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Abstract

Neglecting heteroscedasticity of error terms may imply a wrong identification of regression
model - see Appendix. Employment of (heteroscedasticity resistent) White’s estimator of
covariance matrix of estimates of regression coefficients may lead to the correct decision
about significance of individual explanatory variables under heteroscedasticity. However,
White’s estimator of covariance matrix was established for LS-regression analysis (in the
case when error terms are normally distributed, LS- and ML-analysis coincide and hence
then White’s estimate of covariance matrix is available for ML-regression analysis, too).
To establish White’s-type estimate for another estimator of regression coefficients requires
Bahadur representation of the estimator in question, under heteroscedasticity of error terms.
The derivation of Bahadur representation for other (robust) estimators requires some tools.
As the key one proved to be a tight approximation of the empirical distribution function of
residuals by the theoretical distribution function of the error terms of the regression model.
We need the approximation to be uniform in the argument of distribution function as well
as in regression coefficients. The present paper offers this approximation for the situation
when the error terms are heteroscedastic.
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1. INTRODUCTION

The goal of this paper is to establish a generalized version of the famous Kolmogorov-Smirnov result
that

sup
−∞<x<∞

√
n
∣∣∣F (n)(x)− F (x)

∣∣∣ = Op(1) (1)

(where F (n)(x) denotes the empirical distribution function), see Smirnov (1939), Doob (1949), Donsker
(1952) or Kolmogorov (1950). Research on Kolmogorov-Smirnov statistic was very extensive in various
fields (especially its form for multivariate distributions was considered) and many applications performed
- see e. g. Fasano, Franceschini (1987), An Hong-Zhi, Cheby Bing (1991), Ustel et al. (1997), Drew et
al. (2000) (they were supported by results on power of test - e. g. Jansen (2000)). Many modifications
were proposed - see e. g. Mason, Schuenemeyer (1983), Khamis (1993) or Andrews (1997) and even the
computational problems were studied - Glen and Premis (2000). Research touched also regression scheme,
for the results on logistic model see Jing Qin, Biao Zhang (1997) and some results on testing validity
of the shape of regression function (considering Kolmogorov-Smirnov (K-S) statistics as one possible
measure of distance) can be found in Dette, Munk (1998). The results closest to our one were presented
in Lee, Ching-Zong Wei (1999) where stochastic process based on residuals of the least squares analysis
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was considered and supremum with respect of argument of distribution function (d. f.) (not with respect
to regression coefficients) were analyzed. Regression scheme was also studied in Delgado, Mora(2000) and
residual empirical process is employed for testing serial independence of error terms. Attention was also
paid to the problem of large deviations of the K-S statistic - Inglot, Ledwina (1990). Later, some results
of more general approach via empirical processes (requiring naturally stronger assumptions) started to
appear - see e. g. Cabana, Cabana (1997), Vaart, Welner (2000) or Koul (2002). We are going to prove an
analogous result to (1) for the regression framework for situation when the error terms are heteroscedastic
and supremum is assumed over the argument of d. f. as well as over the regression coefficients, see
Assertion 1 below. This result already serves as a tool for the study of the asymptotic behavior of robust
estimator of regression coefficients (and the paper also explains how), see Vı́̌sek (2009d). It enables us
also to establish an estimator of covariance matrix of robust estimators of regression coefficients. Why
we need such an estimator of covariance matrix ?

It is easy to see that the estimate of regression coefficients by means of the least squares is under
heteroscedasticity still unbiased and (strongly) consistent. From the practical point of view, for the finite
sample (i. e. for given data), the picture may be however quite different. As it is demonstrated in the
Appendix by a numerical example, neglecting heteroscedasticity may lead to the misleading estimation,
in our example it leads to overidentified model. The remedy is to find reliable conclusions about the
significance of the explanatory variables. To do it, we need an estimator of covariance matrix (of the
estimator of regression coefficients) which is consistent under heteroscedasticity of error terms. Then the
corresponding studentization (employing the square roots of diagonal elements of just mentioned matrix)
will be appropriate.

For the (ordinary) least squares such estimator was proposed by Halbert White in 1980. To be able
to establish an analogous estimator of covariance matrix (of the estimator of regression coefficients which
were found by a robust estimator) we need an analogy of Halbert-White-estimator but for given robust
estimator of regression coefficients. The key tool for this is just the main result of the present paper.
Now, let us explain how the result of the paper is used in robust regression.

Robust regression - the least weighted squares. Several decades the robust regression is one of
main topics in robust statistics. A lot of methods of robust identification of regression model was studied,
even with a priori selected “level of robustness”, selected according to an expected level of data contam-
ination. Nevertheless, there is quite large difference between the conception of the classical regression
analysis and the robust one. The former establishes, especially for the Least Squares (LS) or Maximum
Likelihood (ML) a lot of diagnostic tools as Durbin-Watson statistic, (Durbin, Watson (1952)), White’s
test and White’s estimator of covariance matrix of estimates of regression coefficients (White (1980)),
Hausman test of specificity (Hausman (1978)), etc. There are also sensitivity studies describing the in-
fluence of deleting an observation(s) or deleting an explanatory variable(s) (Chatterjee, Hadi (1988)).
Unfortunately, all of these supporting tools and results of sensitivity studies were derived mostly for the
LS- or ML-regression analysis. As however reviewers pointed out, today we would be presumably able to
derive the key assertion for more estimators, especially for those which are asymptotically normal. What
is however true these tools suffer by lack of robustness.

Moreover, some modifications of the LS or ML as instrumental variables (Balestra, Nerlove (1966) or
Brundy, Jorgenson (1971)) or modification of LS or ML for categorical and limited dependent variables,
(Long (1997)) were established to enable us to identify the model under “nonstandard” situations. Nearly
all these lack in robust statistics.

In other words, only a few accompanying means (as diagnostic tools, modifications of basic method or
sensitivity studies) for given individual robust regression estimator were established. The present paper
prepares the tool for starting to fulfill this gap for the Least Weighted Squares (LWS). The definition of
LWS, together with a discussion of reasons for the definition, is given in Vı́̌sek (2001). Nevertheless, let
us recall it briefly.

Let N denote the set of all positive integers, IR the real line and IRp the p-dimensional Euclidean
space. The regression model given as

Yi = g
(
Xi, β

0
)
+ ei, i = 1, 2, ..., n (2)

will be considered (we shall assume g
(
Xi, β

0
)
= 0 otherwise we would write everywhere g (Xi, β) −
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g
(
Xi, β

0
)
). Further, let us denote (for any β ∈ IRp) by r2(h:n)(β) the h-th order statistic among the

squared residuals r2i (β) = (Yi − g (Xi, β))
2
, i = 1, 2, ..., n, i. e. we assume

r2(1:n)(β) ≤ r2(2:n)(β) ≤ ... ≤ r2(n:n)(β). (3)

DEFINITION 1 Let for any n ∈ N wi, i = 1, 2, ..., n be some fixed (non-random) weights. Then the
solution of the extremal problem

β̂(LWS,n,w) = argmin
β∈Rp

n∑
i=1

wir
2
(i:n)(β) (4)

will be called the Least Weighted Squares.

REMARK 1 We usually generate the weights wi’s by a non-increasing (absolutely continuous) weight
function w(v) : [0, 1] → [0, 1], putting wi = w

(
i−1
n

)
. Then (4) is changed to

β̂(LWS,n,w) = argmin
β∈Rp

n∑
i=1

w

(
i− 1

n

)
r2(i:n)(β). (5)

Notice please that the fact that the weights are prescribed to order statistics of squared residuals rather
than to squared residuals directly, leads to the robustness of the estimator.

Let us recall that LWS have some plausible features. Firstly, LWS are, similarly as the Least Me-
dian of Squares (LMS) and the Least Trimmed Squares (LTS) (for definition of both see Hampel et al.
(1986)), scale- and regression-equivariant. The same is true for Instrumental Weighted Variables (IWV)
or a robustified version of the Total Least Squares (TLS) (for the definition of former see again Vı́̌sek
(2006a), for the latter - for the definition of “classical” Total Least Squares see e. g. Golub, Van Loan
(1980), Paige, Starkoš (2002) or Van Huffel (2004), for a robustified version of TLS see Vı́̌sek (2009c)).
It is an advantage in comparison with (some) other robust estimators of regression coefficients. E. g. in
order to achieve scale- and regression-equivariance of M -estimators (of regression coefficients) we have to
studentize the residuals by a scale estimator which is scale-invariant and regression-equivariant, see Bickel
(1975). Such an estimator is not easy to evaluate, see e. g. Jurečková, Sen (1993) where the estimator is
based on the regression scores. Of course, it is possible only under homoscedasticity of error terms. If
they are heteroscedastic we should studentize the i-th residual by an estimate of the standard deviation
of the i-th error term, which however can be estimated only in the case when the observations for the
i-th case are repeated.

Secondly, LWS can be used for panel data (if the weight function is strictly positive), in contrast
to the Least Trimmed Squares or the Least Median of Squares (on the other hand, the Least Trimmed
Squares and the Least Median of Squares are special case of LWS). Of course, when LWS employs strictly
positive weight function it has zero breakdown point. Nevertheless, for finite data one can reach even
by positive weight function a very similar behaviour of the estimator as if it would be equal to zero on
a part of the interval [0, 1]. So, that by “tailoring” the weight function to given data one can reach a
compromise between efficiency of estimation and the “level” of robustness. Finally, they have a reliable
algorithm for evaluating a tight approximation to the precise value of estimator. The algorithm is a simple
generalization of the algorithm for the LTS, see Vı́̌sek (1996, 2000), or a straightforward simplification of
the algorithm for the Instrumental Weighted Variables, see Vı́̌sek (2006a).

Nowadays there are already available some results of building up supporting tools for LWS, see Č́ıžek
(2001, 2002), Kalina (2004a, b) Maš́ıček (2003a, b, 2004), Plát (2004a, b), Vı́̌sek (2002, 2004, 2006a,
2007). But we still not have any results for the case when the error terms are heteroscedastic.

Now following Hájek, Šidák (1967) for any i ∈ {1, 2, ..., n} let us define the rank of i-th residual by

π(β, i) = j ∈ {1, 2, ..., n} ⇔ r2i (β) = r2(j)(β) (6)

(notice that π(β, i) is r.v. since it depends on Xi(ω)’s and ei(ω)’s). Then we have

β̂(LWS,n,w) = argmin
β∈Rp

n∑
i=1

w

(
π(β, i)− 1

n

)
r2i (β). (7)
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Now, realize please, that having fixed β ∈ Rp and denoting |ri(β)| = ai(β), the order statistics a(i)(β)’s
and the order statistics of the squared residuals r2(i)(β)’s assign to given fix observation the same rank,

i. e. if the squared residual of given fix observation is on the ℓ-th position (say) in the sequence

r2(1)(β) ≤ r2(2)(β) ≤ ...r2(n)(β), (8)

then the absolute value of residual of the same observation is in the sequence

a(1)(β) ≤ a(2)(β) ≤ ...a(n)(β) (9)

also on the ℓ-th position. Further, let us denote for any β ∈ IRp and any v ∈ IR the empirical d. f. of the

absolute value of residuals |ri(β)| = |Yi − g (Xi, β)| by F
(β)
n (v), i. e.

F
(n)
β (v) =

1

n

n∑
i=1

I {|ri(β)| < v} =
1

n

n∑
i=1

I {|Yi − g (Xi, β) | < v} (10)

where I {A} denotes the indicator of the set A. Now, let us realize that the empirical d. f. F
(n)
β (v) has

the first jump at a(1)(β) (but due to the sharp inequality in (10), F
(n)
β (a(1)(β)) = 0), the second jump

at a(2)(β) (but F
(n)
β (a(2)(β)) =

1
n ), the third at a(3)(β) (but F

(n)
β (a(3)(β)) =

2
n ), etc. Hence it has the

π(β, i)-th jump at a(π(β,i))(β), i. e.

F
(n)
β (a(π(β,i))(β)) = F

(n)
β (|ri(β)|) =

π(β, i)− 1

n
. (11)

So, we can rewrite (7) as

β̂(LWS,n,w) = argmin
β∈Rp

n∑
i=1

w
(
F

(n)
β (|ri(β)|)

)
r2i (β). (12)

(12) indicates that we need an approximation to the empirical d. f. F
(n)
β (v) which is uniform in v ∈ R

as well as in β ∈ Rp (for the homoscedastic situation such approximation was studied in Vı́̌sek (2006b)).

Then, having at hand a uniform in v ∈ IR and β ∈ IRp approximation of empirical d. f. F
(n)
β (v) by the

“mean” d. f.

F n,β(v) =
1

n

n∑
i=1

Fi,β(v) (13)

where
Fi,β(v) = P (|Yi − g (Xi, β)| < v) = P

(∣∣ei − g (Xi, β) + g
(
Xi, β

0
)∣∣ < v

)
(14)

(remember that ei’s have different variances σ2
i ), we can perform technicalities leading to asymptotic

representation of the estimator in question, and it, in turn, allows to “generalize” classical diagnostic
tools for LWS (or other modifications of LS- or ML-estimators, as the Instrumental Weighted Variables,
see Vı́̌sek (2009a)) even under heteroscedasticity. The same is true about the Total Least Squares, the
research is under progress.

At the first glance, it seems that the same can be achieved by employing results on Weighted empirical
processes, see e. g. Koul (2002). Leaving aside that present approach is much more transparent and
applicable in wider range of situations - see discussion bellow devoted to studentization of M -estimators,
it would be as using a sledgehammer to crack a nut.

Finally, throughout the paper we shall assume:

Conditions C The sequence {(X ′
i, ei)

′}∞i=1 is sequence of independent (p + 1)-dimensional random
variables with Xi1 = 1 for all i = 1, 2, ... (i. e. the model with intercept is considered). The random vectors
(Xi2, Xi3, ..., Xip, ei)

′ are distributed according to distribution functions {F (x, vσi)}∞i=1 , x ∈ IRp−1, v ∈ IR,
i. e.

P (Xi < x, ei < v) = F (x, vσi)

where F (x, v) is a parent d. f. . Moreover, IE (ei|Xi) = 0 and var (ei|Xi) = σ2
i with 0 < σ2

i < ∞.
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2. APPROXIMATION OF EMPIRICAL D.F. UNDER HETEROSCEDASTICITY

Let us consider a sequence of i.i.d. r. v.’s {Vn}∞n=1 distributed according to d. f. G(v). Denote by
G(n)(v) empirical d. f., i. e.

G(n)(v) =
1

n

n∑
i=1

I{Vi < v}.

(let’ repeat that by I {Vi < v} we have denoted the indicator of the set {ω ∈ Ω : Vi(ω) < v}). As we have
already mentioned, Smirnov (1939), using results by Kolmogorov (1933) (see also Doob (1949), Donsker
(1952), or Kolmogorov (1950)), established the asymptotic d. f. of the statistic

D(n) = sup
−∞<v<∞

√
n
∣∣∣G(n)(v)−G(v)

∣∣∣ . (15)

Considering regression framework with i.i.d. error terms (i. e. assuming that Fβ(v) = P (|Yn −X ′
nβ| < v)

is the same for all n ∈ N ) and employing somewhat generalized steps of Smirnov, we have derived (Vı́̌sek
(2006b) ):

ASSERTION 1 Let B(t), 0 ≤ t ≤ 1 be normalized Brownian motion. Then under Conditions C with
σ2
i = σ2 ∈ (0,∞), we have

sup
v∈IR+

sup
β∈IRp

√
n
∣∣∣F (n)

β (v)− Fβ(v)
∣∣∣ −→

D
sup

0≤t≤1
|B(t)− t ·B(1)| . (16)

(for F
(n)
β (v) see (10)). Now, we are going to study D(n) without restriction that all variances of error

terms are the same. Unfortunately, the technique which was used in previous papers cannot be used here.
So we employed the Skorohod embedding (in the sense as it was used in Portnoy (1983) or Jurečková
(1984)) for which we will need the following three assertions.

ASSERTION 2 (Štěpán (1987), page 420, VII.2.8) Let a and b be positive numbers. Further let ξ be
a random variable such that P (ξ = −a) = π and P (ξ = b) = 1 − π (for a π ∈ (0, 1)) and IEξ = 0.
Moreover let τ be the time for the Wiener process W (s) to exit the interval (−a, b). Then

ξ =D W (τ)

where “=D” denotes the equality of distributions of the corresponding random variables. Moreover, IEτ =
a · b = var ξ.

REMARK 2 Since the book by Štěpán (1987) is in Czech language we refer also to Breiman (1968)
where however this assertion is not isolated. Nevertheless, the assertion can be found directly in the first
lines of the proof of Proposition 13.7 (page 277) of Breiman’s book. (See also Theorem 13.6 on the page
276.) The next assertion can be found, in a bit modified form also in Breiman’s book, Proposition 12.20
(page 258).

ASSERTION 3 (Štěpán (1987), page 409, VII.1.6) Let a and b be positive numbers. Then

P

(
max
0≤t≤b

|W (t)| > a

)
≤ 2 · P (|W (b)| > a) .

DEFINITION 2 Let S be a subset of a separable metric space. The stochastic process V = (V (s), s ∈ S)
is called separable if there is a countable dense subset T ⊂ S (i.e. T is countable and dense in S) such
that for any (ω, s) ∈ Ω× S there is a sequence such that

sn ∈ T, lim
n→∞

sn = s and lim
n→∞

V (ω, sn) = V (ω, s).
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ASSERTION 4 (Štěpán (1987), page 85, I.10.4) Let V = (V (s), s ∈ S) be a separable stochastic
process defined on the probability space (Ω,A, P ). Moreover, let G ⊂ S be open and denote by k(G) the
set of all finite subsets of G. Then for any close set K ⊂ IRp we have

{ω ∈ Ω : V (s) ∈ K, s ∈ G} ∈ A

and
P ({ω ∈ Ω : V (s) ∈ K, s ∈ G}) = inf

J∈k(G)
P ({ω ∈ Ω : V (s) ∈ K, s ∈ J}) .

Proof: Since the book by Štěpán is in Czech language and the proof is short, we will give it. Let T be
countable dense subset of S. Then we have

{ω ∈ Ω : V (s) ∈ K, s ∈ G} = {ω ∈ Ω : V (s) ∈ K, s ∈ G ∩ T}

and

P ({ω ∈ Ω : V (s) ∈ K, s ∈ G}) ≤ inf
J∈k(G)

P ({ω ∈ Ω : V (s) ∈ K, s ∈ J})

≤ inf
J∈k(G∩S)

P ({ω ∈ Ω : V (s) ∈ K, s ∈ J}) = P ({ω ∈ Ω : V (s) ∈ K, s ∈ G ∩ S})

= P ({ω ∈ Ω : V (s) ∈ K, s ∈ G}) . 2

Now, we are going to give the main result of paper.

LEMMA 1 Let the Conditions C hold. For any ε > 0 there is a constant Kε and nε ∈ N so that for
all n > nε

P

({
ω ∈ Ω : sup

v∈R+

sup
β∈IRp

√
n
∣∣∣F (n)

β (v)− F n,β(v)
∣∣∣ < Kε

})
> 1− ε. (17)

Proof: Fix ε > 0 and put Kε =
√

8
ε + 1. Recalling that (see (10))

F
(n)
β (v) =

1

n

n∑
i=1

I {|Yi − g (Xi, β) | < v} , (18)

let us put

bi(v, β) = I {ω ∈ Ω : |Yi − g (Xi, β) | < v} = I {ω ∈ Ω : −v < Yi − g (Xi, β) < v} . (19)

Further put
ξi(v, β) = bi(v, β)− IEbi(v, β) (20)

and denote
pi(v, β) = IEbi(v, β) = P (bi(v, β) = 1) = Fi,β(v) (21)

(see (14)). Then {ξi(v, β)}∞i=1, for any v ∈ IR+ and any β ∈ IRp, is a sequence of independently distributed
r.v.’s. Finally, (18), (19) and (21) yield

1

n

n∑
i=1

ξi(v, β) = F
(n)
β (v)− F n,β(v),

i. e.
1√
n

∣∣∣∣∣
n∑

i=1

ξi(v, β)

∣∣∣∣∣ = √
n
∣∣∣F (n)

β (v)− F n,β(v)
∣∣∣ .

Moreover

P

(
ξi(v, β) = 1− pi(v, β)

)
= pi(v, β)
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and

P

(
ξi(v, β) = −pi(v, β)

)
= 1− pi(v, β).

Now, we are going to employ Assertion 2. We have already mentioned that {ξi(v, β)}∞i=1 is a sequence of in-
dependently distributed r.v.’s. Let us denote by {Wi(s)}∞i=1 the sequence of independent Wiener processes
(we may assume e. g. that each of them is defined on “an own probability space”, say {(Ωi,Ai, Pi)}∞i=1

and then consider the product space (Ω,A, P ) in the same way as it is done in the proof of Daniell-
Kolmogorov theorem, see e. g. Tucker (1967)) and, following Portnoy (1983) or Jurečková (1984) or
Jurečková, Sen (1989), let us define τi(v, β) to be the time for the Wiener process Wi(s) to exit the
interval (−pi(v, β), 1− pi(v, β)) (please keep in mind that τi(v, β) is r.v., i.e. τi(v, β) = τi(v, β, ω)). Then
ξi(v, β) =D Wi(τi(v, β)) and hence for any β ∈ IRp

n− 1
2

n∑
i=1

ξi(v, β) =D n− 1
2

n∑
i=1

Wi(τi(v, β)) =D W1

(
n−1

n∑
i=1

τi(v, β)

)
(22)

where the last equality follows from the properties of the Wiener process. Further, let us define Ui to be
the time for the Wiener process Wi(s) to exit interval (−1, 1). Due to the fact that for all i = 1, 2, ..., n
for any v ∈ IR+ and any β ∈ IRp

pi(v, β) ≤ 1 and 1− pi(v, β) ≤ 1, i. e.

(
−pi(v, β)), 1− pi(v, β)

)
⊂ (−1, 1) ,

we conclude that for any v ∈ IR+, any β ∈ IRp and any ω ∈ Ω

τi(v, β) ≤ Ui

and hence (again for any ω ∈ Ω)

n−1
n∑

i=1

τi(v, β) ≤ n−1
n∑

i=1

Ui. (23)

Of course, {Ui}∞i=1 is the sequence of i.i.d r.v.’s and due to Assertion 2 we have

IEUi = 1,

so, employing the law of large numbers, we can find n1 so that for all n > n1 and for

Bn =

{
ω ∈ Ω : n−1

n∑
i=1

Ui ≤ 2

}

we have
P (Bn) ≥ 1− ε

2
. (24)

Let us consider n > n1 and a fix ω0 ∈ Bn and let us realize that for any v ∈ IR+ and any β ∈ IRp the
left hand side of (23), i. e. n−1

∑n
i=1 τi(v, β) = n−1

∑n
i=1 τi(v, β, ω0), is not larger than n−1

∑n
i=1 Ui =

n−1
∑n

i=1 Ui(ω0) ∈ [0, 2]. So for our fix ω0, we have{
t ∈ IR : t = n−1

n∑
i=1

τi(v, β, ω0), v ∈ IR+, β ∈ IRp

}
⊂

{
t ∈ IR : 0 ≤ t ≤ n−1

n∑
i=1

Ui(ω0)

}
.

It means that

sup
v∈IR+

sup
β∈IRp

W

(
n−1

n∑
i=1

τi(v, β, ω0)

)
≤ sup

0≤t≤n−1
∑n

i=1
Ui(ω0)

∣∣∣W1 (t, ω0)
∣∣∣ . (25)
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So, we arrived at: We have two processes which are equivalent in distribution, i. e.
∑n

i=1 ξi(v, β, ω) =D
W1

(
n−1

∑n
i=1 τi(v, β, ω)

)
with the same index sets, v ∈ IR, β ∈ IRp (see (22)), both of them are separable.

Then employing Assertion 4, we obtain

n− 1
2 sup
v∈IR+

sup
β∈IRp

∣∣∣∣∣
n∑

i=1

ξi(v, β, ω0)

∣∣∣∣∣ =D sup
v∈IR+

sup
β∈IRp

∣∣∣∣∣W1

(
n−1

n∑
i=1

τi(v, β, ω0)

)∣∣∣∣∣
and due to (25)

n− 1
2 sup
v∈IR+

sup
β∈IRp

∣∣∣∣∣
n∑

i=1

ξi(v, β, ω0)

∣∣∣∣∣ ≤ sup

0≤t≤n−1
∑n

i=1
Ui(ω0)

∣∣∣W1 (t, ω0)
∣∣∣ .

In other words, for any n > n1 and any ω ∈ Bn

n− 1
2 sup
v∈IR+

sup
β∈IRp

∣∣∣∣∣
n∑

i=1

ξi(v, β)

∣∣∣∣∣ ≤ sup

0≤t≤n−1
∑n

i=1
Ui

∣∣∣W1 (t)
∣∣∣ . (26)

Further, employing (26), we arrive at

P

({
ω ∈ Ω : n− 1

2 sup
v∈IR+

sup
β∈IRp

∣∣∣∣∣
n∑

i=1

ξi(v, β)

∣∣∣∣∣ > K

})

≤ P

({
ω ∈ Ω : n− 1

2 sup
v∈IR+

sup
β∈IRp

∣∣∣∣∣
n∑

i=1

ξi(v, β)

∣∣∣∣∣ > K

}
∩

{
ω ∈ Ω : n−1

n∑
i=1

Ui > 2

})

+ P


ω ∈ Ω : sup

0≤t≤n−1
∑n

i=1
Ui

∣∣∣W1 (t)
∣∣∣ > K

 ∩

{
ω ∈ Ω : n−1

n∑
i=1

Ui ≤ 2

}
≤ P

({
ω ∈ Ω : n−1

n∑
i=1

Ui > 2

})
+ P

({
ω ∈ Ω : sup

0≤t≤2

∣∣∣W1 (t)
∣∣∣ > K

})
. (27)

Now, utilizing Assertion 3, we obtain

P

(
sup

0≤t≤2
|W1(t)| > K

)
≤ 2 · P (|W1(2)| > K) . (28)

Further, recalling the fact that var {W (2)} = 2 and using Chebyshev inequality, we arrive at

2 · P
(∣∣∣W1(2)

∣∣∣ > K
)
≤ 4 · 1

K2
=

ε

2
. (29)

Finally, (24), (27), (28) and (29) imply

P

(
n− 1

2 sup
v∈IR+, β∈IRp

∣∣∣∣∣
n∑

i=1

ξi(v, β)

∣∣∣∣∣ > K

)
≤ ε

which concludes the proof.

REMARK 3 It seems that the result of Lemma 1 can be generalized e. g. for the situation when the
sequence {(X ′

i, ei)
′}∞i=−∞ is AR vector process, just applying Cochrane-Orcutt transformation (Cochrane,

Orcutt (1949)). Similarly for other structure of dependence of r. v.’s which allows a transformation to
“back” to independence we can achieve the same.
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Appendix

Neglecting heteroscedasticity - an example. We looked for a model of export from the Czech republic into EU for
the period from 1993 to 2001. The Czech economy was divided into 61 industries and following (response and explanatory)
variables were available:

X - export, M - import, PE - export prices, PM - import prices,

VA - value added, K - capital, L - labor, DE - debts,

FDI - foreigner direct investment, GDPeu - gross domestic product in EU

After some research we arrived at the model (t = 1994, 1995, ..., 2001, i = 1, 2, ..., 61; p-values are given as subindices of
the coefficients)

ln(Xi,t) = 9.6(.104) + 0.83(.000) · ln(Xi,t−1)− 0.16(.007) · ln(PEi,t) + 0.2(.001) · ln(PEi,t−1) + 0.34(.000) · ln(V Ai,t)

−0.23(.004) · ln(V Ai,t−1)− 0.63(.000) · ln(Ki,t/Li,t) + 0.52(.001) · ln(Ki,t−1/Li,t−1) + 0.3(.016) · ln(DEi,t/V Ai,t)

−0.3(.015) · ln(DEt−1/V At−1) + 0.15(.009) · ln(FDIi,t)− 0.15(.007) · ln(FDIi,t−1) + 1.13(.045) · ln(GDPeui,t)

−1.97(.002) · ln(GDPeui,t−1) (30)

which seemed rather complicated. Nevertheless, it was well determined with approximately normally distributed residuals
and, as the p-values indicate, all explanatory variables (except of intercept) were significant. Nevertheless, White’s test
of homoscedasticity gave value 244.1 with corresponding p-value equal to 0.0000. Clearly the error terms in model were
heteroscedastic. So, for appropriate judgement about the significance of explanatory variables it was necessary to employ
White’s estimator of covariance matrix of the estimates of regression coefficients which is given as

Σ̂ =
1

8 · 61

2001∑
t=1994

61∑
i=1

r2i,t(β̂
(OLS,n)) ·Xi,t ·XT

i,t

where ri,t(β) = Yi,t − XT
i,tβ, for details see White (1980). We obtained then (notice please the changes of the values of

subindices of the coefficients)

ln(Xi,t) = 9.6(.200) + 0.83(.000) · ln(Xi,t−1)− 0.16(.127) · ln(PEi,t) + 0.2(.062) · ln(PEi,t−1) + 0.34(.098) · ln(V Ai,t)

−0.23(.235) · ln(V Ai,t−1)− 0.63(.016) · ln(Ki,t/Li,t) + 0.52(.087) · ln(Ki,t−1/Li,t−1) + 0.3(.312) · ln(DEi,t/V Ai,t)

−0.3(.302) · ln(DEt−1/V At−1) + 0.15(.300) · ln(FDIi,t)− 0.15(.222) · ln(FDIi,t−1) + 1.13(.305) · ln(GDPeui,t)

−1.97(.049) · ln(GDPeui,t−1). (31)

Excluding successively insignificant explanatory variables, we finally arrived at the model

ln(Xi,t) = 9.6(.200) + 0.80(.000) · ln(Xi,t−1) + 0.15(.000) · ln(V Ai,t)

−0.21(.001) · ln(Ki,t/Li,t) + 1.90(.016) · ln(GDPeui,t)− 2.54(.001) · ln(GDPeui,t−1) (32)

which is much simpler than (30). Of course, neglecting heteroscedasticity leads to the estimates of regression coefficients

which are still unbiased but which can have rather large variances and hence they are less reliable. Moreover, due to

the wrong p-values, the model may include some insignificant explanatory variables which can “contest” with those really

significant. The consequence may be that they in fact “divide” the influence on the response variable, so that (all) estimates

of regression coefficients may be incorrect. In other words, when applying White’s estimate of covariance matrix of the

estimates of regression coefficients and correcting significance judgement, excluding successively the “most insignificant”

explanatory variable, we may meet with situation when the estimates of other coefficients may dramatically change. So,

the conclusion is that the heteroscedasticity of error terms should be taken into account seriously.
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[40] Maš́ıček, L. (2004): Behaviour of the Least Weighted Squares Estimator for Data with Correlated
Regressors. Proceedings of COMPSTAT 2004, Physica-Verlag/Springer, ed. Antoch, J., 1463 - 1470.
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[54] Vı́̌sek, J. Á. (2001): Regression with high breakdown point. ROBUST 2000, 324 - 356, ed. Antoch,
J. & Dohnal, G., The Union of the Czech Mathematicians and Physicists and the Czech Statistical
Society 2001.
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Jan Ámos Vı́̌sek

Department of Macroeconomics and Econometrics, Institute of Economic Studies, Faculty of Social Sci-
ences, Charles University

&

Department of Stochastic Informatics, Institute of Information Theory and Automation, Academy of
Sciences of Czech Republic

Mailing address:
Opletalova ulice 26, CZ - 110 01 Prague 1, Czech Republic,
e-mail: visek@fsv.cuni.cz

12


