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ABSTRACT
In this paper, stability of the CANDECOMP-PARAFAC (CP)

tensor decomposition is addressed. It is done by deriving the

Cramér-Rao lower bound (CRLB) on variance of an unbiased

estimate of the tensor parameters, i.e. elements of its factor

matrices, from its noisy observation (the tensor plus a random

Gaussian i.i.d. tensor). The existence of the bound reveals

necessary conditions for essential uniqueness of the CP de-

composition, moreover, for identifiability of each column of

each factor matrix separately. Analytical closed-form expres-

sions of the bound are derived for 3 way tensors of rank 1

and 2. As a byproduct, a novel computationally efficient ex-

pression for the inverse of the approximate Hessian matrix is

derived.

Index Terms— Multilinear models; canonical polyadic de-

composition; Cramér-Rao lower bound

1. INTRODUCTION

Three-way and higher-way data arrays need to be analyzed

in many research areas such as chemistry, astronomy, or even

psychology. Parallel factor analysis (PARAFAC), or Canoni-

cal decomposition (CANDECOMP), or CP, is an extension of

a low rank decomposition of matrices to higher way arrays,

usually called tensors.

An important issue is the essential uniqueness of CP as it

entails identifiability of the factor matrices from the tensor. A

sufficient condition was derived by Kruskal in [1]. Recently,

the problem has been addressed again, for instance, Stegeman

et al. derived a condition that is closer to the necessity; see

[2] and references therein.

In this paper, we study this issue by analyzing the local

stability of the CP tensor decomposition. A tensor, deter-

mined by its factor matrices, is modified by adding a Gaus-

sian distributed random noise independently to each of its el-

ement. Stability of its CP decomposition means roughly say-

ing that a small change of the tensor elements does not cause a
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large change in the CP decomposition. The stability is studied

using the Cramér-Rao bound on the estimation of the factor

matrices as parameters of the distribution of tensor elements.

Finiteness of the bound points to necessary conditions for the

identifiability of individual columns of factor matrices. The

CRB for the CP decomposition has been studied already in

[3]. However, in that paper, no closed-form CRB expressions

are available.

In this paper, analytical closed-form expressions for the

bound on mean square angle deviations of columns of the fac-

tor matrices are derived for 3 way tensors of ranks 1 and 2.

These expressions imply conditions on stability of the CP de-

composition of 3 way tensors. As a byproduct, a novel com-

putationally efficient expression for the inverse of the approx-

imate Hessian matrix is derived.

2. PROBLEM FORMULATION

For simplicity, we restrict our presentation to three-way ten-

sors, although an extension to higher way tensors is straight-

forward.

Assume that a three way tensor X of the dimension I ×
J × K has elements

Xijk =
r∑

f=1

AifBjfCkf (1)

where Aif , Bjf and Ckf , are elements of factor matrices A,

B and C, respectively, that have dimensions I × r, J × r and

K × r, and their kth columns will be denoted by ak, bk and

ck, respectively; r is the rank of X.

Assume that a noisy observation of the tensor X is given,

Y = X + E (2)

where E is a tensor of the same dimensions as X. Assume

that elements of E are independent Gaussian distributed ran-

dom variables with zero mean and variance σ2. The estima-

tion problem is to find the factor matrices A, B, and C from

the noisy observation Y.

There is an inherent permutation and scale uncertainty in

the problem. For the permutation ambiguity, we assume that
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the order of columns of the estimated Â, B̂, and Ĉ, matches

that of A, B, and C. To cope with the scale ambiguity of

the factors, we shall only study the angular differences be-

tween the columns of these matrices. For example, the angle

between the kth column of Â and A is defined through its

cosine as

cos αk =
|âk

T ak|
‖âk‖ ‖ak‖ (3)

k = 1, . . . r. Similarly, the angular deviations of columns of

B̂ and Ĉ can be defined.

Let a parameter vector θ contain all parameters of our

model. Let it be arranged as

θ = [θT
1 , . . . ,θT

r ]T (4)

where θk = [aT
k ,bT

k , cT
k ]T . The maximum likelihood esti-

mate of θ consists in minimizing the least square criterion

Q(θ) =
∥∥vec[Y − X(θ)]

∥∥2

2
, (5)

so it can be obtained by any algorithm that minimizes Q(θ).
We wish to compute the Cramér-Rao lower bound for es-

timating θ. In general, for this estimation problem, the CRLB

is given as the inverse of the Fisher information matrix (FIM),

which is equal to [7]

F(θ) =
1
σ2

JT (θ)J(θ) (6)

where J(θ) is the Jacobi matrix (matrix of the first-order deriva-

tives) of vec[X(θ)] with respect to θ. The FIM is proportional

to H(θ) = JT (θ)J(θ), which is an approximate Hessian

matrix of Q(θ) that occurs in Gauss-Newton or Levenberg-

Marquardt optimization algorithms; see e.g. [4], or more re-

cently [5, 6].

The CRLB of one column of one factor matrix can be

found as an appropriate diagonal submatrix of the inverse of

FIM. We derive the bound for a1 only, since then the bounds

for other columns of all factor matrices follow thanks to the

problem symmetry.

3. CRAMÉR-RAO INDUCED BOUND

It should be noted that the FIM (and the Hessian) is singular in

our case because of the scale ambiguity problem. It is possible

to fix scales of columns in two of three factor matrices, which

reduces the number of free parameters to r(I + J + K − 2).
We use another approach here: H(θ) is regularized by adding

μI to it, and a Cramér-Rao induced lower bound (CRIB) of

the mean square angular deviation is derived for μ → 0, as

follows.

Let CRLB(ak) be the submatrix of F−1 which bounds the

mean square error in estimating ak. The angle αk between ak

and âk is defined through its cosine as

cos αk =
|âk

T ak|
‖âk‖ ‖ak‖ =

x + ε√
x(x + 2ε + ν)

(7)

where x = aT
k ak, ε = aT

k Δak, ν = ΔaT
k Δak, and Δak =

âk − ak. Taking the second-order Taylor series expansion on

both sides of (7) and neglecting all higher-order terms of ω, ε
and ν we get

1 − 1
2
α2

k = 1 +
1
2

ε2

x2
− 1

2
ν

x
. (8)

Therefore

α2
k =

xν − ε2

x2
=

1
x2

[xΔaT
k Δak − aT

k ΔakΔaT
k ak] (9)

and consequently

E[α2
k] =

1
x2

{xE[ΔaT
k Δak] − aT

k E[ΔakΔaT
k ]ak}

=
1
x2

{xE[tr(ΔakΔaT
k )] − aT

k E[ΔakΔaT
k ]ak} . (10)

If âk is the maximum likelihood estimate of ak, it holds asymp-

totically that E[ΔakΔaT
k ] = CRLB(ak). Combining this fact

with (10) it follows that the CRIB on the mean square angle

deviation of âk can be defined as

CRIB(α2
k) =

tr[CRLB(ak)]
‖ak‖2

− aT
k CRLB(ak)ak

‖ak‖4
.

=
tr[Π⊥

ak
CRLB(ak)]
‖ak‖2

(11)

where

Π⊥
ak

= I − akaT
k /‖ak‖2 (12)

is the projection operator to the orthogonal complement of ak.

It easily follows that the CRIB is always non-negative.

4. ANALYTICAL INVERSION OF HESSIAN MATRIX

The Jacobi matrix and the Hessian matrix of the criterion for

the 3-way tensor was derived in [5]. Similar expression for

a general n−way tensor can be found in [6]. For the 3-way

tensor it was shown that H(θ) can be partitioned into r × r
blocks of the size I + J + K,

H(θ) =

⎡⎢⎣ H11 . . . H1r

...
...

Hr1 . . . Hrr

⎤⎥⎦ (13)

where the (j, i)th block can be written as

Hji =

⎡⎣ βijγijII γijaibT
j βijaicT

j

γijbiaT
j αijγijIJ αijbicT

j

βijciaT
j αijcibT

j αijβijIK

⎤⎦ (14)

for i, j = 1, . . . , F . Next, II , IJ , IK stand for identity ma-

trices of the dimension I, J and K, respectively, (the indices
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will be skipped in the sequel) and αij , βij and γij is the (ij)th
element of AT A, BT B, and CT C, respectively.

In order to find a closer-form expression for the inverse of

H(θ) + μI, note that the blocks of the Hessian matrix can be

written in the generic form

Hji =
[

xijI + AMAA
ij AT AMAB

ij BT AMAC
ij CT

BMBA
ij AT yijI + BMBB

ij BT BMBC
ij CT

CMCA
ij AT CMCB

ij BT zijI + CMCC
ij CT

]
(15)

where, by comparing (14) with (15), we get MAA
ij = MBB

ij =
MCC

ij = 0, MAB
ij = (MBA

ji )T = γijeieT
j , MAC

ij = (MCA
ji )T =

βijeieT
j , MBC

ij = (MCB
ji )T = αijeieT

j , xij = βijγij +μδij ,

yij = αijγij + μδij , zij = αijβij + μδij for i, j = 1, . . . , r,

where ek is the kth column of the r × r identity matrix,

k = 1, . . . , r, and δij is the Kronecker’s delta.

Now, under the assumption that r ≤ min{I, J,K}1, the

inverse of H(θ)+μI can be sought in the same generic form.

Let the inverse be partitioned into blocks Hji with the same

structure as Hji, with constants xij , yij and zij and matrices

M
PQ

ij , P,Q ∈ {A,B,C}. The expressions for these con-

stants and matrices are derived in Appendix.

5. CRIB IN CLOSED FORMS

The computation of the CRIB on a1 is now straightforward.

It can be found as the limit

CRIB(α2
1) = σ2 lim

μ→0

[
1

‖a1‖2
tr[Π⊥

a1
Hμ]

]
(16)

where Hμ is the left-upper diagonal block of (H(θ) + μI)−1

of the size I × I , which is equal to Hμ = x11I + AM
AA

11 AT

(the dependence of the right-hand side on μ is not explicitly

shown). Then,

tr[Π⊥
a1

Hμ] = tr[Π⊥
a1

(x11I + AM
AA

11 AT )]

= x11tr[Π⊥
a1

] + tr
[
(AT Π⊥

a1
A)M

AA

11

]
= (I − 1)x11 + tr

[
(AT Π⊥

a1
A)M

AA

11

]
. (17)

Note that

AΠ⊥
a1

AT = diag

(
0, α22 − α2

12

α11
, . . . , αrr − α2

1r

α11

)
. (18)

5.1. Rank 1 tensors

In this case, x11 = (β11γ11 + μ)−1 and therefore

CRIB(α2
1) = (I − 1)

σ2

α11β11γ11
. (19)

1If r > min{I, J, K}, the generic form for the inverse of H(θ) + μI

may be still valid for suitable M
PQ
ij , P, Q ∈ {A, B, C}, but it is overpa-

rameterized. The CRIB can be still computed via (16) and can be finite.

5.2. Rank 2 tensors

In this case,

x11 =
(
[(BT B) � (CT C) + μI]−1

)
11

=
β22γ22

dBC
+ O(μ) (20)

where dBC = det [(BT B) � (CT C)] and � denotes the

element-wise product. The matrix M
AA

11 can be obtained by

solving the 12 × 12 linear system (22). The (2, 2)th element

of this matrix reads

(M
AA

11 )22 =
α11β22γ22[β2

12dC + γ2
12dB ]

dAdBdCdBC
+ O(μ)

where dA = det[AT A], dB = det[BT B], and dC = det[CT C].
Therefore

CRIB(α2
1) =

σ2

α11

[
(I − 1)x11 +

dA

α11
(M

AA

11 )22

]
=

σ2β22γ22

α11dBC

[
(I − 1) +

β2
12

dB
+

γ2
12

dC

]
.(21)

Since dBC ≥ dBdC [8], we can see that the tensor decom-

position is unstable with respect to estimating the factor ma-

trix A, that means that the CRIB is infinite, if dB = 0 or

dC = 0 (i.e., if any of the factor matrices B and C has colin-

ear columns).

5.2.1. Example

We generated random orthogonal factor matrices A, B and

C of dimensions 4 × 2, 5 × 2 and 6 × 2, respectively. The

first column of A was modified as a1 ← λa1 + (1 − λ)a2

with λ ∈ [0, 1]. In each trial, a noisy observation of the rank 2

tensor was generated according to (2) with σ = 0.01, and its

CP decomposition was computed using the LM2 method from

[5]. Note that for λ = 0, the Kruskal’s sufficient condition for

essential uniqueness of the CP decomposition is not fulfilled.
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Fig. 1. Mean square angular deviation (MSAE) and the cor-

responding CRIB of estimated columns of factor matrices av-

eraged over 100 independent trials.
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The results shown in Fig. 1 demonstrate good agreement be-

tween the performance of the maximum likelihood estimates

via LM2 and the CRIB. The example also shows that the rows

of A are well identified even if λ = 0, which is in accordance

with the necessary condition provided by the CRIB.

6. CONCLUSIONS

We have derived explicit forms of inversion of the Hessian ma-

trix of the multilinear mapping that describes the CP factoriza-

tion. These expressions can be used for determining whether a

CP factorization of a tensor is stable or not. We have shown that

the inverse of the Hessian matrix can be performed in O(r6)
operations, where r is the rank of the tensor, regardless of the

size of the factor matrices, only the products AT A, BT B and

CT C are needed.

The analysis of the CRIB suggests that for stable estimation of

one factor matrix in the decomposition, all other factor matri-

ces must not have co-linear columns. The factor matrix of the

interest may or may not contain colinear columns and still can

be estimable in a stable way.

The CRIB for tensors of rank higher than two and more-than-

three-way tensors can be treated numerically by analyzing the

corresponding Hessian matrix.
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Appendix
Inverse of the Hessian matrix can be found via the equation

∑r
k=1 HjkHki = δijI for i, j = 1, . . . , r,

r∑
k=1

⎡⎢⎢⎣
xkjI + AMAA

kj AT AMAB
kj BT AMAC

kj CT

BMBA
kj AT ykjI + BMBB

kj BT BMBC
kj CT

CMCA
kj AT CMCB

kj BT zkjI + CMCC
kj CT

⎤⎥⎥⎦
⎡⎢⎢⎣

xikI + AMAA
ik AT AMAB

ik BT AMAC
ik CT

BMBA
ik AT yikI + BMBB

ik BT BMBC
ik CT

CMCA
ik AT CMCB

ik BT zikI + CMCC
ik CT

⎤⎥⎥⎦ = δijI

r∑
k=1

xkjxikI + A

[
r∑

k=1

(
xikM

AA
kj + xkjM

AA
ik + MAA

kj AT AM
AA
ik + MAB

kj BT BM
BA
ik + MAC

kj CT CM
CA
ik

)]
AT = δijI

B

[
r∑

k=1

(
xikM

BA
kj + ykjM

BA
ik + MBA

kj AT AM
AA
ik + MBB

kj BT BM
BA
ik + MBC

kj CT CM
CA
ik

)]
AT = 0

C

[
r∑

k=1

(
xikM

CA
kj + zkjM

CA
ik + MCA

kj AT AM
AA
ik + MCB

kj BT BM
BA
ik + MCC

kj CT CM
CA
ik

)]
AT = 0

Therefore
∑r

k=1 xkjxik = δij for i, j = 1, . . . , r, and hence the r × r matrix X = (xij)r
i,j=1 equals to the inverse of

X = (xij)r
i,j=1. Moreover, the matrices M

AA

ik , M
BA

ik and M
CA

ik for i, k = 1, . . . , r are solutions of the 3r2 × 3r2 linear systems

r∑
k=1

(xkjI + MAA
kj AT A)M

AA
ik +

r∑
k=1

(MAB
kj BT B)M

BA
ik +

r∑
k=1

(MAC
kj CT C)M

CA
ik = −

r∑
k=1

xikM
AA
kj

r∑
k=1

(MBA
kj AT A)M

AA
ik +

r∑
k=1

(ykjI + MBB
kj BT B)M

BA
ik +

r∑
k=1

(MBC
kj CT C)M

CA
ik = −

r∑
k=1

xikM
BA
kj (22)

r∑
k=1

(MCA
kj AT A)M

AA
ik +

r∑
k=1

(MCB
kj BT B)M

BA
ik +

r∑
k=1

(zkjI + MCC
kj CT C)M

CA
ik = −

r∑
k=1

xikM
CA
kj

for j = 1, . . . , r. Solution of each of the linear systems requires O(r6) operations, so that the whole inverse of the Hessian

matrix can be done in the same number of operations plus O(r2(I + J + K)) operations needed to compute the products AT A,

BT B and CT C.
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