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Chapter 1

Introduction

This report presents an experimental comparison of some of the newest
and/or most common algorithms that are used for solving the sparse re-
covery problem. In particular, the noiseless case is studied. No theoretical
explanation of the problem’s background will be provided here, since this has
been already covered in many papers (for example [3] or, in Czech language,
[8]) - the emphasis will be on the experimental results and the conditions
having influence upon them.

The Compressed Sensing (CS) domain become to evolve rapidly since about
2005. This expansion is mostly associated with the names of Emmanuel
Candès, Justin Romberg and Terence Tao ([10],[2],[9]). However, the theo-
retical background for the sparse recovery problems is over a decade older,
mostly linked to the work of D.L. Donoho ([4],[5]), and originally concerned
rather the field of statistics than that of signal processing.

Note: Throughout this report, the number of non-zero coefficients of a signal/vector

is called sparsity or degree of sparsity, even though it is linguistically a nonsense

(a 1-sparse signal is, by common sense, much sparser than a 15-sparse one!).
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Chapter 2

Algorithms’ Implementation

There are packages dedicated to the spare signal recovery available on the
Internet, such as the SparseLab [1] package, developed by David Donoho
and team. The following items from this package were tested: the greedy
algorithms Matching Pursuit (MP), Orthogonal Matching Pursuit (OMP)
and the standard convex relaxation algorithm called Basis Pursuit (BP).

Reweighted l1 - optimisation (RL1)

The reweighted l1 -optimisation algorithm was based on the paper by Candès
et al.[11]. The weighted minimisation problem can be formulated as follows:

x(k) = arg min‖W (k)x‖l1 , subject to y = Ax, (2.1)

where W (k) is a diagonal matrix with the weighting coefficients on the diago-
nal and zeros elsewhere (W

(k)
i,j = w

(k)
i if j = i, 0 otherwise). At each step (k),

the new approximation is calculated via a linear programming solver (such
as, here, the SparseLab SolveBP function). An equivalent formulation of the
problem (2.1), more suitable for the solver, is:

z(k) = arg min‖z‖l1 , subject to y = A(W (k))−1z, (2.2)

which leads to the x(k) signal estimate via x = W−1z. Candès [11] proposed

the following weights: w
(k)
i are initialised at 1, ∀i before the first iteration

and then updated at each time as:

w
(k+1)
i =

1

|x(k)i |+ ε
, (2.3)

where ε is a user-defined parameter. Here, it was chosen constant (indepen-
dent of k).
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The stopping condition for the algorithm (as well as for RL2) was chosen as
follows. After each iteration, the last and the previous obtained approxima-
tion of x were compared - if the ‖ · ‖l∞ norm of their difference was smaller
than a user-defined lower-bound (here, 10−4), the algorithm was stopped.

Reweighted l2 - optimisation (RL2)

The RL2 algorithm is based on the FOCUSS algorithm invented by
Gorodnitsky and Rao [6]. An analytical solution exists for the (k+1)th iter-
ation of a reweighted l2 minimization :

x(k+1) = arg min‖W (k)x‖l2 , subject to y = Ax, (2.4)

x(k+1) = W̃ (k)AT (λI + AW̃ (k)AT )−1y, (2.5)

where W (k) is a diagonal weighting matrix with the ith diagonal element
w

(k)
i , W̃ (k) a diagonal weighting matrix with the ith element 1/w

(k)
i and w

(k)
i

a weighting function depending on the previous iteration. (Since the noiseless
case was treated in this report, λ was set to zero.) The weights were chosen
as suggested by Wipf [12]:

w
(k+1)
i = [(x

(k+1)
i )2 + ε|x(k+1)

i |]−1. (2.6)

The stopping condition used was the same as for the RL1 algorithm.

A*OMP

Recently, a new extension of the OMP algorithm was proposed by Kara-
hanoğlu and Erdoğan [7], combining the OMP with a tree-search technique.
The algorithm was tested using the code given by the authors1. Default
(author-suggested) parameters were used, more precisely:

I = 3; (number of initial paths in the search stack, integer, I ≥1)

B = 2; (number of branches added to the search stack at each iteration)

P = 200; (maximum number of paths in the search stack)

α = 0.75; (parameter for multiplicative auxiliary function, 0 < α ≤ 1)

AuxMode = ’Mul’ (we were using the multiplicative cost function) .

1The corresponding Matlab code has been made available at Karahanoğlu’s personal
website, http://myweb.sabanciuniv.edu/karahanoglu/.
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Chapter 3

Experimental Results

3.1 First Experiment: A ∈ R50×250

Experimental Set-up

The coding (dictionary) matrix A ∈ R50×250 was randomly generated with
normally distributed elements (with mean equal to 0 and variance to 1), then
its columns were normalised to 1 in the l2 norm.

The input signal x ∈ R250 was also generated randomly, but with a user-
chosen number of non-zero elements. For each algorithm, two cases were
studied:

a) The case where non-zero coefficients of x have unit amplitudes (1 or -1
with equal probabilities), with the degree of sparsity k going from 1 to
20, or

b) the case of non-zero coefficients of x being normally distributed (with
zero mean and variance 1), the sparsity going from 1 to 25.

Each test was performed 1000 times (for each algorithm, degree of sparsity
and non-zero element distribution). To evaluate and to compare the algo-
rithms’ performance, we compared the following two sets:

• I = { i, |xi| > ε } and

• J = { i, |x̂i| > ε },

where x is the original sparse vector, x̂ its reconstruction and ε a user-defined
’zero-threshold’ - a value below which a number is considered negligible.
Here, we used ε = 0.01.
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If the two sets were identical, the recovery attempt was classified as successful
(the number of successful attempts divided by the number of all attempts
giving the exact recovery rate). Moreover, two other criteria were observed:
err, the number of ’lost’ non-zero coefficients (its coordinates appear in I,
but not in J) and ext, the number of ’false positives’ - positions appearing in
J, but not in I. Formally, err = I \ J and ext = J \ I.

Experimental Results

3.1.1 Case of Unit Amplitudes

Figure 3.1: Exact reconstruction rate versus sparsity, non-zero elements have unit ampli-
tudes.
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Figure 3.2: Average number of lost non-zero coefficients versus sparsity, non-zero elements
have unit amplitudes.
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Figure 3.3: Average number of false non-zero coefficients versus sparsity, non-zero ele-
ments have unit amplitudes.
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3.1.2 Case of Normally Distributed Elements

Figure 3.4: Exact reconstruction rate versus sparsity, non-zero elements are normally
distributed.
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Figure 3.5: Average number of lost non-zero coefficients versus sparsity, non-zero elements
are normally distributed.
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Figure 3.6: Average number of false non-zero coefficients versus sparsity, non-zero ele-
ments are normally distributed.

Mean square error in the case of Gaussian elements.

For normally distributed non-zero elements the exact reconstruction crite-
rion, as introduced above, might be misleading. Indeed, the distinction be-
tween ’small’ and ’big’ elements is much less obvious than in case of unit
amplitudes. There was a concern about the possibility of wrong conclusions
due to this. Let us consider the following situation: In the original sparse
vector, a coefficient was equal to 0.011. The reconstruction finds 0.009 in-
stead, thus falling below the ε = 0.01 threshold. Consequently, the coefficient
is considered lost and the reconstruction unsuccessful, even though the final
error between the original and the reconstructed signal might be acceptable.
Therefore, the mean square error of the reconstructed signal was added as a
new criterion:

MSE = ‖x− x̂‖l2 . (3.1)

This was evaluated for all the algorithms in the survey (BP, MP, OMP,
RL1, RL2, A*OMP), with the sparsity k going from 1 to 25. To save some
computation time, only odd degrees of k were taken into account. Also, even
though for the first five algorithms the measure was averaged over 1000 trials,
only 500 were carried out in the case of A*OMP.
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Figure 3.7: Mean square reconstruction error versus sparsity, non-zero elements are nor-
mally distributed.

The comparison between the figures (3.7) and (3.5) shows an analogical be-
haviour of the algorithms in these two cases. That implies that every lost
coefficient induces about the same l2 error in the approximation, no matter
which sparsity degree or which algorithm is being treated.

3.1.3 Computation Time Study

Experimental Set-up

As in the previous section, the coding matrix A has the size 50×250 and the
input signals x ∈ R250 are generated randomly with varying sparsity. Since
some of the algorithms were time-consuming (especially A*OMP for large
values of k, but also RL1, BP and, to a lesser extent, RL2), only 50 trials were
carried out for each sparsity, algorithm and non-zero element distribution.
The experiment took place on an Intel Core2 Duo 32-bit CPU running at 2.1
GHz with 1.9 gigabytes of RAM. The CPU time consumption was measured
using internal Matlab functions and averaged over the 50 trials.
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Experimental Results

Figure 3.8: CPU consumption versus sparsity, non-zero coefficients have unit amplitudes
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Figure 3.9: CPU consumption versus sparsity, non-zero coefficients are normally dis-
tributed
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3.2 Big Data Experiment: A ∈ R500×2500

Experimental Set-up

As in the previous case, the coding matrix A was generated pseudo-randomly
with normally distributed elements and its columns were normalised to 1
in the l2 norm. This time, the dimensions of the problem were ten times
greater: A ∈ R500×2500. The vectors x ∈ R2500 were generated with Gaussian-
distributed non-zero elements (zero mean, variance 1) in the first time and
with unit amplitudes in the second time. The degree of sparsity was varying
from 5 to 200 with a step of 5.

Since the problem’s dimension lead to a serious concern about the computa-
tion time, the maximum number of trials to run at each value of k was set to
100 instead of 1000. Moreover, at each degree of sparsity k, the experiment
was not allowed to take more than 200 seconds of CPU time (at the end
of each reconstruction, the loop would stop if the time consumed since its
beginning had become superior to 200 seconds). This lead sometimes to a
number of reconstructions as low as 5 (RL2) or even 3 (A*OMP). But for
the purpose of overall comparison of the algorithms in question, even such a
small number of trials was enough to provide some interesting results.

The algorithms used were the same as in the previous case, with two excep-
tions:

• The BP and RL1 algorithms were omitted, since they are generally
more time-consuming than all the others.

• The A*OMP algorithm’s parameters were changed, so that the algo-
rithm becomes faster: The number of initial paths I was set to 2 (in-
stead of 3) and the maximum number of paths on the stack P was
limited to 10 (instead of 200).

The values observed were the exact reconstruction rate and the mean square
error of the reconstruction x̂ obtained (MSE = ‖x − x̂‖l2 , averaged over
the number of trials having run). To obtain information on the algorithms’
speed, the number of trials having taken place within the time given and the
average duration of each reconstruction were also measured. However, those
two quantities are presented in another form (table of values rather than a
plot).

15



Experimental Results

3.2.1 Gaussian Non-Zero Elements

Figure 3.10: Exact reconstruction rate versus sparsity
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Figure 3.11: Mean square error of the reconstruction versus sparsity

Table 3.1: Number of trials carried out within the time limit (max 200 seconds or 100
reconstructions)

k 5 25 50 75 100 125 150 175 200
MP 100 100 100 58 26 23 20 18 19

OMP 100 100 100 100 100 100 100 58 35
A*OMP 100 37 14 9 6 5 4 3 3

RL2 18 13 9 6 5 5 5 5 5

Table 3.2: Average CPU time consumed by a single reconstruction (in seconds)

k 5 50 100 150 200
MP 0.064 1.283 7.738 10.039 10.695

OMP 0.028 0.275 0.574 1.176 5.800
A*OMP 0.080 14.844 34.658 60.410 94.550

RL2 11.1917 23.737 40.944 41.952 42.220
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3.2.2 Unit Amplitude Non-Zero Coefficients

Figure 3.12: Exact reconstruction rate versus sparsity
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Figure 3.13: Mean square error of the reconstruction versus sparsity

Table 3.3: Number of trials carried out within the time limit (max 200 seconds or 100
reconstructions)

k 5 25 50 75 100 125 150 175 200
MP 100 100 100 24 21 20 19 20 20

OMP 100 100 100 100 50 34 33 33 33
A*OMP 100 27 12 8 6 4 4 3 3

RL2 20 20 17 13 8 5 5 5 5

Table 3.4: Average CPU time consumed by a single reconstruction (in seconds)

k 5 50 100 150 200
MP 0.0823 1.5549 9.6248 10.6279 10.2085

OMP 0.0245 0.2516 4.0062 6.0670 6.1167
A*OMP 0.8759 17.7358 39.5517 62.6750 88.5600

RL2 10.1315 12.4100 29.8600 42.8060 43.7520
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Chapter 4

Discussion

4.1 Individual Algorithm Survey

Matching Pursuit As mentioned in [13], the original Matching Pursuit
algorithm is nowadays overcome. Indeed, its accuracy ranks regularly the
last (see figures 3.1 and 3.4), while not even being the fastest (fig. 3.8, 3.9).
The importance of this algorithm is rather historical, as the very popular
OMP algorithm derives directly from it.

Orthogonal Matching Pursuit The OMP algorithm is clearly the fastest
among the algorithms studied here (fig. 3.8, 3.9), and that even for large
data (tables 3.1, 3.2). We could have said ’by far the fastest’ if there was
not for the MP algorithm; however, the latter suffers from great inaccuracy.
In terms of exact reconstruction rate, OMP preforms quite well, while be-
ing heavily influenced by the distribution of non-zero coefficients. Its perfor-
mance is very good in the case of Gaussian amplitudes (fig.3.4) and mediocre
- however not far behind the others - in the case of unit amplitudes (fig. 3.1).
The algorithm’s major drawback is a relatively high number of coefficients
lost in case of failure (fig. 3.2, 3.5), hence quite a high mean square recon-
struction error in some cases - and that even when the exact reconstruction
rate is being a success (fig. 3.7, 3.13).

Basis Pursuit Among the algorithms compared in this report, BP seems
to be average in every way, with the exception of the number of errors made
in case of failure, which is outstandingly small. It is a popular algorithm
for comparison studies - its performance, both in terms of reconstruction
exactitude and computing time, may often be considered a boundary between
success and failure.

20



Reweighted l1 Optimisation The time consumption of RL1 depends lit-
tle on the sparsity degree. Its exact reconstruction rate is about the same
regardless of distribution of non-zero coefficients, which makes it the best
performing algorithm in case of unit amplitudes. However, the algorithm is
several times slower than BP (fig. 3.8, 3.9), as it consists of repetitive calls
of the latter.

Reweighted l2 Optimisation The RL2 algorithm is faster than RL1 (and
BP), while conserving its property of time-consumption stability as the de-
gree of sparsity varies. Its performance is yet quite ambiguous - above average
(with the exception of the number of false non-zero coefficients) in case of unit
amplitudes, but rather poor with the Gaussian coefficients. When used for
reconstructing large vectors, it becomes very slow (see table 3.2, 3.4). Still,
in the case of non-zero coefficients having unit amplitudes, this algorithm
outperforms all the greedy or semi-greedy competition (fig. 3.12, 3.13).

A* Orthogonal Matching Pursuit The most recent (and most complex)
A*OMP algorithm presents by far the best accuracy when the non-zero ele-
ments are normally distributed and stays among the best performing in the
case of unit amplitudes. This will make it an excellent choice at each time
where the focus is mostly on the reconstruction accuracy. However, due to
its path-finding nature[7], the algorithm becomes extremely slow for higher
degrees of sparsity (the evolution being almost exponential between k = 10
and k = 20 and with the Gaussian amplitudes, see fig. 3.9). For the purpose
of reconstructing vectors of higher sparsity degrees, a parameters’ change
can help with accelerating the algorithm, but 1) this acceleration is still very
limited and doesn’t counter the rapid evolution of time consumption with
the growing sparsity degree (see table 3.2) and 2) this leads necessarily to
a loss of precision. Finally, the accelerated A*OMP does even have an ex-
act reconstruction rate inferior to that of the ’standard’ OMP (fig. 3.10),
but outperforms the latter in terms of mean square reconstruction error (fig.
3.11). In the longer vector cases, it also seems that the accelerated A*OMP
algorithm is more heavily influenced by the non-zero element distribution as
its performance is much weaker than that of both RL2 and OMP (fig. 3.12).

4.2 Overall Comparison

Generally, we can say that the best-performing algorithm among those stud-
ied above is the most recent and most complicated one, A*OMP. However,
it does have a major drawback - the computing time growing exponentially
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with the sparsity degree. Thus, in some cases, the use of other algorithms
(such as the ’basic’ OMP for longer vectors or RL2 for shorter ones with
higher sparsity degrees) could be preferred instead. Moreover, attempts to
accelerate the A*OMP algorithm lead to a loss of performance, which can
make the algorithm lose its superiority regarding exact reconstruction rate.
On the other hand, even in the accelerated version, the algorithm produces
remarkably low reconstruction errors.

The RL1, RL2 and BP algorithms merit from the greatest CPU-consumption
stability regarding the sparsity degree. This can possibly act in favour of RL2
in domains where the application demands an upper-bound on the compu-
tation time, without the possibility to predict the sparsity of the signals
treated. On the other hand, those algorithms are not suitable for recon-
structing greater-dimension problems, where the difference in speed between
them and the greedy (or semi-greedy) algorithms becomes way too impor-
tant.

The nature of the non-zero element distribution does have an influence upon
the algorithms’ performance. Generally, the normal distribution of non-zero
algorithms suits well the (semi-)greedy OMP and A*OMP algorithms, while
the Bernoulli distribution with unit amplitudes can be a problem for them.
For the RL2 algorithm, the situation is exactly the opposite. This can imply
that (semi-)greedy algorithms are better adapted for reconstructing ’natural-
looking’ vectors, while convex relaxation algorithms are promising for the
reconstruction of ’logical-like’ vectors.

Finally, we can say that for lower problem dimensions, the A*OMP algorithm
stays beyond any competition in case of Gaussian (or ’natural-looking’) am-
plitudes, but RL2 could be the best choice when reconstructing ’logical-like’
vectors. Still, the OMP algorithm may, in many cases, provide the best over-
all performance by being not much weaker than A*OMP but much, much
faster. Yet finding the minimum of the imaginary ’performance-by-speed ’
product depends on the nature of an individual problem or application.
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Petr Tichavský, Institute of Information Theory and Automation - Academy
of Sciences of the Czech Republic, Pod Vodárenskou věž́ı 4, 182 08 Praha 8,
Czech Republic

e-mail: tichavsk@utia.cas.cz

24


	report2306
	research report

