and provides some trade-off between SIR and SDR.
This is demonstrated by separating signals from scenario 2 by
T-ABCD with , 8000 samples of data for computations,
and various . Results are shown in Fig. 12.

It is noted that SIR is an increasing function of , whereas
SDR achieves its maximum at a certain value in the vicinity of

. This points to the need of using SIR and SDR simulta-
neously to evaluate the separation fairly.

4) Performance of T-ABCD Using Laguerre Filters Versus :
The signals recorded in scenario 3 were separated with
using the first second of data. The parameter was gradually
decreased from 1.9 to 0.1, which corresponds to changing the
separating filter memory defined by (28) from 15 to 293
samples; see Fig. 13.
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Fig. 14. Performance of separation methods applied to Sawada’s data with 2–4
sources and microphones.

The results indicate a minor (about 0.7 dB) improvement of
performance of T-ABCD at the optimum value com-
pared to . A higher potential improvement in perfor-
mance is indicated by increased SIR improvement of the MMSE
bound and of the oracle algorithms (about 2 dB). Again, it in-
dicates a room for improvement through a different clustering
and weighting.

B. Experiments With Hiroshi Sawada’s Recordings

In this subsection, the above methods were tested by sepa-
rating data available on the Internet.3 These data were recorded
in a room with the reverberation time 130 ms. A linear micro-
phone array with the distance of 4 cm between microphones was
used to record 2–4 simultaneous speeches coming from different
directions from the distance of 1.2 m at the sampling rate 8 kHz.
The length of the recordings is 7 s.

The data were processed by T-ABCD with Laguerre filters
with and . Therefore, the dimension of the
observation space was equal to 30 m, where is the number
of microphones (2–4). The algorithm used 8000 samples (1 s)
to perform the separation, beginning at 4.6 s of the recordings.
For the Parra’s algorithm, the whole (7 s long) recordings were
used, the length of the FFT was 1024 and the time-domain filter
had 400 taps (the same setting as in [18]). The STFICA algo-
rithm had the preprocessing length of 50 taps, and the separating
system had taps. (The algorithm did not converge with
a larger and longer preprocessing.)

Results of the comparison are summarized in Fig. 14. It con-
tains performance of the Sawada’s algorithm [7], which works
in the frequency domain, here, using the FFT length 2048 with
the overlap of 512 samples.

It can be seen that T-ABCD outperforms STFICA and the
Parra’s algorithm, but is worse than that of Sawada’s algorithm,
whose results were taken from the website. The latter algorithms
take the advantage of utilizing the whole data for the separation.

3[Online]. Available: http://www.kecl.ntt.co.jp/icl/signal/sawada/demo/
bss2to4/index.html

In the case of four sources, performance of the proposed algo-
rithm and the Sawada’s algorithm are almost equal in the terms
of SDR.

The SIR and the SDR of the Sawada’s algorithm can be higher
than these quantities for the MMSE, because the MMSE is com-
puted for the filter length equal to 30 m, while the Sawada’s al-
gorithm applies filters of the length 2048 taps.

V. CONCLUSION

The novel time-domain algorithm has been proposed for blind
separation of audio sources that is based on the complete uncon-
strained ICA decomposition of the observation space. The al-
gorithm, named T-ABCD, is suitable for situations where only
short data records are available. In this respect, it outperforms
other known time-domain BSS algorithms.

T-ABCD consists of five steps, each one providing a room
for other variants and improvements. In particular, the selection
of eigenmodes may lead to a more effective definition of the
observation space. The comparison with the oracle algorithm
showed that the measure of the similarity of components, their
clustering, and weighting might be still significantly improved.

Finally, as T-ABCD works with short data segments, it has
great potential to be modified for online or batch processing
needed in situations with moving sources.
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