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Abstract. A robust version of method of Instrumental Variables accommodating the idea of an

implicit weighting the residuals is proposed and its properties studied. Firstly, it is shown that

all solutions of the corresponding normal equations are bounded in probability. Then the weak

consistency of them is proved. The algorithm, evaluating the estimate, is described and results of

small MC study discussed.
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INTRODUCTION OF BASIC FRAMEWORK

Let N denote the set of all positive integers, R the real line and Rp the p-dimensional Euclidean
space. We assume that all r.v.’s are defined on a basic probability space (Ω,A, P ). The linear
regression model given as

Yi = X
′
iβ

0 + ei =
p∑

j=1

Xijβ
0
j + ei, i = 1, 2, ..., n (1)

will be considered (all vectors throughout the paper will be considered to be the column ones).
We shall assume that:

C1 The sequence
{
(X

′
i , ei)

′
}∞
i=1

is sequence of independent and identically distributed (p + 1)-

dimensional random vectors (i.i.d. r.v.’s) with absolutely continuous distribution function FX,e(x, v).

Moreover, IE
{
(X

′
1, e)

′ · (X ′
1, e)

}
is positive definite matrix and the density fe|X(v|X1 = x) is uni-

formly in x bounded by a positive constant Ue.

Remark 1 Let us notice that we have not assumed that the explanatory variables Xi’s and the
error terms ei’s are not correlated. If the model (1) contains the intercept, we have Xi1 = 1, i =
1, 2, ..., n.

The error term is in econometric texts called disturbance. We will use mostly the former and
only in the case of mentioning some economic applications we employ the later one.

In what follows FX(x) and Fe(r) will denote the corresponding marginals of FX,e(x, r). Finally,
let us recall that the (Ordinary) Least Squares (OLS) are the most frequently used estimator of
regression coefficients.

1Research was supported by grant of GA ČR number 402/06/0408.
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Definition 1 The estimator of the regression coefficient given as

β̂(OLS,n) = argmin
β∈Rp

n∑
i=1

(
Yi −X

′
iβ
)2

= argmin
β∈Rp

{
(Y −Xβ)

′
(Y −Xβ)

}
(where X = (X1, X2, ..., Xn)

′
is the design matrix and Y = (Y1, Y2, ..., Yn)

′
is response vector) is

called the (Ordinary) Least Squares.

Sometimes, there are reasons, why the observations are to have different influence on the value
of the estimator of regression coefficients. Then the classical statistics and econometrics advise to
utilize the Weighted Least Squares (WLS) given as follows.

Definition 2 Let Un : {1, 2, ..., n} → [0, 1] and denote Un(i) = wi. Moreover, let W =
diag {w1, w2, ..., wn} be diagonal matrix of weights and w = (w1, w2, ..., wn)

′ the vector of weights.
Then the solution of the extremal problem

β̂(WLS,n,w) = argmin
β∈Rp

n∑
i=1

wi

(
Yi −X

′
iβ
)2

= argmin
β∈Rp

{
(Y −Xβ)

′
W (Y −Xβ)

}
=
(
X

′
WX

)−1
X

′
WY. (2)

is called the Weighted Least Squares.

Remark 2 The mapping Un represents some external rule which is establish prior to evaluating
β̂(WLS,n,w). One of rules, sometimes (or frequently?) used, is that one based on the diagonal
elements of the hat matrix X (X ′X)−1X ′, see Chatterjee and Hadi (1988).

RECALLING REASONS FOR INSTRUMENTAL VARIABLES

It is well known that in the case when the orthogonality condition IE {Xiei} = 0 is broken, the
ordinary least squares are not consistent. The best known example of the situation, when the
orthogonality condition fails, is the model assuming that the explanatory variables are measured
with random error. Assume that

Yi = V
′
i β

0 + ui, i = 1, 2, ..., n (3)

with IEui = 0 and IEu2i = σ2 ∈ (0,∞) and that we observe Ṽi = Vi + ηi, assuming usually that
IEηi = 0, IEηi · η

′
i = Ση with Ση nonsingular and IEηi · ui = 0. Then, substituting Ṽi = Vi + ηi

into (3), we obtain

Yi =
(
Ṽi − ηi

)′

β0 + ui = Ṽ
′
i β

0 − η
′
iβ

0 + ui = Ṽ
′
i β

0 + wi, (4)

where wi = −η′
iβ

0 + ui. But then

IE
(
Ṽi · wi

)
= IE

[
(Vi + ηi) ·

(
−η′

iβ
0 + ui

)]
= −Σηβ

0.

Then β0 ̸= 0 implies that Σηβ
0 ̸= 0 and then due to the fact that

β̂(OLS,n) =
(
Ṽ

′
Ṽ
)−1

Ṽ
′
Y =

(
1

n
Ṽ

′
Ṽ

)−1 1

n
Ṽ

′
Y = β0 +

(
1

n
Ṽ

′
Ṽ

)−1 1

n
Ṽ

′
w, (5)

the OLS-estimator of regression coefficients of model (3) is inconsistent. Another example consid-
ers the lagged response variable as explanatory one, see Judge et al. (1985) or Vı́̌sek (1998a).
The problem is treated, in econometrics, by means of the Method of Instrumental Variables.
Another possibility how to solve the problem is to find so called the Total Least Squares, see e.g.
Van Huffel (2004).
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Definition 3 For any sequence of p-dimensional random vectors {Zi}∞i=1 the solution(s) of the
(vector) equation n∑

i=1

Zi

(
Yi −X

′
iβ
)
= 0 (6)

will be called the estimator obtained by means of the method of Instrumental Variables (or Instru-
mental Variables, for short) and denoted by β̂(IV,n).

Remark 3 The elements of the sequence {Zi}∞i=1 are usually called instruments. In the case
that the model (1) contains intercept, without loss of generality we may assume that Zi1 = 1 and
IEZij = 0, j = 2, 3, ..., p and i = 1, 2, ... . We do not lose generality at first, due to the fact that
Zi1 = 1 represents constants and hence they cannot be correlated with the error terms (in fact we
have then Zi1 = Xi1). Secondly, what concerns the assumption that IEZij = 0, j = 2, 3, ..., p, if it
would not be fulfilled, we can “move” IEZij into the intercept of the original model (1).

Sometimes (see e.g. Judge et al. (1985)) β̂(IV,n) is defined as a solution of the extremal problem

β̂(IV,n) = argmin
β∈Rp

{
(Y −Xβ)

′
ZZ

′
(Y −Xβ)

}
where Z = (Z1, Z2, ..., Zn)

′
is the matrix of instruments, X is the design matrix and Y is the

response vector. Similarly as in the case of the (Ordinary) Least Squares, sometimes we have
reasons for employing the classical Weighted Instrumental Variables

β̂(WIV,n,W ) = argmin
β∈Rp

{
(Y −Xβ)

′
WZZ

′
W (Y −Xβ)

}
=
(
Z

′
WX

)−1
Z

′
WY (7)

where W is a diagonal matrix of weights. Let us stress that the weights are again assigned to the
observation a priori, usually according to an external (heuristic, frequently geometric) rule.

For the heuristics which show the reasons for defining β̂(IV,n) in just described way see Bowden,
Turkington (1984), Judge et al. (1985), Manski, Pepper (2000), Stock, Trebbi (2003). In nineties
the method became a standard tool in many case studies of dynamic regression model since the
correlation of explanatory variables and disturbances frequently appeared (in economic data).
Many papers considering possibilities how to select the instruments for explanatory variables
brought applicable results, see e.g. Arellano, Bond (1991), Arellano, Bover (1995), Erickson
(2001), Hahn, Hausman (2002), Heckman (196), Sargan (1988) (for examples of implementation
see: for SAS - Der and Everitt (2002), for R and S-PLUS - Fox, J. (2002)).

As (6) is an analogy of the normal equations for the Ordinary Least Squares, β̂(IV,n) is not
robust with respect to the outliers and/or leverage points. Hence we are going to define its
robustified version. We shall use the idea of implicit weighting the squared residuals which was
firstly employed in the method of the Least Weighted Squares, see Vı́̌sek (2000c).

WHY THE IMPLICIT WEIGHTING OF RESIDUALS

Prior to continuing, we need to enlarge a bit the notations. For any β ∈ Rp define the i-th
residual as ri(β) = Yi −X

′
iβ and r2(h)(β) the h-th order statistic among the squared residuals, i.e.

we have
r2(1)(β) ≤ r2(2)(β) ≤ ... ≤ r2(n)(β). (8)

Without loss of generality we may assume that β0 = 0 (otherwise write β − β0 instead of β).
Vı́̌sek (1992, 1996a, 2002c) revealed that for the M -estimator with discontinuous ψ-function,

the deletion of even one observation may cause very large change of the estimate. Vı́̌sek (2000b)
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conjectured and Vı́̌sek (2006d) established the same result for the Least Trimmed Squares (LTS).
Similarly, it appeared that robust, especially the high breakdown point estimators can be very
sensitive to a very small change of data. It started with the paper by Hettmansperger and Sheather
(1992) showing by a case study that Least Median of Squares estimator (LMS) (Rousseeuw (1984))
changes a lot its value when small change data is made. Their result was due to a bad algorithm,
they used, and Vı́̌sek (1994) corrected the result employing the algorithm by Boček and Lachout
(1995). However the phenomenon really exists, for the theoretical explanation see Vı́̌sek (1996b,
2000a). Both these unpleasant consequences of (high) robustness have one denominator, namely
that the estimators do relay to much on a group of observations, they have selected (considering
these observations to be “clean” or “proper”, as you want), while the others are assumed to
be contamination, i.e. they are deleted from the data. A remedy can be to weight down the
observations which seem to be suspicious, i.e. to depress their influence on the value of the
estimator smoothly. It led to a proposal of the Least Weighted Squares (LWS) in the form (Vı́̌sek
(2000c), see also (2002a,b)):

Definition 4 Let w : [0, 1] → [0, 1] is a weight function. Then the solution of the extremal problem

β̂(LWS,n,w) = argmin
β∈Rp

n∑
i=1

w

(
i− 1

n

)
r2(i)(β) (9)

will be called the Least Weighted Squares.

Remark 4 Let us mention that the Definition 2 recalled the classical Weighted Least Squares. Just
defined Least Weighted Squares β̂(LWS,n,w) differ from the Weighted Least Squares β̂(WLS,n,w) by
the implicit assigning the weights which may lead to the improvement in efficiency of estimation. It
happens in the case when the leverage points, i. e. observations having the vector of the explanatory
variables far away from the other data, are present among the data and they were generated by
model in question. There can be also leverage points which represent contamination of data and
they can (seriously) damage the estimation. We are able, e. g. by the hat matrix X (X ′X)−1X ′,
(usually) recognize the presence of leverage points among the data but it is not so simple to decide
whether they are “in model” or whether they are contamination, see again Chatterjee and Hadi
(1988).

As the Least Trimmed Squares and the Least Median of Squares are special cases of the Least
Weighted Squares, it is straightforward that LWS can adapt to various situations. It hints that
by “tailoring” the weight function to the character of data, we can create the estimator which is
“appropriately robust” but avoiding the problems we have discussed a few lines earlier. Moreover,
when we put some lower bound on values on the weight function, we facilitate the use of the esti-
mator also for the panel data where we cannot afford to delete any observation completely - since
otherwise we disturb the correlation structure of data. In addition, avoiding the discontinuous
weight function we get rid of the high subsample sensitivity while keeping all plausible (robust)
properties for finite sizes of data sets. That is why in what follows we shall assume that the weight
function has following properties:

C2 Weight function w : [0, 1] → [0, 1] is absolutely continuous and nonincreasing, with the deriva-
tive w′(α) bounded from below by −L (L > 0), w(0) = 1.

(Please, see also Č́ıžek (2002) where the estimator is called the Smoothed Least Trimmed Squares.
Although this name indicates that for a special case of weight function, we obtain the Least
Trimmed Squares (LTS) as a special case of the Least Weighted Squares, it may however obscure
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the fact that LWS are able to control subsample sensitivity (see Vı́̌sek (1996a, 2000c, 2002c)).
The same is true about the behaviour of LTS versus LWS with respect to a small shift of an
observation (see Vı́̌sek (1996b, 2000a)). The last but not least, as we have already mentioned,
LWS can be used for panel data processing, while LTS can’t because the deletion of (even only)
one observation from panel data may destruct the correlation structure of the error terms and/or
of explanatory variables.

For any i ∈ {1, 2, ..., n} and any β ∈ Rp let us define the random rank of the i-th residual as

π(β, i) = j ∈ {1, 2, ..., n} ⇔ r2i (β) = r2(j)(β) (10)

(the definition is an analogy of rank which is used nonparametric statistics, see e.g. Hájek, Šidák
(1967)). Then we have

β̂(LWS,n,w) = argmin
β∈Rp

n∑
i=1

w

(
π(β, i)− 1

n

)
r2i (β). (11)

Now, we are going to show that (11) (and hence also (9)) has always a solution. In order to see
it, let us denote for any n ∈ N by Pn be the set of all permutations of the indices {1, 2, ..., n} and
denote πi the i-th coordinate of the vector π ∈ Pn. (The following considerations do not represent
an algorithm for the evaluation of LWS. The algorithm will be discussed later directly for the
proposed Instrumental Weighted Variables.) Let us consider following steps:

1. For any β ∈ Rp and arbitrary π ∈ Pn put S (β, π) =
∑n

i=1w
(
πi−1
n

)
r2i (β).

2. Recalling that we have defined π(β, i) in (10) (i = 1, 2, ..., n), for any β ∈ Rp put π(β) =
(π(β, 1), π(β, 2), ..., π(β, n))′ ∈ Pn. As π(β) ∈ Pn we have

min
β∈Rp

min
π∈Pn

n∑
i=1

w

(
πi − 1

n

)
r2i (β) ≤ min

β∈Rp

n∑
i=1

w

(
π(β, i)− 1

n

)
r2i (β),

i. e. min
β∈Rp

min
π∈Pn

S (β, π) ≤ min
β∈Rp

S (β, π(β)) . (12)

3. Fix β̃ ∈ Rp and notice that according to the definition in the step 1 and due to (10) we have

S
(
β̃, π(β̃)

)
=

n∑
i=1

w

(
π(β̃, i)− 1

n

)
r2i (β̃) =

n∑
i=1

w

(
i− 1

n

)
r2(i)(β̃). (13)

But it means that the smallest residual obtains the largest weight, the second smallest
residuals obtains the second largest weight, etc.. Finally, any sum, in which the weights are
prescribed to residuals in any other way, can’t be smaller. Hence for any β ∈ Rp and π ∈ Pn

we have
S (β, π(β)) ≤ S (β, π) . (14)

4. (12) and (14) yield
min
β∈Rp

min
π∈Pn

S (β, π) = min
β∈Rp

S (β, π(β)) . (15)

5. Fix ω0 ∈ Ω, π ∈ Pn, and evaluate the (classical) Weighted Least Squares, please see

Definition 2), with the mapping Un(i) = U
(π)
n (i) = w

(
πi−1
n

)
, i. e. with the weight ma-

trix W (π) = diag
{
w
(
π1−1
n

)
, w
(
π2−1
n

)
, ...., w

(
πn−1
n

)}
. In this case Un(i) = U

(π)
n (i), i =

5



1, 2, ..., n is uniquely given by π and we shall write in what follows β̂(WLS, n, π) instead of

β̂(WLS, n, T
(π)
n ).

β̂(WLS, n, π) = argmin
β∈Rp

n∑
i=1

w

(
πi − 1

n

) (
Yi −X ′

iβ
)2

=
(
X ′W (π)X

)−1
X ′W (π)Y

where Y = (Y1, Y2, ..., Yn)
′ and X = (X1, X2, ..., Xn)

′. Then we have for any β ∈ Rp

S(β̂(WLS, n, π), π) ≤ S(β, π). (16)

6. Repeat it for all π ∈ Pn and for our ω0 ∈ Ω (we have fixed in step 5) define π(ω0) by

π(ω0) = argmin
π∈Pn

S(β̂(WLS, n, π), π).

7. Then for any π ∈ Pn

S(β̂(WLS, n, π(ω0)), π(ω0)) ≤ S(β̂(WLS, n, π), π). (17)

8. Due to (17) and then due to (16), for any π̃ ∈ Pn and any β̃ ∈ Rp

S(β̂(WLS, n, π(ω0)), π(ω0)) ≤ S(β̂(WLS, n, π̃), π̃) ≤ S(β̃, π̃),

i. e., due to the fact that π̃ ∈ Pn and β̃ ∈ Rp were arbitrary,

S(β̂(WLS, n, π(ω0)), π(ω0)) = min
β∈Rp

min
π∈Pn

S (β, π) . (18)

Finally, due to (15) and then due to (13),

S(β̂(WLS, n, π(ω0)), π(ω0)) = min
β∈Rp

S (β, π(β)) = min
β∈Rp

n∑
i=1

w

(
i− 1

n

)
r2(i)(β)

and hence, due to definition of β̂(LWS, n, w)(ω0) (see (9)), we have β̂(WLS, n, π(ω0))(ω0) =
β̂(LWS, n, w)(ω0).

9. Repeating steps 1 - 8 for all ω’s, we conclude the proof of existence of solution of (11).

As a byproduct of the previous considerations we have found that the Least Weighted Squares
estimator β̂(LWS, n, w)(ω0) is, at fixed ω0 ∈ Ω, equal to the (classical) Weighted Least Squares esti-

mator β̂(WLS, n, π(ω0))(ω0) (with the weights w(π(ω0)) =
(
w(π1(ω0)−1

n ), w(π2(ω0)−1
n ), ..., w(πn(ω)−1

n )
)′
.

On the other hand, the Weighted Least Squares estimator β̂(WLS, n, π(ω0))(ω0) is (one of) the so-
lution(s) of normal equations

n∑
i=1

wiXi

(
Yi −X

′
iβ
)
= 0

with wi = w(πi(ω0)−1
n ). So, considering successively all ω ∈ Ω, we verify that β̂(LWS,n,w) is one of

solutions of normal equations

INEY,X,n(β) =
n∑

i=1

w

(
π(β, i)− 1

n

)
Xi

(
Yi −X

′
iβ
)
= 0. (19)

(An alternative way is to show that ∂π(β,i)
∂β = 0, see Vı́̌sek (2006b).)
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INSTRUMENTAL WEIGHTED VARIABLES

As we have already recalled the estimator obtained by means of the method of Instrumental
Variable is not robust. On the other hand, the inconsistency of the Least Squares when the
orthogonality condition is broken, as it was explained in INTRODUCTION), takes place generally
also for the Least Weighted Squares. That is why we define an estimator which will be an analogy
of the estimator obtained by the method of Instrumental Variables but which will weight down
the residuals of those observations which seem to be atypical.

Definition 5 For any sequence of p-dimensional random vectors {Zi}∞i=1 the solution(s) of the
(vector) equation

INEY,Z,n(β) =
n∑

i=1

w

(
π(β, i)− 1

n

)
Zi

(
Yi −X

′
iβ
)
= 0 (20)

will be called the Instrumental Weighted Variables estimator (IWV ) and denoted by β̂(IWV,n,w).

Remark 5 Similarly as in the case of the Least Weighted Squares and the classical Weighted Least
Squares, we shall use in the text which follows both the Instrumental Weighted Variables and the
(classical) Weighted Instrumental Variables, given for some external rule Un : {1, 2, ..., n} → [0, 1]
and the corresponding diagonal matrix W = diag {w1, w2, ..., wn} with wi = Un(i) and the vector
of weights w = (w1, w2, ..., wn)

′ as

β̂(WIV,n,w) =
(
Z ′WX

)−1 (
Z ′WY

)
.

ALGORITHM FOR THE INSTRUMENTAL WEIGHTED VARIABLES

We have already learnt that the algorithm for evaluating (a tight approximation to) the robust es-
timator play an important role for reasonability of any further considerations. We have mentioned
the algorithm for the LMS by Boček and Lachout (1995) based on simplex method. Similarly,
the algorithm for LTS was discussed and successfully tested in Vı́̌sek (1996b, 2000a). Modify-
ing this algorithm so that we evaluate the Weighted Least Squares (2) instead of the Ordinary
Least Squares (5) (at one step of the algorithm) appeared to be reliable algorithm for the Least
Weighted Squares. Finally, an analogous modification of this algorithm, but now evaluating the
Weighted Instrumental Variables (7) instead of the Ordinary Least Squares (5) can be used for
Instrumental Weighted Variables. We are going to describe it in details (we shall follow the main
steps of Vı́̌sek (2006c)). Nevertheless, prior to the explanation of the algorithm, step by step, let
us say a few words generally. They allow to keep the below given explanation reasonably simple
and transparent.

The algorithm consists of two cycles, outer and inner. Both of them need some stopping rule.
Let us start with the stopping rule for the inner (the reason is that the stopping rule for outer
will be connected with the definition of the stopping rule for the inner cycle).

The stopping rule for the inner cycle:
At the moment when we reach, by an iterative process (performed just by the inner cycle), the

minimum of the functional S
(
β̂
(WIV,n,w)
(t)

)
(see (21)), we stop the cycle. In other words, when

the value of the functional S
(
β̂
(WIV,n,w)
(t)

)
in two successive steps of the inner cycle is the same,

we stop the repetitions of the inner cycle and start a new repetition of the outer cycle. It means

that for each repetition of the outer cycle we reach some value of the functional S
(
β̂
(WIV,n,W )
(t)

)
,

say S
(
β̂
(WIV,n,W )
(final)

)
. Evidently, there is a regression model which corresponds to S

(
β̂
(WIV,n,W )
(final)

)
.
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If the value S
(
β̂
(WIV,n,W )
(final)

)
is the smallest one among the values, we have reached up to this

moment, we denote the corresponding model the best. Of course, it may happen that the model
which was denoted as the best, may lose this “characteristic” at the end of some next repetition
of the outer cycle and another model attains this “characteristic”. It may also happen that in the
repetitions of the outer cycle we repeatedly reach this minimal value and, also the corresponding
best regression model is repeatedly found.

The stopping rule form the outer cycle:
Either the number of repetitions of outer cycle reached an a priori given (usually large) number
of repetitions (see below, in the stage A, the “maximal number of repetitions, say kmax”). Or an
a priori given number of the same models denoted at given moment as the best is attained.

If the former branch of the stopping rule was applied, we may expect that there is no reasonable
model for data in question. The reason is the fact that the algorithm found plenty (say several
hundreds or thousands) different models for our data. If the latter branch of the stopping rule
took place, it indicates that (hopefully) there can be some structure in data. Really, if we obtain
at the end of outer cycle several times (say 20 times) the same regression model, say M (which

corresponds to the minimum of the functional S
(
β̂
(WIV,n,w)
(t)

)
reached during the whole process

of repeating the outer cycle) and the total number of repetitions of outer cycle is reasonable (say
several hundreds), we may expect that the model M is acceptable for our data.

Now, let us explain the algorithm step by step. We assume that we have at hand data, i. e. the
vector of response variable Y = (Y1, Y2, ..., Yn)

′ and matrices of explanatory and of instrumental
variables

X =


X11, · · · , X1p

X21, · · · , X2p
...

...
Xn1, · · · , Xnp

 Z =


Z11, · · · , Z1p

Z21, · · · , Z2p
...

...
Zn1, · · · , Znp

 ,

respectively. The instrumental variables are selected so that they are as much as possible of the
same quality and character as the explanatory variables, however they are not correlated with
the error terms (disturbances) of the regression model in question. Finally, prior to starting
the description of the algorithm, let us recall the notion “points in general position”, proposed
by Rousseeuw, Leroy (1987) (chapter 3, paragraph 4). We utilize a bit weaker definition than
Rousseeuw and Leroy used, because it is sufficient to our purposes.

Definition 6 A k-tuple of points in the k dimensional Euclidean space Rk is said to be in general
position, if they uniquely determine k − 1 dimensional plane.

Notice that e. g. three points in R3, if falling on line, don’t determine uniquely two-dimensinal
plane.

Remark 6 Let us realize that in our framework (of the regression model (1) ), the minimal
number of points in general position is equal to p. Assume, we have selected p points, i. e.
(Yi, Xi1, Xi2, ..., Xip)

′, i = 1, 2, ..., p. In the case when the model contains intercept, i. e. Xi1 = 1
for i = 1, 2, ..., p, we take take into account for establishing p− 1 dimensional plane going through
selected observations just (Yi, Xi2, Xi3, ..., Xip)

′, i = 1, 2, ..., p. So, we have p points in Rp.
In the case when model does not contain intercept we consider points (Yi, Xi1, Xi2, ..., Xip)

′, i =
1, 2, ..., p and point (0, 0, 0, ..., 0)′ because employing model without intercept implies that the regres-
sion plane goes through the origin (after all, intercept is not estimated and hence any estimated
model contains origin).
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A. Select some maximal number of repetitions of the outer cycle, say kmax, minimal number of
the best models (as the “best model” was described a few lines above), say bmin, put k = 0,
b = 0 and Stotal = ∞.

B. Select randomly p observations
(
Yij , Xij1, Xij2, ..., Xijp

)′
, j = 1, 2, ..., p. If they are in gen-

eral position evaluate the (regression) plane going through them, otherwise repeat selection
of observations. It gives an initial estimate of regression coefficients. Let us denote it by

β̂initial. Evaluate for all observations the squared residuals r2i (β̂initial) =
(
Yi −X ′

iβ̂initial
)2
,

i = 1, 2, ..., n, establish the order statistics of them r2(i)(β̂initial)’s, see (8), and the ranks

π(β̂initial, i), see (10). Further, define the diagonal matrix

W
(
β̂initial

)
= diag {w∗

1, w
∗
2, ..., w

∗
n} with w∗

i =

(
π(β̂initial, i)− 1

n

)
and evaluate

S
(
β̂initial

)
=
(
Y −Xβ̂initial

)′

W
(
β̂initial

)
Z

′
ZW

(
β̂initial

) (
Y −Xβ̂initial

)
.

Then put t = 1 and Smin,k = S
(
β̂initial

)
. Finally, evaluate

β̂
(WIV,n,W )
(1) =

(
Z ′W

(
β̂initial

)
X
)−1 (

Z ′W
(
β̂initial

)
Y
)
.

C. Evaluate for all observations the squared residuals r2i (β̂
(WIV,n,w)
(t) ) =

(
Yi −X ′

iβ̂
(WIV,n,w)
(t)

)2
,

i = 1, 2, ..., n, establish the order statistics of them r2(i)(β̂
(WIV,n,w)
(t) )’s, see again (8) and the

ranks π(β̂
(WIV,n,w)
(t) , i), see once again (10). Finally, define the diagonal matrix

W
(
β̂
(WIV,n,w)
(t)

)
= diag {w∗

1, w
∗
2, ..., w

∗
n} with w∗

i =

π(β̂(WIV,n,w)
(t) , i)− 1

n


and evaluate

S
(
β̂
(WIV,n,w)
(t)

)
=
(
Y −Xβ̂

(WIV,n,W )
(t)

)′

W
(
β̂
(WIV,n,w)
(t)

)
Z ×

× Z
′
W
(
β̂
(WIV,n,w)
(t)

) (
Y −Xβ̂

(WIV,n,w)
(t)

)
. (21)

D. If S
(
β̂
(WIV,n,w)
(t)

)
< Smin,k, put Smin,k = S

(
β̂
(WIV,n,W )
(t)

)
. Otherwise go to F.

E. Evaluate the Weighted Instrumental Variables

β̂
(WIV,n,W )
(t+1) =

(
Z ′W

(
β̂
(WIV,n,w)
(t)

)
X
)−1 (

Z ′W
(
β̂
(WIV,n,w)
(t)

)
Y
)
,

put t = t+ 1 and go to C.

F. If Smin,k = Stotal, put b = b+ 1 (i.e. in just finished inner cycle again the regression model
which is at this moment considered as the “best model” up to this moment - as described
in previous - was attained).
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G. If Stotal > Smin,k, put Stotal = Smin,k and b = 1. If k = kmax, go to H, otherwise put
k = k+1. If the number of already estimated models, for which the functional (21) is equal
to Stotal reached bmin (i. e. b = bmin), go to H. Otherwise go to B.

H. Return as the estimate by means of the Instrumental Weighted Variables β̂(IWV,n,w) (see
(20) ) the estimate of regression coefficients which corresponds to Stotal.

SIMULATION STUDY

We are going to present and briefly comment results of small simulation study. As the under-
standing of the simulation study is crucial for attaining a trust to the described algorithm, we try
to explain each step very carefully. Two experiments were performed. First of all let us explain
what is common for them.

Common steps of the first and second experiment:

S1 The regression model

Yn = β1 ·Xn1 + β2 ·Xn2 + β3 ·Xn3 + εn, n = 1, 2, ..., 50, (22)

was considered. After having generated data {Y ∗
n , [X

∗
n]

′, [Z∗
n]

′}50n=1 - details are described
below, the estimates by means of the Ordinary Least Squares, the Least Weighted Squares
and the Instrumental Weighted Variables were applied on them.

S2 All experiments were ten times repeated. The results were collected in tables below. The
results of each repetition create one column in each table of one triplet of tables (more details
will be given in the separate explanation for the first, the second and the third experiment).

S3 Each repetition of given experiment contains 100 samples, each sample consists of 50 obser-
vations. Each sample was generated as follows.

S4 A finite sequence {Tn}52n=1 of 3-dimensional random vectors normally distributed with zero
mean and unit covariance matrix was generated.

S5 Then, the autoregressive sequence {Vn}51n=1 was defined by

Vn = 0.5 · Tn+1 + 0.5 · Tn.

S6 The sequences of explanatory and instrumental variables, {Xn}50n=1 and {Zn}50n=1, were con-
structed

Xn = Vn+1 and Zn = Vn.

Notice please that for any j, k ∈ {1, 2, 3}

cov (Xnj , Znj) = cov (Vn+1,j , Vnj)

= cov (0.5 · Tn+2,j + 0.5 · Tn+1,j , 0.5 · Tn+1,j + 0.5 · Tnj) = 0.25

and
var (Xnj) = var (Znj) = 0.5.
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On the other hand

cov (Xnj , Znk) = cov (0.5 · Tn+2,j + 0.5 · Tn+1,j , 0.5 · Tn+1,k + 0.5 · Tnk) = 0.

Finally,

corr (Xn, Zn) =

 0.5, 0, 0
0, 0.5, 0
0, 0, 0.5

 (23)

i. e. the instrumental variables are correlated with the explanatory ones.

S7 The error terms
{
ε
(ℓ)
n

}50
n=1

, ℓ = 1, 2, 3 were created by

ε(ℓ)n = (−1)ℓ+1
3∑

k=1

Tn+2,k

(index ℓ = 1, 2, 3 is for the first, the second and the third experiment, respectively). Notice

please that again cov
(
Xnj , ε

(ℓ)
n

)
= (−1)ℓ+10.5, j = 1, 2, 3 , ℓ = 1, 2, 3 and var

(
ε
(ℓ)
n

)
=

3, ℓ = 1, 2, 3 and hence

corr
(
Xn, ε

(ℓ)
n

)
= corr

(
0.5 · Tn+2 + 0.5 · Tn+1, (−1)ℓ+1

3∑
k=1

Tn+2,k

)
=


(−1)ℓ+1 0.5√

1.5

(−1)ℓ+1 0.5√
1.5

(−1)ℓ+1 0.5√
1.5


for ℓ = 1, 2, 3. It indicates that the explanatory variables are correlated with the error
terms. On the other hand

cov
(
Znj , ε

(ℓ)
n

)
= 0, j = 1, 2, 3, ℓ = 1, 2, 3,

i. e. the instrumental variables are not correlated with the error terms.

Now, we are going to describe the special features of the first experiment.

S8 The values of response variables Yn’s were calculated as

Yn = 7 ·Xn1 − 3 ·Xn2 − 5 ·Xn3 + ε(1)n , n = 1, 2, ..., 50.

Then for k = 1, 2, ..., 5 we put Y ∗
k = 5 · Yk and Y ∗

k = Yk for 6 ≤ k ≤ 50, X∗
n = Xn, Z

∗
n =

Zn, n = 1, 2, ..., 50. It means that the first five response variables were “converted” into
outliers, or in other words, a contamination of data (on the level of 10% of observations
having damaged response variable) was perform.

S9 Data
{
(Y ∗

n , [X
∗
n]

′, [Z∗
n]

′)′
}50
n=1

were taken into account. Then the estimates of regression co-

efficients estimated by means of the Ordinary Least Squares, by the Least Weighted Squares
and by the Istrumental Weighted Variables evaluated. It was done for each of 100 repe-

titions (each repetition produced data
{
(Y ∗

n , [X
∗
n]

′, [Z∗
n]

′)′
}50
n=1

). Let us denote the results

β̂
(LS,50)
(k) , β̂

(LWS,50,w)
(k) and β̂

(IWV,50,w)
(k) , k = 1, 2, ..., 100.
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S10 The mean values were calculated

β̂
(LS,50)
(mean) =

1

100

100∑
k=1

β̂
(LS,50)
(k) , β̂

(LWS,50,w)
(mean) =

1

100

100∑
k=1

β̂
(LWS,50,w)
(k) ,

β̂
(IWV,50,w)
(mean) =

1

100

100∑
k=1

β̂
(IWV,50,w)
(k) .

These (empirical) means are presented in the next triplet of tables, in the columns denoted
(at the second row of tables) by 1.

S11 The whole procedure, starting with S1 up to S10, was 10 times repeated and values collected
in the next three tables. Each repetition gave results in one column of the triplet of tables,
i. e. the results of first repetition are in the second columns of the first, second and the third
table, the results of second repetition are in the third columns of the first, second and the
third table, etc.

The first experiment: β1 = 7, β2 = −3, β3 = −5

Ordinary Least Squares

1 2 3 4 5 6 7 8 9 10

β̂1 7.996 8.000 8.014 8.027 8.019 8.001 8.003 7.974 8.014 8.027

β̂2 -2.022 -1.999 -1.976 -1.998 -1.999 -2.001 -2.001 -2.002 -1.976 -1.998

β̂3 -3.971 -3.986 -4.026 -4.031 -4.017 -4.003 -3.995 -3.983 -4.026 -4.03

Least Weighted Squares

1 2 3 4 5 6 7 8 9 10

β̂1 8.019 7.994 7.980 8.009 8.04 8.008 8.015 7.963 7.980 8.010

β̂2 -2.021 -1.998 -2.000 -2.011 -2.026 -2.007 -1.998 -1.976 -2.000 -2.011

β̂3 -3.968 -3.978 -4.025 -4.038 -4.002 -4.018 -3.985 -4.013 -4.025 -4.038

Instrumental Weighted Variables

1 2 3 4 5 6 7 8 9 10

β̂1 6.817 6.735 6.868 7.099 6.871 7.095 7.474 6.688 6.868 7.0993

β̂2 -3.790 -3.073 -3.208 -3.276 -3.255 -3.420 -3.915 -3.077 -3.208 -3.276

β̂3 -5.534 -4.785 -5.384 -5.144 -5.006 -5.139 -5.747 -5.260 -5.384 -5.144

The second experiment:

S’8 The values of response variables Yn’s were calculated as

Yn = 2.4 ·Xn1 − 3.1 ·Xn2 + 2.8 ·Xn3 + ε(1)n , n = 1, 2, ..., 50.

Then we put Y ∗
n = Yn for 1 ≤ n ≤ 50 and X∗

n = Xn and Z∗
n = Zn for 1 ≤ n ≤ 45. Finally,

for n = 46, 47, ..., 50 we put X∗
n = Xn + 5 and Z∗

n = Zn + 5. Then we took into account the

data
{
(Y ∗

n , [X
∗
n]

′, [Z∗
n]

′)′
}50
n=1

. It means that the last five explanatory as well as instrumental

variables were “converted” into leverage points. In other words, a contamination of data (on
the level of 10% of data having wrong explanatory as well as instrumental variables) was
performed.
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S’9 , S’10, S’11 The steps S’9, S’10, S’11 coincide with S9, S10 and S11.

The second experiment: β1 = 2.4, β2 = −3.1, β3 = 2.8

Ordinary Least Squares

1 2 3 4 5 6 7 8 9 10

β̂1 3.406 3.393 3.396 3.386 3.395 3.394 3.407 3.412 3.393 3.400

β̂2 -2.100 -2.111 -2.088 -2.105 -2.085 -2.104 -2.107 -2.103 -2.095 -2.096

β̂3 3.793 3.819 3.788 3.823 3.797 3.809 3.797 3.797 3.801 3.789

Least Weighted Squares

1 2 3 4 5 6 7 8 9 10

β̂1 3.405 3.393 3.394 3.377 3.396 3.388 3.419 3.403 3.407 3.398

β̂2 -2.099 -2.109 -2.085 -2.102 -2.070 -2.101 -2.113 -2.101 -2.096 -2.098

β̂3 3.777 3.823 3.784 3.829 3.793 3.805 3.811 3.798 3.796 3.788

Instrumental Weighted Variables

1 2 3 4 5 6 7 8 9 10

β̂1 2.446 2.296 2.160 2.352 2.221 2.289 2.227 2.311 2.316 2.343

β̂2 -3.261 -3.218 -3.222 -3.122 -3.125 -3.172 -3.254 -3.200 -3.102 -2.999

β̂3 2.892 2.832 2.748 2.896 2.632 2.603 2.797 2.677 2.688 2.742

The third experiment:

S’8 The values of response variables Yn’s were calculated as

Yn = −Xn1 − 4 ·Xn2 + 2 ·Xn3 + ε(1)n , n = 1, 2, ..., 50.

Then for n = 1, 2, ..., 5 we put Y ∗
n = 5 · Yn and Y ∗

n = Yn for 6 ≤ n ≤ 50. Moreover, for
n = 46, 47, ..., 50 we put X∗

n = 5 · Xn and Z∗
n = 5 · Zn. Finally, X∗

n = Xn and Z∗
n = Zn

for 1 ≤ n ≤ 45. Then we took into account the data
{
(Y ∗

n , [X
∗
n]

′, [Z∗
n]

′)′
}50
n=1

. It means

that the first five response variables were again “converted” into outliers and the last five
explanatory as well as instrumental variables were “converted” into leverage points. In
other words, a contamination of data (on the level of 10% of observations having damaged
response variable and another 10% of them having wrong explanatory as well as instrumental
variables) was performed.

S’9 , S’10, S’11 The steps S’9, S’10, S’11 coincide with S9, S10 and S11.

The third experiment: β1 = −1, β2 = 4, β3 = 2

Ordinary Least Squares

1 2 3 4 5 6 7 8 9 10

β̂1 -0.025 0.025 -0.011 0.001 -0.015 0.011 0.006 -0.002 -0.006 -0.011

β̂2 5.013 4.979 4.996 5.006 5.006 4.985 4.986 5.017 5.001 5.027

β̂3 3.008 2.999 3.018 2.993 3.014 3.001 3.006 2.989 3.012 2.994
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Least Weighted Squares

1 2 3 4 5 6 7 8 9 10

β̂1 -0.012 0.023 -0.004 0.005 -0.019 0.006 0.013 0.001 -0.022 -0.006

β̂2 5.010 4.973 4.997 5.005 4.991 4.986 4.990 5.022 4.997 5.027

β̂3 3.007 3.007 3.026 3.000 3.016 2.998 3.008 2.981 3.007 2.995

Instrumental Weighted Variables

1 2 3 4 5 6 7 8 9 10

β̂1 -1.151 -1.077 -1.176 -1.109 -0.966 -1.045 -1.025 -1.057 -1.034 -1.008

β̂2 3.961 3.894 3.921 3.933 3.895 3.833 3.768 3.789 3.801 3.920

β̂3 1.986 1.846 1.893 1.840 1.891 1.862 1.998 1.997 1.743 1.831

(All programs for evaluating all employed estimators as well as the “framework” for the simulation
study are available from the author on request.)

Conclusions of simulation study

It is evident that the contamination 10% together with correlation between the regressors
and the error terms destroyed the Ordinary Least Squares as well as the Least Weighted Squares.
The situation under presence of outliers can be coped quite well by the Instrumental Weighted
Variables. The performance of the Instrumental Weighted Variables under presence of leverage
points is nearly of the same quality.

There are at least two things which may be of interest. Firstly, the estimation is satisfactorily
good although the correlation between the explanatory and the instrumental variables is rather
weak, see (23). In practice, the economic data often exhibit higher autocorrelation in the time
series of explanatory variables and hence we have (frequently) at hand better instruments, see
e. g. Vı́̌sek (2003b).

Secondly, the estimation by means of the Ordinary Least Squares and by the Least Weighted
Squares was mainly destroyed by correlation between the explanatory variables and error terms,
as it is indicated by a similar “bias” of the respective estimates. If the damage would be caused
(mainly) by contamination, the bias would be much larger for the Ordinary Least Squares in
comparison with the Least Weighted Squares (which are able to cope with the contamination of
data in the case when there is no the correlation between explanatory variables and error terms,
see Plát (2004b)). The phenomenon can be presumably explained as follows: For the Ordinary
Least Squares we have

β̂(OLS,n) =
(
X

′
X
)−1

X
′
Y = β0 +

(
1

n
X

′
X

)−1 1

n
X

′
e,

compare with (5). A similar asymptotic (Bahadur) representation can be derived for β̂(LWS,n,w),
see Maš́ıček (2003) or Vı́̌sek (2002b). Then 50 observations already “activated” the law of large

numbers and so
(
1
nX

′
X
)−1

and 1
nX

′
e are already near to IEX1X

′
1 and to IEX1e1, respectively,

and hence the bias.
So, it seems that (a bit preliminary) conclusion may be that neglecting the correlation between

regressors and error terms may be much more dangerous than the omission of the presence of
contamination of data, especially when it is not of very large (high, if you want) level.

CONSISTENCY OF THE INSTRUMENTAL WEIGHTED VARIABLES
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For any β ∈ Rp the distribution of the absolute value of residual will be denoted Fβ(r), i. e.

Fβ(r) = P (|Y1 −X
′
1β| < r) = P (|e1 −X

′
1β| < r) (24)

(remember, we have assumed β0 = 0). Similarly, for any β ∈ Rp the empirical distribution of the

absolute value of residual will be denoted F
(n)
β (r). It means that, denoting the indicator of a set

A by I {A}, we have

F
(n)
β (r) =

1

n

n∑
j=1

I {|rj(β)| < r} =
1

n

n∑
j=1

I
{
|ej −X

′
jβ| < r

}
. (25)

Realize now that denoting |ri(β)| = ai(β), the order statistics a(i)(β)’s and the order statistics of
the squared residuals r2(i)(β)’s assign to given fix observation the same rank, i. e. the residual of

given fix observation (say for i = i0, for some i0 ∈ {1, 2, ..., n}) is in the sequence

r2(1)(β) ≤ r2(2)(β) ≤ ...r2(n)(β) (26)

and in the sequence a(1)(β) ≤ a(2)(β) ≤ ...a(n)(β) (27)

on the same position. In other words, if the squared residual of the j-th observation is the ℓ-th
smallest among the squared residuals, also the absolute value of the j-th residual is the ℓ-th smallest
among the absolute values of residuals. Then looking for the empirical distribution function of
the absolute values of residuals, we observe that the first “jump” (having the magnitude 1

n) is
at the smallest absolute value of residuals, i. e. at a(1)(β). But due to the sharp inequality in

the definition (25) of the empirical distribution function (see (25)), it holds F
(n)
β (a(1)(β)) = 0.

Hence, at the ℓ-th “jump” at a(ℓ)(β), we have F
(n)
β (a(ℓ)(β)) = ℓ−1

n . Now, let us realize that
a(π(β,i))(β) = |ri(β)|. It means that at the π(β, i)-th “jump”, we have

F
(n)
β (a(π(β,i))(β)) = F

(n)
β (|ri(β)|) =

π(β, i)− 1

n
(28)

(for π(β) see (10)) and so (20) can be written as
n∑

i=1

w
(
F

(n)
β (|ri(β)|)

)
Zi

(
Yi −X

′
iβ
)
= 0. (29)

In what follows we shall denote the joint d. f. of explanatory variables, of instrumental variables
and of error terms by FX,Z,e(x, z, r) and of course the marginal d. f.’s by FX,Z(x, z), FX,e(x, r),
FX(x), FZ(z) etc. We will need also the following notation. For any β ∈ Rp the distribution of
the product β

′
ZX

′
β will be denoted Fβ′ZX′β(u), i. e.

Fβ′ZX′β(u) = P (β
′
Z1X

′
1β < u) (30)

and similarly as in (24) and (25), the corresponding empirical distribution will be denoted F
(n)

β
′
ZX

′
β
(u),

so that

F
(n)

β′ZX′β
(u) =

1

n

n∑
j=1

I
{
β

′
ZjX

′
jβ < u

}
=

1

n

n∑
j=1

I
{
ω ∈ Ω : β

′
Zj(ω)X

′
j(ω)β < u

}
. (31)

For any λ ∈ R+ and any a ∈ R put
γλ,a = sup

∥β∥=λ
Fβ

′
ZX

′
β(a). (32)
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Notice please that due to the fact that the surface of ball {β ∈ Rp, ∥β∥ = λ} is compact, there is
βλ ∈ {β ∈ Rp, ∥β∥ = λ} so that

γλ,a = F
β
′
λ
ZX

′
βλ
(a). (33)

For any λ ∈ R+ let us denote

τλ = − inf
∥β∥≤λ

β
′
IE
[
Z1X

′
1 · I{β

′
Z1X

′
1β < 0}

]
β. (34)

Notice please that τλ ≥ 0 and that again due to the fact that the ball {β ∈ Rp, ∥β∥ ≤ λ} is
compact, the infimum is finite, since there is a β̃ ∈ {β ∈ Rp, ∥β∥ ≤ λ} so that

τλ = −β̃′
IE
[
Z1X

′
1 · I{β̃

′
Z1X

′
1β̃ < 0}

]
β̃. (35)

The classical regression analysis accepted the assumption that IEZ1X
′
1 is regular and IE {e1|Z1} =

0 (see e. g. Bowden, Turkington (1984) or Judge et al. (1985)) to be able to prove consistency
of the estimator obtained by the method of Instrumental Variables. We need to assume similar
ones. The following more or less academic considerations give us an inspiration. Transforming
the variables so that we put X̃11 = X11 and for any j = 2, 3, ..., p

X̃1j = X1j −
j−1∑
k=1

λjkX̃1k

where λjk are selected so that cov(X̃1j , X̃1k) = 0 for j ̸= k, we have the matrix IEX̃1X̃
′
1 diagonal

and the model for transformed data, namely Yi = X̃
′
i β̃+ui has the same ”explanatory” abilities as

(1). New explanatory variables
{
X̃i

}∞
i=1

would not allow presumably so direct (physical, biological,

economic etc.) interpretation, nevertheless they have also at least one advantage, namely that
overfitting the model does not imply automatically a decrease of efficiency of the etimates of
regression coefficients, see Chatterjee and Hadi (1988).

Assuming that we shall look for a sequence of instrumental variables
{
Z̃i

}∞
i=1

for the sequence

of transformed explanatory variables
{
X̃i

}∞
i=1

. We would like to find it so that also IEZ̃1X̃
′
1 is

regular and diagonal. In other words, we would like to find the instrumental variables so that Z̃1j

is correlated only with X̃1j (of course for all j = 2, , 3..., p). Assume that it is possible. Then we
may assume that IEZ̃1jX̃1j > 0 (otherwise we take instead of Z̃1j the instrumental variable -Z̃1j).
Then however IEZ̃1X̃

′
1 is positive definite. These (let us repeat academic) considerations can

inspire us to made following assumptions about the instrumental variables: C3 The instrumental

variables {Zi}∞i=1 are independent and identically distributed with distribution function FZ(z).
Moreover, they are independent from the sequence {ei}∞i=1. Further, the joint distribution function

FX,Z(x, z) is absolutely continuous, IE
{
w(Fβ0(|e1|))Z1X

′
1

}
as well as IEZ1Z

′
1 are positive definite

(one can compare C3 with Vı́̌sek (1998a) where we considered instrumental M -estimators and the
discussion of assumptions for M -instrumental variables was given) and there is q > 1 so that
IE {∥Z1∥ · ∥X1∥}q <∞. Finally, there is a > 0, b ∈ (0, 1) and λ > 0 so that

a · (b− γλ,a) · w(b) > τλ (36)

for γλ,a and τλ given by (32) and (34).

Remark 7 Let us briefly discuss assumptions we have made. Let us recall that the Least Squares
(β(LS,n)) are optimal only under normality of error terms. Here the optimality means that they
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reach the lower Rao-Cramer bound (of course, in multivariate Rao-Cramer lemma we consider the
ordering of the covariance matrices in the sense of ordering the positive definite matrices).On the
other hand, a small departure from normality may cause (and usually does) a large decrease of
efficiency (see e.g. Fisher (1920), (1922)). So, without the assumption of normality of the error
terms β̂(LS,n) is much worse, in fact they are the best unbiased estimator only in the class of linear
unbiased estimators, for a discussion showing that restriction on linear estimators can be drastic
see Hampel et al. (1986). Sometimes, however we may meet with the statement that we do not
need necessarily the normality of error terms, just because β̂(LS,50) is still (without normality) the
best unbiased estimator in the class of linear unbiased estimators. And the restriction on the class
of linear unbiased estimators is justified by a claim that we have to restrict ourselves on the class
of linear estimaors, as in the the class of linear unbiased estimators, the estimators are scale-
and regression-eqivariant. Let us recall that having denoted M(n, p) the set of all matrices of type
(n× p) and recalling that the estimator β̂ can be considered as a mapping

β̂(Y,X) : M(n, p+ 1) → Rp,

the estimator β̂ of β0 is called scale-equivariant, if for any c ∈ R+, Y ∈ Rn and X ∈ M(n, p) we
have

β̂(cY,X) = cβ̂(Y,X)

and regression-equivariant if for any b ∈ Rp, Y ∈ Rn and X ∈M(n, p)

β̂(Y +Xb,X) = β̂(Y,X) + b.

But, there are a lot of nonlinear estimators which are scale- and regression-equivariant. In the
regression framework, the estimators as the Least Median of Squares, the Least Trimmed Squares
or the Least Weighted Squares can serve as examples (for an interesting discussion of this topic
see again Hampel et al. (1986), and also Bickel (1975) or Jurečková and Sen (1993)).)

Since LWS are also based on L2-metric, we guess that they are approximately optimal for finite
sample sizes under the (approximative) normality of error terms, for some hint consult Maš́ıček
(2003). As the present proposal of robustified instrumental variables is based on the same metric
(due to the normal equations (20)), we can expect that the estimate can be approximately optimal
under (approximative) normality of the error terms. But then our assumptions seem to be quite
acceptable.

The only assumption which deserve further discussion is the assumption (36). We are going
to show that it is a restriction on the weight function w. Let us return to (32) (or to (33)). We
have

γλ,a = F
β
′
λ
ZX′βλ

(a) = P
(
β

′
λZ1X

′
1βλ ≤ 0

)
+ P

(
0 < β

′
λZ1X

′
1βλ ≤ a

)
.

If we assume for a while Zj = Xj, for any fix λ ∈ R+ we have

lim
a→0+

Fβ
′
γXX

′
βγ
(a) = 0 (37)

but generally, (if Zj is not Xj) we have (again for fix λ ∈ R+)

lim
a→0+

Fβ′
γZX′βγ

(a) = P
(
β

′
λZ1X

′
1βλ ≤ 0

)
. (38)

On the other hand, for any a > 0 we have

γλ,a < 1. (39)
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Now let us turn to τλ. As

IE
∣∣∣β′
Z1X

′
1β
∣∣∣ ≤ ∥β∥2 IE {∥Z1∥ ∥X1∥} ≤ ∥β∥2 IE {∥Z1∥ ∥X1∥}q <∞,

we have
lim sup
∥β∥→0

∣∣∣ β′
IE
[
Z1X

′
1I{β

′
Z1X

′
1β < 0}

]
β
∣∣∣ = 0. (40)

In other words, τλ can be done arbitrary small (just selecting λ ∈ R+ so that ∥λ∥ is small). It
says that if w(b) ≡ 1, there is b ∈ (0, 1) > γλ,a (even for any a > 0). It means that (37), (38),
(39) and (40) indicate that (36) can be always fulfilled but we may have restricted possibility to
depress the influence of “bad” observations.

In what follows there are defined some constants inside the proofs of lemmas. They are assumed
to be defined only inside the corresponding proof. Now we can prove:

Lemma 1 Let Conditions C1, C2 and C3 be fulfilled. Then for any ε > 0 and δ > 0 there is
θ > δ and ∆ > 0 such that

P

({
ω ∈ Ω : inf

∥β∥≥θ
− 1

n
β

′
INEY,Z,n(β) > ∆

})
> 1− ε.

In other words, any sequence
{
β̂(IWV,n,w)

}∞
n=1

of the solutions of the (sequence of) normal equa-

tions INEZ,n(β̂
(IWV,n,w)) = 0 (see (19)) is bounded in probability.

Proof: The plan of the proof is simple: We shall show that for any positive ε there are positive
κ and nε so that for any n > nε with probability at least 1 − ε, outside the ball of the diameter
κ the expression − 1

nβ
′
INEY,Z,n(β) is positive. The way how to demonstrate it is based on the

idea to show that quadratic part of − 1
nβ

′
INEY,Z,n(β) is positive and hence for enough large β it

overcomes the linear one. In order to establish the positivity of quadratic part, we evaluate the
number of terms in the corresponding sum which are negative and the number of terms which
are positive and simultaneously having weight larger than a constant c (of course, there are some
other positive terms, contribution of which will be neglected, since their weights are smaller than
c). Since the mean of sum of the negative terms is bounded from below in probability, we estimate
from below the value of quadratic term.

First of all, denote the set of all indices i = 1, 2, ..., n by In, for b from Condition C3 the set

of indices for which F
(n)
β (|ri(β)|) ≥ b by Ib and finally, for any β ∈ Rp denote the set of indices

for which β
′
ZiX

′
iβ < a by Ia(β). Of course, the set of indices Ib also depends on β but due to the

fact that we shall need only an upper estimate of number of elements of Ib which doesn’t depend
on β, we have omitted β in notations. Returning to (26) or (27), we easy verify that the empirical
d.f. overcomes b at least at its [nb] + 1 jump, i.e. at least [nb] of n observations are in ICb . Hence

#Ib ≤ n · (1− b) + 1 (41)

where #A stays for the number of elements of the set A. Denote IE {|e1| · ∥Z1∥} = γ(1) and
IE {∥X1∥ · ∥Z1∥} = γ(2) and fix a positive ε. Further, let λ > 0 be that from C3 and put (see
(36))

δ =
a · (b− γλ,a) · w(b)− τλ

5
.
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Recalling that we have assumed that β0 = 0, we shall consider for β ∈ Rp

− 1

n
β

′
INEY,Z,n(β) = − 1

n

n∑
i=1

w
(
F

(n)
β (|ri(β)|)

)
β

′
Zi

(
ei −X

′
iβ
)

=
1

n

n∑
i=1

w
(
F

(n)
β (|ri(β)|)

)
β

′
ZiX

′
iβ − 1

n

n∑
i=1

w
(
F

(n)
β (|ri(β)|)

)
eiZ

′
iβ. (42)

Let us start with the first term in (42) and put τ (1) = δ/(2L · γ(2) · λ2), for L see C2. Due to

Lemma 4 we can find n1 ∈ N so that for any n > n1 there is a set B
(1)
n such that P (B

(1)
n ) > 1−ε/5

and for any ω ∈ B
(1)
n

sup
β∈Rp

sup
r∈R

∣∣∣F (n)
β (r)− Fβ(r)

∣∣∣ ≤ τ (1).

Employing the law of large numbers, find n2 ∈ N so that for any n > n2 there is a set B
(2)
n such

that P (B
(2)
n ) > 1− ε/5 and for any ω ∈ B

(2)
n

1

n

n∑
i=1

∥Zi∥ · ∥Xi∥ < 2γ(2).

Since then for any n > max {n1, n2} and any ω ∈ B
(1)
n ∩B(2)

n (of course P
(
B

(1)
n ∩B(2)

n

)
> 1− 2ε

5 )

1

n
sup
β∈Rp

∥∥∥∥∥
n∑

i=1

{
w
(
F

(n)
β (|ri(β)|)

)
− w

(
Fβ(|ri(β)|)

)}
ZiX

′
i

∥∥∥∥∥
≤ 1

n
L · τ (1) ·

n∑
i=1

∥Zi∥ · ∥Xi∥ ≤ L · τ (1) · 2γ(2) = δ

λ2
,

we have for any n > max {n1, n2}, any ω ∈ B
(1)
n ∩B(2)

n and any β ∈ Rp

1

n
sup
β∈Rp

∣∣∣∣∣
n∑

i=1

{
w
(
F

(n)
β (|ri(β)|)

)
− w (Fβ(|ri(β)|))

}
β

′
ZiX

′
iβ

∣∣∣∣∣ ≤ δ · ∥β∥2

λ2
. (43)

Notice please that for any β ∈ Rp, for indices for which F
(n)
β (|ri(β)|) ≤ b, we have w

(
F

(n)
β (|ri(β)|)

)
≥ w(b). Now, let us consider for any β ∈ Rp

1

n

n∑
i=1

w (Fβ(|ri(β)|))β
′
ZiX

′
iβ =

1

n

n∑
i=1

w (Fβ(|ri(β)|))β
′
ZiX

′
iβ · I{β′

ZiX
′
iβ < 0}

+
1

n

n∑
i=1

w (Fβ(|ri(β)|))β
′
ZiX

′
iβ · I{β′

ZiX
′
iβ ≥ 0}

≥ 1

n

n∑
i=1

β
′
ZiX

′
iβ · I{β′

ZiX
′
iβ < 0}+ 1

n

∑
In\Ib

w(b)β
′
ZiX

′
iβ · I{β′

ZiX
′
iβ ≥ 0} (44)

where we have employed monotonicity of w(r). Notice please that (44) holds for any β ∈ Rp.
Utilizing Lemma 10 find such n3 ∈ N that for all n > n3 we have

P

({
ω ∈ Ω : inf

∥β∥≤λ

1

n

n∑
i=1

β
′
ZiX

′
iβ · I{β′

ZiX
′
iβ < 0} > τλ − δ

2

})
> 1− ε

5
(45)
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and denote the corresponding set by B
(3)
n . Employing Lemma 5 find n4 ∈ N so that for all n > n4

we have

P

({
ω ∈ Ω : sup

β∈Rp
sup
u∈R

∣∣∣F (n)

β
′
ZX

′
β
(u)− Fβ′ZX′β(u)

∣∣∣ ≤ δ

2 · a · w(b)

})
> 1− ε

5
(46)

and denote the corresponding set by B
(4)
n . Recalling that, due to the fact how the empirical

distribution function is defined, we have

F
(n)

β′ZX′β
(a) =

#{i : β′
ZiX

′
iβ < a}

n
=

#Ia(β)

n

(where again #A denotes the number of points of the set A), we conclude that (46) implies for

any n > n4 and ω ∈ B
(4)
n

#Ia(β) <

(
Fβ′ZX′β(a) +

δ

2 · a · w(b)

)
· n ≤

(
γλ,a +

δ

2 · a · w(b)

)
· n (47)

(for γλ,a see (32)).Finally, find n5 ∈ N so that for all n > n5 we have

a · w(b)
n

< δ. (48)

Consider ω ∈ B∗
n = B

(3)
n ∩ B

(4)
n and n > max {n3, n4, n5}. Let us recall once again that for

any β ∈ Rp, for indices for which F
(n)
β (|ri(β)|) ≤ b, we have w

(
F

(n)
β (|ri(β)|)

)
≥ w(b). Hence,

(41) and (47) imply that the number of indices for which β
′
ZiX

′
iβ ≥ a and simultaneously

w
(
F

(n)
β (|ri(β)|)

)
≥ w(b) is at least

n− n · (1− b)− 1− n ·
(
γλ,a +

δ

2 · a · w(b)

)
= n ·

(
b− γλ,a −

δ

2 · a · w(b)

)
− 1.

Now, taking into account (45) and (48) we have for any n > max {n3, n4, n5}, any ω ∈ B∗
n =

B
(3)
n ∩B(4)

n and any ∥β∥ = λ

1

n

n∑
i=1

β
′
ZiX

′
iβ · I{β′

ZiX
′
iβ < 0}+ 1

n

∑
In\Ib

w(b)β
′
ZiX

′
iβ · I{β′

ZiX
′
iβ ≥ 0}

≥ a ·
(
b− γλ,a −

δ

2 · a · w(b)
− 1

n

)
· w(b)− τλ − δ

2
= a ·

(
b− γλ,a −

1

n

)
· w(b)− τλ − δ > 3δ.

Consider now any β ∈ Rp, ∥β∥ = θ ≥ λ and put β̃ = θ−1 · λ · β. Notice please that for any β ∈ Rp

for which β′ZiX
′
iβ < 0, also β̃′ZiX

′
iβ̃ < 0 and similarly for the case when β′ZiX

′
iβ ≥ 0. Then∥∥∥β̃∥∥∥ = λ and hence, again for any n > max {n3, n4, n5} and any ω ∈ B∗

n = B
(3)
n ∩ B(4)

n (due to

(44))
1

n

n∑
i=1

w (Fβ(|ri(β)|))β
′
ZiX

′
iβ

≥ 1

n

n∑
i=1

β
′
ZiX

′
iβ · I{β′

ZiX
′
iβ < 0}+ 1

n

∑
In\Ib

w(b)β
′
ZiX

′
iβ · I{β′

ZiX
′
iβ ≥ 0}
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=

(
θ

λ

)2
{
1

n

n∑
i=1

β̃
′
ZiX

′
i β̃ · I{β̃′

ZiX
′
i β̃ < 0}

+
1

n

∑
In\Ib

w(b)β̃
′
ZiX

′
i β̃ · I{β̃′

ZiX
′
i β̃ ≥ 0}

 > 3

(∥β∥
λ

)2

δ. (49)

Now, we shall consider the second term in (42). Recalling that we have denoted IE {|ei| · ∥Z1∥} =

γ(1), we can find n6 ∈ N so that for any n > n6 there is B
(5)
n so that P (B

(5)
n ) > 1 − ε/5 and for

any ω ∈ B
(5)
n we have

1

n

∣∣∣∣∣
n∑

i=1

w
(
F

(n)
β (|ri(β)|)

)
eiZ

′
iβ

∣∣∣∣∣ ≤ (γ(1) + δ)∥β∥. (50)

Consider n > max {n1, n2, n3, n4, n5, n6} and ω ∈ Bn = ∩5
j=1B

(j)
n . Of course, P (Bn) > 1− ε and

(42), (43), (49) and (50) imply that for any β ∈ Rp, ∥β∥ ≥ λ

− 1

n
β

′
INEY,Z,n(β) ≥ 2

(∥β∥
λ

)2

δ − (γ(1) + δ)∥β∥.

Then there is a κ > 0 such that for any β ∈ Rp, ∥β∥ > κ with probability at least 1− ε we have

− 1

n
β

′
INEY,Z,n(β) > δ. 2

Remark 8 The fact that for any i and any ω ∈ Ω the matrix XiX
′
i is positive semidefinite

allows to prove the same assertion (i.e. that all solutions of the normal equations are bounded in
probability) for the Least Weighted Squares in significantly simpler way, see Maš́ıček (2003).

Lemma 2 Let Conditions C1, C2 and C3 be fulfilled. Then for any ε > 0, δ ∈ (0, 1) and
ζ > 0 there is nε,δ,ζ ∈ N so that for any n > nε,δ,ζ we have

P

({
ω ∈ Ω : sup

∥β∥≤ζ

∣∣∣∣∣ 1n
n∑

i=1

w
(
F

(n)
β (|ri(β)|)

)
β

′
Zi

(
ei −X

′
iβ
)

−β′
IE
[
w (Fβ(|r1(β)|))Z1

(
ei −X

′
1β
)] ∣∣∣∣∣ < δ

})
> 1− ε.

Proof: Denoting IE {|e1| · ∥Z1∥} = γ(1) and IE {∥X1∥ · ∥Z1∥} = γ(2), let us fix a positive
ε, δ ∈ (0, 1) and ζ > 0. Recalling that we have assumed that β0 = 0, we shall consider for
β ∈ Rp, ∥β∥ ≤ ζ

− 1

n
β

′
INEY,Z,n(β) = − 1

n

n∑
i=1

w
(
F

(n)
β (|ri(β)|)

)
β

′
Zi

(
ei −X

′
iβ
)

=
1

n

n∑
i=1

w
(
F

(n)
β (|ri(β)|)

)
β

′
ZiX

′
iβ − 1

n

n∑
i=1

w
(
F

(n)
β (|ri(β)|)

)
eiZ

′
iβ. (51)
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Let us start with the first term in (51) and put τ (1) = δ/(16γ(2)ζ2 · L), for L see Condition

C2. Due to Lemma 4 we can find n1 ∈ N so that for any n > n1 there is a set B
(1)
n such that

P (B
(1)
n ) > 1− ε/8 and for any ω ∈ B

(1)
n

sup
β∈Rp

sup
r∈R

∣∣∣F (n)
β (r)− Fβ(r)

∣∣∣ ≤ τ (1). (52)

Employing the law of large numbers, find n2 > n1 so that for any n > n2 there is a set B
(2)
n such

that P (B
(2)
n ) > 1− ε/8 and for any ω ∈ B

(2)
n

1

n

n∑
i=1

∥Zi∥ · ∥Xi∥ < 2γ(2). (53)

Since then for any n > n2 and any ω ∈ B
(1)
n ∩B(2)

n (of course P
(
B

(1)
n ∩B(2)

n

)
> 1− ε

4)

1

n
sup

∥β∥≤ζ

∥∥∥∥∥
n∑

i=1

{
w
(
F

(n)
β (|ri(β)|)

)
− w (Fβ(|ri(β)|))

}
ZiX

′
i

∥∥∥∥∥
≤ 1

n
L · τ (1) ·

n∑
i=1

∥Zi∥ · ∥Xi∥ ≤ L · τ (1) · 2γ(2) = δ

8ζ2
,

we have for any n > n2 and any ω ∈ B
(1)
n ∩B(2)

n

1

n
sup

∥β∥≤ζ

∣∣∣∣∣
n∑

i=1

{
w
(
F

(n)
β (|ri(β)|)

)
− w (Fβ(|ri(β)|))

}
β

′
ZiX

′
iβ

∣∣∣∣∣ ≤ δ

8
. (54)

Employ Lemma 3 and find for ∆ = δ
16·L·γ(2)ζ2

such τ (2) > 0 that for

T (τ (2)) =
{∥∥∥β(1)∥∥∥ ≤ ζ,

∥∥∥β(2)∥∥∥ ≤ ζ,
∥∥∥β(1) − β(2)

∥∥∥ < τ (2)
}

(55)

we have
sup

(β(1),β(2))∈T (τ (2))

sup
r∈R

∣∣∣Fβ(1)(r)− Fβ(2)(r)
∣∣∣ < ∆.

Then for any n > n2 and any ω ∈ B
(1)
n ∩B(2)

n

1

n
sup

(β(1),β(2))∈T (τ (2))

∣∣∣∣∣
n∑

i=1

{
w
(
Fβ(2)(|ri(β(2))|)

)
− w

(
Fβ(1)(|ri(β(2))|)

)} [
β(1)

]′
ZiX

′
iβ

(1)

∣∣∣∣∣
≤ L ·∆ · ζ2 · 1

n

n∑
i=1

∥Zi∥ · ∥Xi∥ ≤ δ

8
(56)

(notice that the in the previous inequality the subindices of the d.f.’s are β(1) and β(2) but the
arguments are the same, namely ri(β

(2))). Further denote γ(3) = IE {∥Z1∥ · ∥X1∥}q, γ(4) =
IE ∥X1∥ and applying the law of large numbers find n3 > n2 so that for any n > n3 there is

a set B
(3)
n such that P (B

(3)
n ) > 1− ε/8 and for any ω ∈ B

(3)
n we have

1

n

n∑
i=1

{∥Zi∥ · ∥Xi∥}q < 2γ(3) and
1

n

n∑
i=1

∥Xi∥ < 2γ(4).
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Finally, let us recall that w(r) ∈ [0, 1], so that for any pair r1, r2 ∈ R we have |w(r1)−w(r2)| ≤ 1
and hence for any q′ > 1

|w(r1)− w(r2)|q
′
≤ |w(r1)− w(r2)|. (57)

Then select a τ (3) ∈

0,min

τ (2), δ ·
(
2q

′ · 2q · 8 · Ue · L ·
[
γ(3)

] q′
q · γ(4) · ζ2q′

)−1

 (for Ue see

C1) and put

T (τ (3)) =
{∥∥∥β(1)∥∥∥ ≤ ζ,

∥∥∥β(2)∥∥∥ ≤ ζ,
∥∥∥β(1) − β(2)

∥∥∥ < τ (3)
}
.

Employing Hőlder’s inequality we arrive at

sup
(β(1),β(2))∈T (τ (3))

1

n

∣∣∣∣∣
n∑

i=1

{
w
(
Fβ(1)(|ri(β(2))|)

)
− w

(
Fβ(1)(|ri(β(1))|)

)} [
β(1)

]′
ZiX

′
iβ

(1)

∣∣∣∣∣
≤ sup

(β(1),β(2))∈T (τ (3))


[
1

n

n∑
i=1

∣∣∣w (Fβ(1)(|ri(β(2))|)
)
− w

(
Fβ(1)(|ri(β(1))|)

)∣∣∣q′] 1
q′

×

×
[
1

n

n∑
i=1

(∥∥∥β(1)∥∥∥ · ∥Zi∥ · ∥Xi∥ ·
∥∥∥β(1)∥∥∥)q

] 1
q


≤ sup

(β(1),β(2))∈T (τ (3))


[
1

n

n∑
i=1

∣∣∣w (Fβ(1)(|ri(β(2))|)
)
− w

(
Fβ(1)(|ri(β(1))|)

)∣∣∣] 1
q′

×

×ζ2
[
1

n

n∑
i=1

(∥Zi∥ · ∥Xi∥)q
] 1

q


≤ sup

(β(1),β(2))∈T (τ (3))

U 1
q′
e L

1
q′
[
τ (3)

] 1
q′

[
1

n

n∑
i=1

∥Xi∥
] 1

q′

ζ2
[
1

n

n∑
i=1

(∥Zi∥ ∥Xi∥)q
] 1

q


≤ ζ2 · U

1
q′
e · L

1
q′ ·

[
τ (3)

] 1
q′ ·

[
2γ(4)

] 1
q′ ·

[
2γ(3)

] 1
q ≤ δ

8
. (58)

Finally, utilizing Lemma 8 find τ (4) ∈ (0,min
{
δ/8, τ (3)

}
) so that for any pair ∥β(1)∥ ≤ ζ, ∥β(2)∥ ≤

ζ, ∥β(1) − β(2)∥ ≤ τ (4), we have∣∣∣[β(1)]IE [w (Fβ(1)(|r1(β(1))|)
)
Z1

(
ei −X

′
1β

(1)
)]

−[β(2)]
′
IE
[
w
(
Fβ(2)(|r1(β(2))|)

)
Z1

(
ei −X

′
1β

(2)
)]∣∣∣ ≤ δ

8
. (59)

Now find a minimal system of open balls of type B(β, τ (4)) covering the p-dimensional ball with
center at zero and radius ζ, i. e. B(ζ) = {β ∈ Rp : ∥β∥ ≤ ζ}. Of course, due to the compactness of

B(ζ) the system has finite number of balls, sayK(ζ), and denote this system by
{
B(β(j), τ (4))

}K(ζ)

j=1
.

Utilizing the law of large numbers find for any j ∈ {1, 2, ...,K(ζ)} some n∗j ∈ N so that for all
n > n∗j the set
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B
(4)
nj =

{
ω ∈ Ω :

1

n

∥∥∥∥∥
n∑

i=1

{
w
(
Fβ(j)(|ri(β(j))|)

)
XiX

′
i

−IE
[
w
(
Fβ(j)(|ri(β(j))|)

)
XiX

′
i

]}∥∥∥ < δ

8ζ2

}
(60)

has probability at least 1 − ε
8K(ζ) . Finally put n

(1)
ε,δ,ζ = max

{
n3, n

∗
1, n

∗
2, ..., n

∗
K(ζ)

}
and Bn =

B
(1)
n ∩ B

(2)
n ∩ B

(3)
n ∩K(ζ)

j=1 B
(4)
nj . We have P (Bn) > 1 − ε

2 . Since for any n > n
(1)
ε,δ,ζ and any

β ∈ Rp, ∥β∥ ≤ ζ there is j ∈ {1, 2, ...,K(ζ)} so that
∥∥∥β − β(j)

∥∥∥ < τ (4), taking into account (54),

(56), (58), (59) and (60) we have for for any ω ∈ Bn

sup
∥β∥≤ζ

1

n

∣∣∣∣∣β′
n∑

i=1

{
w
(
F

(n)
β (|ri(β)|)

)
ZiX

′
i − IE

[
w (Fβ(|r1(β)|))Z1X

′
1

]}
β

∣∣∣∣∣ < δ

2
. (61)

Now, we shall consider the second term in (51). Along similar lines as in the first part of the

proof, we can find n
(2)
ε,δ,ζ ∈ N so that for any n > n

(2)
ε,δ,ζ there is Cn ⊂ Ω so that P (Cn) > 1− ε/2

and for any ω ∈ Cn we have

sup
∥β∥≤ζ

1

n

∣∣∣∣∣
n∑

i=1

{
w
(
F

(n)
β (|ri(β)|)

)
eiZ

′
iβ − IE

[
w (Fβ(|r1(β)|)) e1Z

′
1β
]}∣∣∣∣∣ < δ

2
. (62)

Taking into account (61) and (62), we conclude the proof. 2

C4 The vector equation

β
′
IE
[
w (Fβ(|r1(β)|))Z1

(
e1 −X

′
1β
)]

= 0 (63)

in the variable β ∈ Rp has unique solution β0 = 0.

Theorem 1 Let Conditions C1, C2, C3 and C4 be fulfilled. Then any sequence
{
β̂(IWV,n,w)

}∞
n=1

of the solutions of normal equations INEZ,n(β̂
(IWV,n,w)) = 0 is weakly consistent.

Proof: To prove the consistency of
{
β̂(IWV,n,w)

}∞
n=1

, we have to show that for any ε > 0 and

δ > 0 there is nε,δ ∈ N such that for all n > nε,δ

P
({
ω ∈ Ω :

∥∥∥β̂(IWV,n,w) − β0
∥∥∥ < δ

})
> 1− ε. (64)

So fix ε1 > 0 and δ1 > 0. According to Lemma 1 there are ∆1 > 0 and θ1 > δ1 so that for ε1
there is n∆1,ε1 ∈ N so that for any n > n∆1,ε1

P

({
ω ∈ Ω : inf

∥β∥≥θ1
− 1

n
β

′
INEY,Z,n(β) > ∆1

})
> 1− ε1

2

(denote the corresponding set by Bn). It means that for all n > n∆1,ε1 all solutions of the normal
equations INEY,Z,n(β) = 0 are inside the ball B(0, θ1) with probability at least 1 − ε1

2 . Now,

utilizing Lemma 2 we may find for ε1, δ = min{∆1
2 , δ1} and θ1 such nε1,δ,θ1 ∈ N , nε1,δ,θ1 ≥ n∆1,ε1

so that for any n > nε1,δ,θ1 there is a set Cn (with P (Cn) > 1− ε
2) such that for any ω ∈ Cn

sup
∥β∥≤θ1

∣∣∣∣∣ 1n
n∑

i=1

w
(
F

(n)
β (|ri(β)|)

)
β

′
Zi

(
ei −X

′
iβ
)
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−β′
IE
[
w (Fβ(|r1(β)|))Z1

(
ei −X

′
1β
)] ∣∣∣∣∣ < δ.

But it means that

inf
∥β∥=θ1

{
−β′

IE
[
w (Fβ(|r1(β)|))Z1

(
ei −X

′
1β
)]}

>
∆1

2
> 0. (65)

Further consider the compact set C = {β ∈ Rp : δ1 ≤ ∥β∥ ≤ θ1} and find

τC = inf
β∈C

{
−β′

IE
[
w (Fβ(|r1(β)|))Z1

(
ei −X

′
1β
)]}

. (66)

Then there is a {βk}∞k=1 such that

lim
k→∞

β
′
kIE

[
w (Fβk

(|r1(βk)|))Z1

(
ei −X

′
1βk

)]
= −τC .

On the other hand, due to compactness of C there is a β∗ and a subsequence
{
βkj

}∞
j=1

such that

lim
j→∞

βkj = β∗

and due to the continuity of β
′
IE
[
w (Fβ(|r1(β)|))Z1

(
ei −X

′
1β
)]

(see Lemma 8) we have

− [β∗]′ IE
[
w (Fβ∗(|r1(β∗)|))Z1

(
ei −X

′
1β

∗
)]

= τC . (67)

Then the continuity of β
′
IE
[
w (Fβ(|r1(β)|))Z1

(
ei −X

′
1β
)]

together with Condition C4 and (65)

imply that τC > 0 (otherwise there has to be a solution of (63) inside the compact C).

Now, utilizing Lemma 2 once again we may find for ε1, δ1, θ1 and τC nε1,δ1,θ1,τC ∈ N , nε1,δ1,θ1,τC ≥
nε1,δ,θ1 so that for any n > nε1,δ1,θ1,τC there is a set Dn (with P (Dn) > 1 − ε

2) such that for any
ω ∈ Dn

sup
∥β∥≤θ1

∣∣∣∣∣ 1n
n∑

i=1

w
(
F

(n)
β (|ri(β)|)

)
β

′
Zi

(
ei −X

′
iβ
)

−β′
IE
[
w (Fβ(|r1(β)|))Z1

(
ei −X

′
1β
)] ∣∣∣∣∣ < τC

2
. (68)

But (66) and (68) imply that for any n > nε1,δ1,θ1,τC and any ω ∈ Bn ∩Dn we have

inf
∥β∥>δ1

− 1

n
β

′
INEY,Z,n(β) >

τC
2
. (69)

Of course, P (Bn ∩Dn) > 1 − ε1. But it means that all solutions of normal equations (63) are
inside the ball of radius δ1 with probability at least 1 − ε1, i. e. in other words, β̂(IWV,n,w) is
weakly consistent. 2

CONCLUDING REMARKS

We have added a small pebble (of mosaic) to equip the Least Weighted Squares by additional (or
alternative, if you want) methods (similarly as the classical (Ordinary) Least Squares are equipped)
to be able to build up the regression model in the situations when the basic assumptions are broken
or when the “main” method is not suitable. We have discussed the situation when orthogonality
condition is broken and hence the (Ordinary) Least Squares are biased. That is why we have
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proposed the robustified version of the classical instrumental variables. The other situation, e.g.
discrete or limited response variable, will require also modifications of the Least Weighted Variables

The lack of such tools and of course the lack of easy available and reliable implementations
of robust methods hamper a wide (or at least wider than the present) employment of robust
methods. We have at present at hand already a reliable algorithm for the Instrumental Weighted
Variables which is based on the same idea as the algorithm which for the Least Trimmed Squares
was tested in Vı́̌sek (1996b, 2000a). The algorithm appeared to be reliable, we have referred
about it on COMPSTAT 2006, Vı́̌sek (2006c). A paper with a sufficient number of case studies
of its applications is under preparation. We can send on the request the code of algorithms (in
MATLAB or MATHEMATICA) for TLS, LWS and IWV to anybody who would like to try to
use it.

There are already available some other results for the Least Weighted Squares, see Kalina
(2004), Maš́ıček (2004 a, b), Plát (2004 a,b) which enlarge possibility of their applications. Some
other results, similar to those established in Vı́̌sek (1998b, 2000d, 2001, 2002d, 2003) for other
type of robust estimators, are under progress.

So, we hope that the present result can help to improve a bit the situations when “not using
robust methods along with the classical ones we take a risk of obtaining misleading results of case
studies under presence of even a slight contamination”, see Hampel et al. (1986).
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APPENDIX

The Appendix collects lemmas proofs of which are either simple “computation” on several
lines or they are chains (sometimes long and boring) of routine statistical steps. Exception is the
proof of Lemma 4 which was already published and the proofs of next two lemmas (Lemma 5 and
6) which are “copies” of the proof of Lemma 4. Proofs (in details) are available from author on
request.

Lemma 3 Under Conditions C1 the distribution function Fβ(r) is, uniformly with respect to
r ∈ R, uniformly continuous in β, i.e. for any δ > 0 there is ς ∈ (0, 1) so that for any pair β(1)

and β(2) such that
∥∥∥β(1) − β(2)

∥∥∥ < ς we have

sup
r∈R

∣∣∣Fβ(1)(r)− Fβ(2)(r)
∣∣∣ ≤ δ.

Proof is just evaluation of supr∈R

∣∣∣Fβ(1)(r)− Fβ(2)(r)
∣∣∣ ≤ δ which makes use the fact that

Fβ(r) = P
(∣∣∣e1 −X

′
1β
∣∣∣ < r

)
=

∫
I{
∣∣∣s− x

′
β
∣∣∣ < r}dFX,e(x, s).

2

Lemma 4 Let Conditions C1 hold and fix arbitrary ε > 0. Then there are K < ∞ and nε ∈ N
so that for all n > nε

P

({
ω ∈ Ω : sup

v∈R+

sup
β∈Rp

√
n
∣∣∣F (n)

β (v)− Fβ(v)
∣∣∣ < K

})
> 1− ε. (70)

For the proof of lemma see Vı́̌sek (2006a).
Let us recall that we have denoted for any β ∈ Rp by Fβ

′
ZX

′
β(u) the distribution of the

product β
′
ZX

′
β (see (30)) and the corresponding empirical distribution by F

(n)

β′ZX′β
(u) (see (31)).

Lemma 5 Let Condition C3 hold and fix arbitrary ε > 0. Then there are K < ∞ and nε ∈ N
so that for all n > nε

P

({
ω ∈ Ω : sup

β∈Rp
sup
u∈R

√
n
∣∣∣F (n)

β
′
ZX

′
β
(u)− Fβ′ZX′β(u)

∣∣∣ ≤ K

})
> 1− ε.

Proof runs along the same lines as the proof of previous lemma.

Lemma 6 Let Condition C3 hold and fix arbitrary ε > 0. Then there is Kε <∞ and nε ∈ N so
that for all n > nε

P

({
ω ∈ Ω : sup

β(1),β(2)∈Rp

√
n

∣∣∣∣∣ 1n
n∑

i=1

I

{[
β(1)

]′
ZiX

′
iβ

(1) < 0,
[
β(2)

]′
ZiX

′
iβ

(2) ≥ 0

}

−P
([
β(1)

]′
Z1X

′
1β

(1) < 0,
[
β(2)

]′
Z1X

′
1β

(2) ≥ 0

)∣∣∣∣ > Kε

})
> 1− ε.

Proof runs again along the same lines as the proof of Lemma 4.
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Lemma 7 Let Condition C3 hold and fix arbitrary ε > 0 and ζ > 0. Then there is ∆ > 0 so that

sup
(β(1), β(2))∈T (ζ,∆)

P

([
β(1)

]′
ZX

′
β(1) < 0,

[
β(2)

]′
ZX

′
β(2) ≥ 0

)
< ε.

Proof is a chain of routine considerations employing the continuity of the probability measure.

Lemma 8 Let Conditions C1, C2 and C3 hold. Then for any positive ζ

β
′
IE
[
w (Fβ(|r1(β)|))Z1

(
ei −X

′
1β
)]

is uniformly continuous in β on B = {β ∈ Rp : ∥β∥ ≤ ζ}.

Proof utilizes the assumption that the derivative of the weight function is bonded from below
and that the ball B = {β ∈ Rp : ∥β∥ ≤ ζ} is compact (for finite ζ).

Lemma 9 Let Conditions C1, C2 and C3 hold. Then for any positive ζ

β
′
IE
[
Z1X

′
1 · I

{
β

′
Z1X

′
1β < 0

}]
β

is uniformly continuous in β on B = {β ∈ Rp : ∥β∥ ≤ ζ}.

Proof runs along the same lines as the proof of previous lemma.

Let us recall that for any ζ ∈ R+ we have denoted

τζ = − inf
∥β∥≤ζ

β
′
IE
[
Z1X

′
1 · I{β

′
Z1X

′
1β < 0}

]
β.

Lemma 10 Let Conditions C1, C2 and C3 be fulfilled. Then for any ε > 0, δ ∈ (0, 1) and
ζ ≥ 1 there is nε,δ,ζ ∈ N so that for any n > nε,δ,ζ we have

P

({
ω ∈ Ω : inf

∥β∥≤ζ

1

n

n∑
i=1

β
′
ZiX

′
iβ · I{β′

ZiX
′
iβ < 0} > −τζ − δ

})
> 1− ε.

Proof in this case is long chain of steps utilizing law of large numbers, compactness of the ball
{β ∈ Rp : ∥β∥ ≤ ζ} and Cauchy-Schwarz inequality.

Lemma 11 Let Conditions C1 hold. Then for any ε > 0 and δ ∈ (0, 1) there is ζ > 0 and
nε,δ ∈ N so that for all n > nε,δ

P

ω ∈ Ω : sup
r∈R

sup
∥β(1)−β(2)∥<ζ

∣∣∣F (n)

β(1)(r)− F
(n)

β(2)(r)
∣∣∣ < δ


 > 1− ε. (71)

Proof is a straightforward application of Lemmas 3 and 4.
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Vı́̌sek, J. Á. (2002c): Sensitivity analysis of M -estimates of nonlinear regression model: Influence of
data subsets. Annals of the Institute of Statistical Mathematics 54 261 - 290.
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