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FAST AND ACCURATE METHODS OF INDEPENDENT
COMPONENT ANALYSIS: A SURVEY

Petr Tichavský and Zbyněk Koldovský

This paper presents a survey of recent successful algorithms for blind separation of
determined instantaneous linear mixtures of independent sources such as natural speech
or biomedical signals. These algorithms rely either on non-Gaussianity, nonstationarity,
spectral diversity, or on a combination of them. Performance of the algorithms will be
demonstrated on separation of a linear instantaneous mixture of audio signals (music,
speech) and on artifact removal in electroencephalogram (EEG).
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1. INTRODUCTION

Independent Component Analysis (ICA) and Blind Source Separation (BSS) repre-
sent a wide class of statistical models and algorithms that have one goal in common:
to retrieve unknown statistically independent signals from their mixtures. In this
paper, the classical real-valued square (invertible) instantaneous linear ICA model
X = AS is addressed, where S,X ∈ Rd×N contain d unknown independent source
signals and their observed mixtures (respectively), each of length N , and A ∈ Rd×d

is an unknown mixing matrix.
The goal is to estimate the mixing matrix A or, equivalently, the de-mixing ma-

trix W
4
= A−1 or, equivalently, the original source signals S. Solution of this kind

of problem is important, for example, in audio signal processing and in biomedi-
cal signal processing. The estimation problem is called “blind” if there is no prior
information about the mixing system, represented by A. Note that it is also pos-
sible to study the problem when the number of the original signals is greater than
the number of the mixtures and vice versa. While the latter problem can be eas-
ily transformed to the square mixture using a dimensionality reduction through a
principal component analysis, the former problem, called underdetermined, is more
challenging. It exceeds the scope of this paper, however [10].

The nature of the original signals, represented by the rows of S, is often hard
to characterise. For example, if these signals are speech signals, it is possible to



Fast and accurate methods of independent component analysis: A survey 427

model them in several ways; consequently, the signals may be separated by different
methods depending on the selected statistical model.

There are three basic ICA approaches coming from different models of signals [25].
The first one assumes that a signal is a sequence of identically and independently
distributed random variables. The condition of separability of such signals requires
that only one signal is Gaussian at most, so the approach is said to be based on
the non-Gaussianity . The second approach takes the nonstationarity of signals into
account by modelling them as independently distributed Gaussian variables whose
variance is changing in time. The third basic model considers weakly stationary
Gaussian processes. These signals are separable if their spectra are distinct; there-
fore, the separation is based on the spectral diversity. All three features are present
in speech signals, as is shown in Figure 1: Diagram (a) shows a speech signal in time
domain, and diagrams (b), (c), (d) demonstrate its non-Gaussianity, nonstationarity
and a non-uniform power spectrum. The normal probability plot in diagram (b) is
defined as ordered response values versus normal order statistic medians [5]. If the
points on this plot have formed a nearly linear pattern, then the normal distribution
would be a good model for this data set. This is, however, not true in this case,
because deviations of the points from a straight line are apparent.
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Fig. 1. (a) An 8 s long recording of a speech signal, sampled at 16 kHz. (b) Normal

probability plot of the signal. (c) Variances of the signal in partitioning to 80 blocks of

equal length. (d) Power spectrum density of the signal [dB/kHz].

The assumption common to all models in the ICA is the statistical independence
of the original signals. Note that the observed signals, mixed through the matrix A,
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are not mutually independent, in general. The solution of the ICA, whatever the
model of S is, consists in finding a matrix W such that the signals (rows of) WX are
mutually statistically independent. This is fulfilled whenever W = ΛPA−1 where Λ
is a diagonal matrix with nonzero diagonal elements and P is a permutation matrix.
Hence, the ICA solution is ambiguous in the sense that the order, signs and scales
of the original signals cannot be retrieved.

One possible extension of the ICA is the so-called Independent Subspace Analysis
(ISA). ISA can be applied in situations where not all original signals can be separated
from each other by a linear transformation. The goal here is to decompose the
linear space spanned by rows of X to a direct (orthogonal) sum of linear subspaces
such that elements of each subspace are statistically independent of the others.
The ISA problem can be approached by applying an ICA algorithm, which aims
at separating each component from the others as much as possible. This step is
followed by clustering of the obtained components according to their residual mutual
dependence [14].

This paper provides a survey of several successful state-of-the-art methods that
rely on the three principles mentioned above. The focus is on the methods whose per-
formance approaches (or may approach) the best possible one given by the Cramér–
Rao Lower Lound (CRLB) of the respective model. The following section presents
three methods – EFICA, BGSEP and WASOBI – based on the basic models men-
tioned above. Section 3 describes MULTICOMBI, Block EFICA and BARBI as-
suming hybrid models, that is, models combining two of the three basic approaches.
In both sections, each model is introduced with its necessary notation , and a survey
of related methods and corresponding papers is given. Section 4 presents several ex-
periments to compare the performance of the methods when working with different
kinds of real-world signals. Section 5 concludes the paper.

2. BASIC ICA MODELS

2.1. Non-Gaussianity

The non-Gaussianity-based model assumes that each original signal is a sequence of
i.i.d. random variables. This means that each sample of the ith original signal si(n)
has the probability density function (PDF) fsi . Since the signals are assumed to
be independent, the joint density of s1(n), . . . , sd(n) is equal to the product of the
corresponding marginals, fs1,...,sd

=
∏d

i=1 fsi . Some ICA algorithms estimate the
separating transformation by maximising the Kullback-Leibler divergence between
the joint distribution of the separated signals and the product of the marginals. This
is equal, by definition, to the mutual information (some authors call it redundancy
or multiinformation) of the separated signals. This is equivalent to maximising ne-
gentropies of the separated signals, where the negentropy of a random variable is
the Kullback-Leibler divergence between the variable and a Gaussian-distributed
variable that has the same mean and variance. It can be shown that both of these
approaches are equivalent to the maximum likelihood estimate which, however, re-
quires simultaneous estimation of the PDFs of the separated signals[17]. The PDFs
appear in the estimation in terms of so-called score functions – derivatives of log-
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arithm of the PDF. These score functions can be estimated as non-parametric, see
NPICA [2] or RADICAL [16]. Although these separation methods are usually accu-
rate, they are computationally complex and cannot be used to separate more than
few signals (less than 10), in practice.

Some other separation methods use a parametric modelling of the score functions
of the separated signals. For instance, Pham et al. proposed mean square fitting
of the score functions by linear combinations of given nonlinear functions in [18], to
derive a blind separating algorithm.

A reasonably accurate and fast ICA algorithm can be obtained by minimising
a contrast function, which can be quite an arbitrary nonlinear and non-quadratic
statistic of the data, such as kurtosis. An example is the popular algorithm Fas-
tICA [9].

The finding of the kth row of W in FastICA proceeds by optimising the contrast
function

c(wk) = Ê[G(wT
k Z)], (1)

where Ê stands for the sample mean estimator, T denotes the matrix/vector trans-
position, and Z is equal to the transformed matrix X, such that rows of Z are un-
correlated, Z = (XXT /N)−1/2X. G is a properly chosen nonlinear function whose
derivative will be denoted by g. It can be shown that, ideally, g should be the score
function of the separated signal, wT

k Z [3]. The original FastICA [9] utilises a fixed
choice of G, e. g., such that g(x) = x3 or g(x) = tanh(x). The estimation of the
whole W proceeds by finding all local extrema of c(wk) on the unit sphere. The
deflation approach estimates W row by row so that each row must be orthogonal to
the previous ones. Another approach, called Symmetric FastICA, orthogonalises all
rows of W after each iteration jointly, by means of the so-called symmetric orthog-
onalisation. Statistical properties of FastICA were analysed in [22].

The analysis of FastICA gave rise to a new algorithm, EFICA [12]. It is more
sophisticated and its performance nearly achieves the corresponding Cramér–Rao
bound, if the separated signals have a generalised Gaussian distribution.1 Unlike
FastICA and other algorithms, the outcome of EFICA does not produce strictly
uncorrelated components; it was observed by several authors that the requirement
that sample correlations of the separated signals must be zero may compromise the
separation performance of algorithms [3].

EFICA is initialised by the outcome of Symmetric FastICA. Then, a special tech-
nique called a test of saddle points is applied to make sure that the global minimum
of the contrast function has been found. The partly separated signals are used to
form an adaptive contrast function, used in a fine tuning of the estimate of W.
EFICA does not differ much from FastICA in terms of computational complexity,
so it retains its popular high speed property. Some further improvements of EFICA
in terms of speed and accuracy were proposed in [24].

1PDF of the generalised Gaussian distribution is proportional to exp(−|x|α/β), where α is
a shape parameter and β controls the variance. The distribution includes a standard normal
distribution for α = 2, a Laplacean distribution for α = 1 and a uniform distribution as a limit for
α →∞.
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2.2. Nonstationarity

Let the original signals and the mixture be partitioned into M blocks of the same
length N1 = N/M , where N1 is an integer,

S = [S(1), . . . ,S(M)] (2)
X = [X(1), . . . ,X(M)] . (3)

Assume that each signal in each block S(`) is Gaussian i.i.d., with zero mean and
a variance Dk`, where k = 1, . . . , d is the index of the signal and ` = 1, . . . ,M is
the index of the block. The signals are parameterised by a matrix D with elements
Dk`, which is unknown. The received mixture is parameterised by two unknown
matrices, A and D.

The received data are by assumption, Gaussian distributed. The sufficient statis-
tics for estimating A and D is the set of sample covariance matrices

R̂m =
1

N1
X(m)(X(m))T , m = 1, . . . ,M.

Theoretical covariance matrices obey the relation

Rm = ADmAT

where Dm is a diagonal matrix containing the mth column of D on its diagonal, and
Dm = E[S(m)(S(m))T ]/N1, m = 1, . . . ,M .

We note that W = A−1 can be found as a matrix that provides an approximate
joint diagonalisation of the matrices {R̂k}, i. e., it has the property that all matrices
{WR̂kWT } are approximately diagonal [21].

The approximate joint diagonalisation of a set of matrices can be performed
in several ways, optimising several possible criteria, see, e. g., [26] for a survey of
methods. In our case, it can be shown that the maximum likelihood (ML) estimator
of the mixing/demixing matrices is achieved by minimising the criterion

CLL(W) =
M∑

m=1

log
det ddiag(WR̂mWT )

det(WR̂mWT )
(4)

where the operator “ddiag” applied to a square matrix M nullifies the off-diagonal
elements of the matrix. This criterion is meaningful only for positive definite target-
matrices {R̂m}. An algorithm to minimise the criterion was proposed in [19].

In [26], a different method of joint diagonalisation of the matrices was proposed,
which is asymptotically equivalent to the Pham’s estimator, but is more appealing
computationally. It bears the name BGWEDGE (Block Gaussian Weighted Ex-
haustive Diagonalisation with Gauss itErations), and the corresponding separation
algorithm is called BGSEP (Block Gaussian separation). Although theoretical com-
putational complexity of Pham’s algorithm and BGWEDGE is the same, O(d2M)
operations per iteration, the latter algorithm is easier to parallelise. In matlab imple-
mentation, BGWEDGE is realised with fewer embedded “for” cycles and therefore
it is faster in higher dimensions. Details of the BGWEDGE algorithm are rather
technical and are omitted here to save some space.
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2.3. Spectral Diversity

The third signal model assumes that the original signals may be stationary, but are
distinguishable in the frequency domain. In particular, one may assume that the
original signals are modelled as Gaussian autoregressive with a known order.

A sufficient statistic for joint estimation of the mixing/demixing matrix and au-
toregressive parameters of the separated sources is the set of the time-lagged esti-
mated correlation matrices,

R̂x[τ ] =
1

N − τ

N−τ∑
n=1

x[n]xT [n + τ ] τ = 0, . . . ,M − 1, (5)

where x[n] denotes the nth column of X and M is the order of the AR model.
Like in the previous subsection, the demixing matrix W can be interpreted as a

matrix that jointly diagonalises the matrices R̂x[τ ], τ = 0, . . . ,M − 1.
The first algorithm to realise the AJD was based on Jacobi rotations and is known

under the acronym SOBI (Second Order Blind Identification)[1]. It has become quite
popular in biomedical applications. SOBI, however, is not statistically efficient if the
original signals obey the assumed AR model. Statistically efficient estimators of the
mixing/demixing were independently proposed by Pham [20], Dégerine and Zäıdi [7],
and Tichavský and Yeredor [26]. The latter algorithm is called WASOBI (weight
adjusted SOBI). The weights in WASOBI are derived from AR modelling of partially
separated signals. Unlike the other algorithms, WASOBI was shown to allow an
approximately efficient separation even in high (100+) dimensional datasets.

3. HYBRID ICA MODELS

3.1. Block EFICA

Block EFICA is an ICA/BSS algorithm that relies both on non-Gaussianity and
nonstationarity. Like the BGSEP algorithm, block EFICA assumes that the sep-
arated signal can be partitioned into a set of non-overlapping blocks so that the
signals are stationary in each block. The signals may have different variances and
even different distributions within distinct blocks.

The concept of block EFICA is very similar to that of EFICA. The main differ-
ence consists in that the optimal nonlinearities approximating score functions are
estimated separately in each block of signals. Pham’s parametric estimator from
[18] is used for adaptive selection of the best linear combination of the functions
from [24]. The second main difference is that the optimum weights for the refine-
ment of the final estimate of W are computed accordingly, respecting the piecewise
stationary model.

Block EFICA asymptotically approaches CRLB under common assumptions when
variance of the signals is constant. In cases where the variance of signals is changing,
the algorithm is not optimal in theory, but its performance is close to the CRLB in
practice. This was demonstrated by experiments with both synthetic and real-world
signals [13].



432 P. TICHAVSKÝ AND Z. KOLDOVSKÝ

3.2. BARBI

The abbreviation BARBI stands for the Block AutoRegressive Blind Identification.
It is a separation method that relies on the signal nonstationarity and spectrum
diversity. Like BGSEP and block EFICA, this method assumes that the mixture
can be partitioned into L blocks, and in each of them, the separated signals are
stationary and autoregressive of a given order. Therefore it can be viewed as an
extension of BGSEP and WASOBI. The main idea consists in an approximate joint
diagonalisation of the lagged covariance matrices like in (5), computed at each block
separately. The number of these matrices is L×M , where L is the number of blocks
and M is the number of lags, i. e., the assumed AR order plus one. Unlike other
ICA algorithms that are based on an AJD of some matrices, the AJD in BARBI
incorporates a data-dependent weighting, which reflects the statistical model of the
separated data. Therefore BARBI outperforms other separation methods in terms
of accuracy if the assumed model is in accord with the reality.

BARBI can have two variants. The former variant, which is the only one so far
to be programmed and tested, assumes that the AR parameters of each original sig-
nals may be completely different in each block. The total number of the estimated
parameters is d2 for all elements of the demixing matrix plus d×L×M for AR pa-
rameters of all signals at all blocks separately. Such a large number of the estimated
parameters has a negative impact on the separation performance if both L and M
are large. This method will be called, for the sake of easy reference, BARBI-I.

In the second possible variant of BARBI, called BARBI-II, it is assumed that
the AR coefficients of each original signal differ only by a multiplicative constant
in different blocks. Again, the sufficient statistic is the same as in BARBI-I, i. e.,
the set of L × M time lagged covariance matrices, but the joint diagonalisation is
constrained. For each original signal we would have only L + M − 1 parameters: L
variances (one at each block) and M − 1 normalised AR coefficients.

3.3. MULTICOMBI

MULTICOMBI is an algorithm that combines EFICA and WASOBI to separate
mixtures of signals that are either non-Gaussian or can be resolved in the spectral
domain. It is based on the fact that these algorithms allow the estimation of not only
the demixing matrix, but also the separation performance. The latter is measured in
terms of the estimated interference-to-signal ratio (ISR) matrix, which predicts how
much energy of the jth original signal is contained in the kth estimated signal. The
ISR matrix is estimated by examining statistical properties of the separated signals.
For instance, if some separated component is highly non-Gaussian, ISR of EFICA
with respect to other components will be low, and vice versa: If there is a group
of components that have nearly Gaussian distribution and cannot be well resolved
from each other, the corresponding ISR submatrix will have large entries. Similarly,
WASOBI produces an estimated ISR matrix which reveals structure of the mixture,
i. e., components which have mutually similar spectra (and therefore they are hard
to separate from one another) and vice versa.

MULTICOMBI applies both algorithms to the input data, which gives two dif-
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ferent sets of independent components. In each set, the components are clustered
according to their estimated ISR’s. MULTICOMBI then accepts the clusters of the
one algorithm that are separated from the other clusters better than all clusters
of the other algorithm. The remaining (less well resolved) clusters of the winning
algorithm are accepted as one merged cluster, unless it is empty. The procedure is
applied recursively to each non-singleton cluster until all clusters are singletons, i. e.,
contain only one component and provide the output of MULTICOMBI.

In simulations, MULTICOMBI was shown to outperform other existing methods
that rely on non-Gaussianity and spectral diversity, for instance ThinICA [6]. These
methods are mostly based on a joint approximate diagonalisation of either cross-
covariance, cumulant and cross-cumulant matrices. The (cross-)cumulants represent
higher-order statistics taking the non-Gaussianity into account. Neither of these
methods optimise the separation criterion to achieve the statistical efficiency given
by the combined model.

4. SIMULATIONS

4.1. Separation of speech signals

This subsection presents a comparative study of performance of the above-mentioned
algorithms in separation of a noisy linear instantaneous mixture of speech signals.
Solution of this task might be a building block for separation of more challenging
convolutive mixtures in the time domain [15].

Twenty audio signals were considered for the experiment. Ten of them were
speech signals and the other ten were pieces of music recordings. All signals were
sampled at 8 kHz and normalised to have unit power (mean square). The recordings
had the length of 5000 samples. The mixing matrix A was chosen at random in
each simulation trial, but it was normalised in the way that all rows of A−1 had
unit Euclidean norm. An independent Gaussian noise was added to the mixture to
make the separation task more difficult and more realistic, symbolically X = AS+N.
The constraint on the norm of rows of A−1 had the consequence that all signals in
the mixture had the same signal-to-noise ratio (SNR).

The mixture has been processed by the seven ICA/BSS algorithms discussed in
the paper. In BGSEP, block EFICA and in BARBI, the number of blocks was set to
10. In WASOBI, the AR order was set to 10. Two variants of BARBI were studied,
with the AR order 1 and 2, respectively. The separated signals were sorted to best fit
the original order of the signals. For each method and each signal, we have computed
the resultant signal-to-interference-plus-noise ratio (SINR). The SINR values were
averaged over 500 independent trials, for the speech signals and for the music signals
separately. The results are shown in Figures 2(a) and 2(b), respectively.

Several conclusions can be drawn from the experiment. First, the music signals
are harder to separate, in general, than the speech signals. They are less dynamical
and more Gaussian. The best separation of the speech signals was obtained by
BARBI with the AR order of 1 and 2. On the other hand, WASOBI has separated
the music signals best. The other algorithms worked approximately equally well in
separation of speech signals, but not so well in separating the music signals.
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Fig. 2. Average SINR of speech signals (diagram (a)) and music signals (diagram (b))

obtained by 7 ICA/BSS algorithms from a noisy mixture versus varying SNR.

4.2. Artifact Elimination in Electroencephalogram

This subsection presents an example comparing performance of the above-mentioned
algorithms in artifact elimination in Electroencephalogram (EEG). The EEG is a
very complex multichannel biomedical signal, which is often corrupted by presence
of some unwanted parasitic signals of various kinds. A typical example, which has
been extensively studied in the literature, is an eye blinking. It has a typical U or V
shape and can be observed in several channels simultaneously. For simplicity, these
artifacts are considered in this paper as well.

Presence of artifacts makes automatic processing of EEG signals, which aims at
diagnosis of brain diseases or in facilitating a human-computer interface, even more
difficult than it already is without artifacts. For this reason there is a deep interest in
designing automatic artifact removal procedures that would allow easier extraction
of useful information. Methods of the ICA have proved to be very useful in this
respect in the past [11].

Artifacts, including eye blinking, are assumed to be structurally simpler than the
cerebral activity. Often, an artifact is like a short burst of some activity. When an
ICA algorithm is applied to the EEG signal containing artifacts, a separation of the
artifact from the rest of the data is possible if the artifact activity is concentrated
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Table. Average Square Reconstruction Error.

EFICA BGSEP WASOBI BEFICA BARBI(1) BARBI(2) MULTICOMBI
0.142 0.116 3.69 0.177 5.06 1497 29.9

in a few (optimally in a single) “independent” components (IC) of the signal.
For purposes of this study, we skip the difficult question of how to recognise which

IC represents the artifact. Our experiment assumes an EEG signal to be artifact-
free, and an artifact of a known shape to be repeatedly added to the data at random
time intervals. Of course, the shape of the artifact is not known to the separating
algorithms. Note that typical eye blinking is most strongly present at the front
electrodes on the scalp, FP1 and FP2. Since the artifact is known in advance, the
artifact component is identified as the one which has the highest correlation with the
true artifact. Once the artifact component is identified, it is replaced by zeros, and
the reconstructed signal is computed by multiplying the matrix of the components
by the estimated mixing matrix. The data, the independent components for one
of the algorithms (BGSEP), and the reconstruction error are shown in Figures 3
through 5. In BGSEP, block EFICA and in BARBI, the number of blocks was set
to 10. In WASOBI, the AR order was set to 10. Two variants of BARBI were
studied, with the AR order 1 and 2, respectively.

A series of 70 similar experiments was conducted, with different noiseless data and
with varying positions of the artifact. Resultant mean square reconstruction errors
‖Z − X‖F /‖Y − X‖F are summarised in Table. Here X, Y and Z stand for the
original (artifact-free) data, the data with the added artifact, and the reconstructed
data, respectively, and ‖ · ‖F is the Frobenius norm.

The average errors are extremely large for some methods (WASOBI, BARBI and
MULTICOMBI) due to cases of splitting the artifact into two or more components.
It looks like these methods are completely wrong, but that is not the case: if all
components that look like artifacts are deleted from the reconstruction, the error is
not as huge. Also, the reconstruction error is not large if the single selected artifact
component is subtracted not jointly, according to the estimated mixing matrix, but
in each channel independently, minimising the norm of the reconstructed signal.
Then, the latter reconstruction errors of all seven methods read 0.135, 0.115, 0.152,
0.171, 0.116, 0.175, and 0.135, respectively. In both methods of reconstruction, the
best artifact rejection was achieved by BGSEP.

Note that another comparative study of performance of ICA methods in the
context of the EEG signal processing was published in [8]. It includes more types of
artifacts, but does not cover the most recent algorithms.

5. CONCLUSIONS

A survey of recent successful ICA algorithms is presented. The algorithms have been
tested on separation of audio signals and on rejection of an eye blink artifact in a
19 channel EEG data. Although performance of the algorithms strongly depends
on statistical properties of the separated signals, the results indicate that EFICA,
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BGSEP and BARBI/WASOBI will be superior in audio signal processing, as well
as in biomedical applications.
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[22] P. Tichavský, Z. Koldovský and E. Oja: Performance analysis of the FastICA al-
gorithm and Cramér-Rao bounds for linear independent component analysis. IEEE
Trans. Signal Process. 54 (2006), 1189–1203.
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