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ABSTRACT
INDSCAL is a special case of the CANDECOMP-PARAFAC
(CP) decomposition of three or more-way tensors, where two
factor matrices are equal. This paper provides a stability
analysis of INDSCAL that is done by deriving the Cramér-
Rao lower bound (CRLB) on variance of an unbiased es-
timate of the tensor parameters from its noisy observation
(the tensor plus an i.i.d. Gaussian random tensor). The ex-
istence of the bound reveals necessary conditions for the
essential uniqueness of the INDSCAL decomposition. This
is compared with previous results on CP. Next, analytical
expressions for the inverse of the Hessian matrix, which is
needed to compute the CRLB, are used in a damped Gaus-
sian (Levenberg-Marquardt) algorithm, which gives a novel
method for INDSCAL having a lower computational com-
plexity.

Index Terms— INDSCAL; PARAFAC; CANDECOMP;
tensor decomposition; Cramér-Rao lower bound; Levenberg-
Marquardt algorithm

1. INTRODUCTION

Multilinear models of three-way and higher-way data arrays
were applied in many research areas such as chemistry, as-
tronomy, or even psychology. Recently, tensor decomposition
techniques have become popular in signal processing for its
usefulness, e.g., in blind source separation or feature extrac-
tion. A special attention is paid to the CP decomposition (also
known as CANDECOMP or PARAFAC) that decomposes a
given tensor into a sum of d rank-one tensors. For example,
the decomposition of a three-way tensor X is

X =
d�

f=1

af ◦ bf ◦ df , (1)

0This work was supported by Ministry of Education, Youth and Sports of
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where af , bf , df , are columns of factor matrices A, B and
D, respectively, and ◦ denotes the outer vector product.

This paper addresses INDSCAL (INdividual Differences
in multidimensional SCALing; see [1]) that is a special sym-
metric decomposition of three-way tensors where two of three
factor matrices, say A and B, are assumed to be the same.
This model is useful, for example, in blind identification of
underdetermined mixtures [2], where the factor matrices rep-
resent parameters of the mixing model

U = AS (2)

where rows of U and S contain, respectively, samples of the
observed signals and of unknown independent signals; D usu-
ally contains statistics of the original sources. An important
issue here is the essential uniqueness1 of the decomposition
as it entails the estimableness of A and D.

Necessary conditions for the uniqueness of CP were de-
rived in [3], where it was shown that A∗B, B∗D and A∗D,
where ∗ denotes the Khatri-Rao product, must have full col-
umn rank. The achievable accuracy of CP was studied in [3]
through the Cramér-Rao lower bound (CRLB) on an unbi-
ased estimation of the factor matrices, given a noisy observa-
tion of a tensor. More analytical results of the CRLB which
have been recently derived in [5] provide a deeper insight into
the stability of CP and into the identifiability of individual
columns of factor matrices.

In this paper, we do an analogous stability analysis for
INDSCAL, i.e., when B = A. As the number of parame-
ters (factor matrices) is lower than in CP, the resulting CRLB
is different and is shown to be lower than that of CP with
B = A. The computation of CRLB requires inversion of
a Hessian matrix also needed in Levenberg-Marquardt (LM)
optimization algorithms [4, 6]. Using novel analytical simpli-
fications, a faster algorithm for INDSCAL based on the LM
optimization procedure is derived.

1It means the uniqueness up to scaling and permutation of columns of
factor matrices.
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2. PROBLEM FORMULATION

Let a three way tensor X of the dimension m ×m ×M has
elements

Xijk =
d�

f=1

AifAjfDkf (3)

where Aif and Dkf are elements of factor matrices A and D,
respectively, whose dimensions are m× d and M × d. Their
kth columns will be denoted by ak and dk, respectively; d
is the rank of X, which in (2) corresponds to the number of
original sources.

For the analysis, we consider a noisy observation of the
tensor

Y = X+E (4)

where E is a tensor of the same dimensions as X, whose ele-
ments are independent Gaussian distributed random variables
with zero mean and variance σ2. The estimation problem is
to find the factor matrices A and D from Y.

Let θ be a (m+M)d× 1 parameter vector arranged as

θ = [θT
1 , . . . ,θ

T
d ]

T (5)

where θk = [aTk ,d
T
k ]

T . Since the distribution of elements
of E is Gaussian, the Fisher information matrix (FIM) of the
vectorized version of the tensor Y, i.e. of vec[Y], is

F(θ) =
1

σ2
J
T (θ)J(θ) (6)

where J(θ) is the Jacobian matrix (matrix of the first-order
derivatives) of vec[X] with respect to θ [8]. The CRLB for
unbiased estimation of θ is given by the inverse of F(θ) [7].

Thanks to the problem symmetry, we can derive the bound
for a1 and d1 only. The bounds for the other columns of A
and D follow.

2.1. Mean Square Angular Error and Cramér-Rao In-
duced Bound

To avoid the inherent permutation and scale uncertainty of the
model, we assume that the order of columns of the estimated
�A and �D matches the original order. As an evaluation crite-
rion, we will consider the mean square angular error (MSAE)
between the columns of the estimated and original matrices.
The advantage of MSAE is that it is scale-invariant.

For example, the criterion between the kth column of �A
and A is defined as

MSAE(ak, �ak) = E
�
arccos2 αk

�
(7)

where αk = |�aTk ak|/(��ak� �ak�), and E[·] stands for the ex-
pectation operator.

In [5], the leading term of an asymptotic approximation
of the argument in (7) was shown to be

arccos2 αk ≈ 1

x2
[x tr(∆ak∆a

T
k )− a

T
k∆ak∆a

T
k ak] (8)

where x = a
T
k ak and ∆ak = �ak − ak. Now, when �ak

is an unbiased estimator of ak achieving the CRLB, then
E[∆ak∆a

T
k ] = CRLB(ak) where CRLB(ak) is the subma-

trix of F−1 which bounds the mean square error in estimating
ak. Using this fact and the approximation (8) in (7), the
Cramér-Rao induced lower bound (CRIB) on the MSAE of
�ak can be defined as

CRIB(ak) =
tr[Π⊥

ak
CRLB(ak)]
�ak�2

(9)

where Π⊥
ak

= I − aka
T
k /�ak�2. See [5] for a more detailed

derivation of (9).
Finally, we should note that F(θ) is singular, because d

parameters in θ are free due to the scale ambiguity problem.
We therefore use the same approach as in [5] and regularize
F(θ) by adding µI to it. The CRIB is then derived as a limit
when µ → 0.

3. FAST INVERSION OF F(θ)

The partial derivatives of (3) by the elements of θ are

∂Xijk

Auv
= Dkv(δiuAjv + δjuAiv)

∂Xijk

Duv
= δkuAivAjv.

It can be shown that the structure of the Hessian matrix
H(θ)

def.
= σ2

F(θ) = J
T (θ)J(θ) is such that it can be parti-

tioned into d× d blocks of the size (m+M)× (m+M),

H(θ) =




H11 . . . H1d

...
...

Hd1 . . . Hdd



 (10)

where the ijth block can be written as

Hij =

�
2βij(αijIm + aja

T
i ) 2αijajd

T
i

2αijdja
T
i α2

ijIM

�
, (11)

where αij and βij are the elements of AT
A and D

T
D, re-

spectively, and Im denotes the identity matrix of the size m×
m. The blocks Hij can be also written in a generic form

Hij =

�
xijIm +AM

AA
ij A

T
AM

AD
ij D

T

DM
DA
ij A

T yijIM

�
(12)

where, MAA
ij = 2βijeje

T
i , MAD

ij = M
DA
ij = 2αijeje

T
i ,

xij = 2αijβij +µ, and yij = α2
ij +µ, i, j = 1, . . . , d, where

ek stands for the kth column of Id,
To find an analytical inverse of the matrix H(θ) + µI, we

seek it in the same block-structure form as (10) with blocks
whose structure is

Hij =

�
xijIm +AM

AA
ij A

T
AM

AD
ij D

T

DM
DA
ij A

T yijIM +DM
DD
ij D

T

�

(13)
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where xij and yij are scalars and M
AA
ij ,M

DD
ij are matrices

of the size, d× d.
Based on this, we describe in Appendix how H

−1 can be
sought through the fact that

�d
k=1 HikHkj = δijI.

4. TOWARDS CRIB IN CLOSED FORMS

By (9), the CRIB on a1 can be found as the limit

CRIB(α2
1) = σ

2 lim
µ→0

�
1

�a1�2
tr[Π⊥

a1
Hµ]

�
(14)

where Hµ is the left-upper m×m diagonal block of (H(θ)+

µI)−1, which is by (12) equal to Hµ = x11I +AM
AA
11 A

T .
Now, (14) can be simplified using the fact that

tr[Π⊥
a1
Hµ] = (m− 1)x11 + tr

�
(ATΠ⊥

a1
A)M

AA
11

�
,

and

AΠ⊥
a1
A

T = diag
�
0,α22 − α

2
12/α11, . . . ,αdd − α

2
1d/α11

�
.

The analytical derivation of M
AA
11 poses a complex alge-

braical problem. We therefore resort our analytical computa-
tions to rank 1 and rank 2 tensors.

Rank-1 tensors

The simplest case when d = 1 gives x11 = (2α11β11 + µ)−1

and therefore

CRIB(a1) = (m− 1)
σ2

2α11β11
. (15)

The bound is equal to one half of the corresponding bound for
the CP decomposition [5].

Rank-2 tensors

For d = 2, we obtain

x11 =
�
[2(AT

A)⊙ (DT
D) + µI]−1

�
11

=
α22β22

2dAD
+O(µ)

where dAD = det [(AT
A) ⊙ (DT

D)] and ⊙ denotes the
Hadamard (element-wise) product. The matrix M

AA
11 can be

obtained by solving the 8× 8 linear system (18). The (2, 2)th
element of this matrix reads

(M
AA
11 )22 =

β22[β2
12dAA + 2α11α22α

2
12dD]

2d2AdDdAD
+O(µ)

where dA = det[AT
A], dAA = det[(AT

A)⊙(AT
A)], dD =

det[DT
D], and dAD = det[(AT

A)⊙ (DT
D)]. Therefore

CRIB(a1) =
σ2

α11

�
(m− 1)x11 +

dA

α11
(M

AA
11 )22

�

=
σ2α22β22

α11dAD

�
m− 1

2
+

α2
12

dA
+

β2
12

dD

dAA

2α11dA

�
.

(16)
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Fig. 1. Mean square angular error (MSAE) and the corre-
sponding CRIB of estimated columns of A averaged over 100
independent trials.

This bound can be compared to that derived in [5] for CP. By
taking B = A it reads

CRIB(CP )(a1) =
σ2α22β22

α11dAD

�
m− 1 +

α2
12

dA
+

β2
12

dD

�
.

(17)
It can be easily shown that CRIB(a1) ≤ CRIB(CP )(a1).

The CRIB for angular errors of columns of the matrix D

can be derived in an analogous way. The resultant bound can
be shown to be identical to that derived for the CP decompo-
sition in [5], but we do not provide the derivations here due to
lack of space.

5. EXPERIMENTS

5.1. Example 1

We generated a random rank-2 tensor of dimensions 3×3×4
with A and D having orthogonal columns. Hundred noisy
observations of the tensor were generated with σ = 0.01, and
their CP and INDSCAL decompositions were computed us-
ing, respectively, the Levenberg-Marquardt (LM) method for
CP from [4] and the proposed LM method for INDSCAL us-
ing the fast Hessian inversion through (18). Figure 1 com-
pares the average performance of the algorithms with the the-
oretical value of CRIB when the first column of A was varied
according to a1 ← λa1 + (1− λ)a2 with λ ∈ [0, 1].

The results show that the CRIB is in a good agreement
with the performance of the algorithms2 and confirm the bet-
ter performance of INDSCAL compared to CP. For λ = 1, A
is singular and conditions for essential uniqueness of IND-
SCAL (and CP) are not satisfied. This is revealed by the
CRIB, which is going to infinity as λ → 1.

2The algorithms achieve the CRIB because they, in fact, do the maximal
likelihood estimation through minimizing the quadratic fit between the ob-
served tensor and its model. In addition, the elements of E in (4) are not
correlated.
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Fig. 2. Results of Example 2 in terms of MSAE for columns
of factor matrices A and D.

5.2. Example 2

An analogous experiment was done with a random tensor of
rank 4 having dimensions 3 × 3 × 10, but the first column of
D was modified as d1 ← λd1 +(1−λ)d2 while A was fixed.
The results are shown in Figure 2.

While d1, d2, a3 and a4 are correctly estimated for all
λ, the identification of a1, a2, d3 and d4 is not possible for
λ = 1. For example, in the (underdetermined) blind separation
problem (2) when there are four unknown sources mixed via
A into three observed signals, it means that the directions of
the first two sources and the characteristics of the other sources
cannot be consistently retrieved, and vice versa.

6. CONCLUSIONS

Cramér-Rao-induced bounds for individual columns of fac-
tor matrices in the INDSCAL decomposition were derived.
The bound can be used for determining whether the IND-
SCAL decomposition of a tensor is stable or not. Novel an-
alytical expressions for the inversion of the Hessian matrix
allow to compute it in O(d6) operations, which improves the
computational burden of Levenberg-Marquardt-based opti-
mization algorithms for INDSCAL.
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Appendix

From
�d

k=1 HikHkj = δijI it follows that M
AA
ij , M

DA
ij and the scalars xij , i = 1, . . . , d, j = 1, . . . , d, are the solutions of

d�

k=1

xikxkjI+A

�
d�

k=1

�
xkjM

AA
ik + xikM

AA
kj +M

AA
ik A

T
AM

AA
kj +M

AD
ik D

T
DM

DA
kj

��
A

T = δijI,

D

�
d�

k=1

�
xkjM

DA
ik + yikM

DA
kj +M

DA
ik A

T
AM

AA
kj

��
A

T = 0.

Hence
�d

k=1 xikxkj = δij for i, j = 1, . . . , d, and therefore the d × d matrix X = (xij)di,j=1 equals to the inverse of

X = (xij)di,j=1. Next, the columns of matrices M
AA
ij and M

DA
ij for i, j = 1, . . . , d can be sought as the solutions of 2d2 × 2d2

linear systems following from
d�

k=1

(xikI+M
AA
ik A

T
A)M

AA
kj +

d�

k=1

(MAD
ik D

T
D)M

DA
kj = −

d�

k=1

xkjM
AA
ij ,

d�

k=1

(MDA
ik A

T
A)M

AA
kj +

d�

k=1

yikM
DA
kj = −

d�

k=1

xkjM
DA
ik . (18)

The solution of each of such linear systems requires O(d6) operations, so that the whole inverse of the Hessian matrix can be
done in the same number of operations plus O(d2(m+M)) operations needed to compute the products AT

A and D
T
D.
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