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1. BASIC FRAMEWORK AND WEIGHTING THE ORDER STATISTICS

Let N denote the set of all positive integers, R the real line and Rp the p-dimensional
Euclidean space. All vectors will be assumed to be the column ones and throughout
the paper, we assume that all r.v.’s are defined on a basic probability space (Ω,A, P ).
For a sequence of (p + 1)-dimensional random variables {(X ′

i , ei)
′}∞i=1, any n ∈ N

and β0 ∈ Rp the linear regression model given as

Yi = X
′

iβ
0 + ei =

p∑
j=1

Xijβ
0
j + ei, i = 1, 2, . . . , n (1)

will be considered. Further, for any β ∈ Rp ri(β) = Yi − X
′

iβ denotes the ith
residual and r2(h)(β) stays for the hth order statistic among the squared residuals,
i. e. we have

r2(1)(β) ≤ r2(2)(β) ≤ · · · ≤ r2(n)(β). (2)

Without loss of generality we may assume that β0 = 0 (otherwise we should write
in what follows β − β0 instead of β). For any matrix A = {aij}n,mi=1,j=1 denote by

∥A∥ Frobenius norm, i. e.
√∑n

i=1

∑m
j=1 a

2
ij . Finally, for any n ∈ N let wi ∈ [0, 1],

i = 1, 2, . . . , n be weights.

We are going to give a proof of consistency of the robust estimator of the regression
coefficients given in the next definition, see Vı́̌sek [19], under heteroscedasticity of
error terms.
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Definition 1.1. The solution of the extremal problem

β̂(LWS,n,w) = argmin
β∈Rp

n∑
i=1

wir
2
(i)(β) (3)

is called the Least Weighted Squares estimator (LWS).

Although the consistency was already proved (under homoscedasticity) in Vı́̌sek
[20, 21] and Maš́ıček [10], the proofs were very complicated (employing e. g. a sophis-
ticated modification of Prokhorov metric). Present way was opened by establishing
uniform convergence (uniform with respect to regression coefficients) of empirical
distribution functions of residuals (generally heteroscedastic, see Lemma A.7) to the
theoretical one and of similar result for regression combinations of explanatory vari-
ables (see Lemma A.6). These results are similar to the results which are usually
established in the theory of empirical processes but here we need the only assump-
tion, namely the independence of the r. v.’s in the sequence {(X ′

i , ei)
′}∞i=1. The

present result allows to start the studies concerning robustified White test (espe-
cially its power) and proposals of White-type estimator of covariance matrix of the
LWS-estimates of regression coefficients. Such estimator will be resistant against
heteroscedasticity – similarly as the “classic” White estimate of covariance matrix
for OLS-estimates – and so it will allow to evaluate properly the significance of ex-
planatory variables (neglecting the influence of heteroscedasticity leads frequently to
overestimation of significance of explanatory variables, consequently to an overfitted
model and hence finally to generally (and unfortunately frequently) to less efficient
estimates of regression coefficients). Moreover, although the estimators in the over-
fitted model are generally unbiased, for the datasets which are not very large, the
etimators can attain quite misleading values.

First of all, let’s show that (3) has a solution and then briefly remind the reasons
for the definition.

Theorem 1.2. Let {(X ′

i , ei)
′}∞i=1 be a sequence of random variables. Then for any

n ∈ N the solution of (3) always exists.

P r o o f . Fix an ω0 ∈ Ω, n0 ∈ N and putW = diag{w1, w2, . . . , wn0}. Then consider
observations {(Yi(ω0), X

′

i(ω0))
′}n0

i=1 with Yi(ω0) = X
′

i(ω0)β
0+ei(ω0) and define ma-

trixX(ω0) = (X1(ω0), X2(ω0), . . . , Xn0(ω0))
′
and vector Y (ω0) = (Y1(ω0), Y2(ω0), . . .

. . . , Yn0(ω0))
′
. For a given permutation π of indices {1, 2, . . . , n0} denote Y (π, ω0)

and X(π, ω0) the vector and the matrix obtained as corresponding permutation of
coordinates of vector Y (ω0) and of rows of matrix X(ω0), respectively. For the data(
Y (π, ω0), X(π, ω0)

)
evaluate the Weighted Least Squares by (classical) formula

β̂(WLS,n0,W,π)(ω0) =
(
X

′
(π, ω0) ·W ·X(π, ω0)

)−1 ·X
′
(π, ω0) ·W · Y (π, ω0)

(where we have assumed that X
′
(π, ω0) ·W ·X (π, ω0) is regular; if it doesn’t hold we

use pseudoinverze). Repeat it for all permutations. Then select that permutation,
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say πmin = πmin (ω0), for which

n0∑
i=1

wi ·
(
Yi(π, ω0)−X

′

i(π, ω0)β̂
(WLS,n0,W,π)(ω0)

)2
(4)

is minimal. Then β̂(WLS,n0,W,πmin)(ω0) is solution of (3) at the point ω0 because for
any other π̃

n0∑
i=1

wi ·
(
Yi(πmin, ω0)−X

′

i(πmin, ω0)β̂
(WLS,n0,W,πmin)(ω0)

)2
≤

n0∑
i=1

wi ·
(
Yi(π̃, ω0)−X

′

i(π̃, ω0)β̂
(WLS,n0,W,π̃)(ω0)

)2
= inf

β∈Rp

n0∑
i=1

wi ·
(
Yi(π̃, ω0)−X

′

i(π̃, ω0)β
)2

.

It means that β̂(LWS,n0,w)(ω0) = β̂(WLS,n0,W,πmin)(ω0).

Repeating this at first for all ω ∈ Ω and secondly for all n ∈ N , we conclude the
proof. �

Remark 1.3. Let’s return to the fact that β̂(LWS,n,w)(ω) = β̂(WLS,n0,W,πmin)(ω)
(which we found at the end of proof of Theorem 1.2). Moreover, let’s recall that

the estimate by means of Weighted Least Squares β̂(WLS,n0,W,πmin)(ω) is one of the
solutions of the normal equations

X
′
(πmin, ω) ·W · (Y (πmin, ω)−X (πmin, (ω))β) = 0.

Then we conclude that β̂(LWS,n,w)(ω) is one of solutions of the same normal equa-
tions, written usually without stressing dependence on ω as

X
′
(πmin) ·W · (Y (πmin)−X (πmin)β) = 0. (5)

Remark 1.4. Putting for any n ∈ N and for h ∈ {1, 2, . . . , n} wh = 1 and wi = 0
for i ̸= h, (3) yields the Least Median of Squares (Rousseeuw [11])

β̂(LMS,n,h) = argmin
β∈Rp

r2(h)(β).

Similarly, wi = 1, i ≤ h and wi = 0 for i > h gives the Least Trimmed Squares
(Hampel et al. [5])

β̂(LTS,n,h) = argmin
β∈Rp

h∑
i=1

r2(i)(β).

Let’s summarize pros and cons of β̂(LMS,n,h) and β̂(LTS,n,h). It will hint, what we
should require to hold for the weights wi’s.
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Fig. 1.

First of all, β̂(LMS,n,h) and β̂(LTS,n,h) are scale and regression equivariant and β̂(LWS,n,h)

shares this property with them1.

Let’s recall that for h = n
2 + p+1

2 both β̂(LMS,n,h) as well as β̂(LTS,n,h) have asymp-
totically breakdown point equal to 0.5 (see Rousseeuw, Leroy [12]). Nevertheless, as
the pictures (see Fig. 1) demonstrate the high breakdown point may cause high sen-
sitivity to a small shift of observation (for real data exhibiting the same phenomenon
see Hettmansperger, Sheather [6], together with Vı́̌sek [16]). The sensitivity is due
to the fact that both estimators have the discontinuous “loss function”, i. e. that
the the weights wi’s are only either 0 or 1. Similarly, robust estimators with dis-
continuous “loss function” exhibit the (high) sensitivity with respect to the deletion
of point(s), see e. g. Vı́̌sek [17, 18, 22, 23]. To remove it we should decrease the
influence the influential observations in a less steep way.

Moreover, it is known that β̂(LMS,n,h) is not
√
n-consistent while β̂(LTS,n,h) pos-

sesses this property (Rousseeuw, Leroy [12]). It hints that probably the weights are
to be nonzero for more than one observation and possibly nonincreasing.

Taking into account previous considerations and assuming that the weights are
generated by a function w in the way wi = w

(
i−1
n

)
, let’s put:

Conditions C1. The weight function w(u) is continuous, nonincreasing, w : [0, 1] →
[0, 1] with w(0) = 1.

The form of definition of LWS as given in (3) is not suitable for considerations
on the consistency of the estimator. So, following Hájek and Šidák [4] for any

1Notice that many robust estimators as e. g. M -estimators, need not necessarily to posses it.
Generally, to reach scale and regression equivariance for M -estimators, we have to studentize the
residuals by scale invariant and regression equivariant estimate of scale of error terms, see Bickel
[1] or Jurečková, Sen [8]. However, to establish such an estimator is not a simple task, see Croux,
Rousseeuw [3], Jurečková, Sen [8] or Vı́̌sek [24]. Moreover, all of them are in fact based on a
preliminary robust scale- and the regression-equivariant estimator of the regression coefficients.
It implies that the (robust) estimators which need not require the studentization of residuals are

preferable in the applications. β̂(LWS,n,h) is one such possibility.
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i ∈ {1, 2, . . . , n} let us put

π(β, i) = j ∈ {1, 2, . . . , n} ⇔ r2i (β) = r2(j)(β) (6)

(notice that again π(β, i) = π (β, i, ω), since it depends on Xi(ω)’s and ei(ω)’s).
Then we have from (3)

β̂(LWS,n,w) = argmin
β∈Rp

n∑
j=1

w

(
j − 1

n

)
r2(j)(β) = argmin

β∈Rp

n∑
i=1

w

(
π(β, i)− 1

n

)
r2i (β).

(7)
Now, returning to (5) and employing (6), we obtain normal equations in the form

n∑
i=1

w

(
π(β, i)− 1

n

)
·Xi · (Yi −X ′

iβ) = 0. (8)

Further, for any β ∈ Rp and any n ∈ N the empirical distribution of the absolute

value of residual will be denoted F
(n)
β (r). It means that, denoting the indicator of a

set A by I {A}, we have (remember we put β0 = 0)

F
(n)
β (r) =

1

n

n∑
j=1

I {|rj(β)| < r} =
1

n

n∑
j=1

I
{
|ej −X

′

jβ| < r
}
. (9)

Now, realize please, that having fixed β ∈ Rp and denoting |ri(β)| = ai(β), the
order statistics a(i)(β)’s and the order statistics of the squared residuals r2(i)(β)’s
assign to given fix observation the same rank, i. e. if the squared residual of given
fix observation is on the ℓth position (say) in the sequence

r2(1)(β) ≤ r2(2)(β) ≤ . . . r2(n)(β), (10)

then the absolute value of residual of the same observation is in the sequence

a(1)(β) ≤ a(2)(β) ≤ . . . a(n)(β) (11)

also on the ℓth position. Now, let’s realize that the empirical distribution function

F
(n)
β (r) has at point a(π(β,i))(β) its π(β, i)th jump and hence (notice the sharp

inequality in our definition of the empirical distribution function, see (9))

F
(n)
β (a(π(β,i))(β)) = F

(n)
β (|ri(β)|) =

π(β, i)− 1

n
(12)

(for π(β, i) see (6)) and so (8) can be written as

INEY,X,n(β) =

n∑
i=1

w
(
F

(n)
β (|ri(β)|)

)
Xi

(
Yi −X

′

iβ
)
= 0. (13)

The main idea of proving consistency of β̂(LWS,n,w) is to approximate F
(n)
β (|ri(β)|)

by a continuous distribution function – as given in Lemma A.7. We shall need for
it some assumptions.
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Conditions C2. The sequence
{
(X ′

i, ei)
′}∞

i=1
is sequence of independent p + 1-

dimensional random variables (r.v.’s) distributed according to distribution func-
tions (d.f.) FX,ei(x, r) = FX(x) · Fei(r) where Fei(r) = Fe(rσ

−1
i ) with IEei = 0,

var (ei) = σ2
i and 0 < lim infi→∞ σi ≤ lim supi→∞ σi < ∞. Moreover, Fe(r) is abso-

lutely continuous with density fe(r) bounded by Ue. Finally, there is q > 1 so that

IE ∥X1∥2q < ∞ (as FX(x) doesn’t depend on i, the sequence {Xi}∞i=1 is sequence of
independent and identically distributed (i.i.d.) r.v.’s).

Remark 1.5. The assumption that the d.f. Fe(r) is continuous is not only tech-
nical assumption. Possibility that the error terms in regression model are discrete
r.v.’s implies problems with treating response variable and it requires special consid-
erations – see chapters on logit or probit models or limited response variables e. g.
in Judge et. al. [7]. Absolute continuity is then a technical assumption. Without
the density, even bounded density, we should assume that Fe(r) is Lipschitz and it
would bring a more complicated form of all what follows.

Remark 1.6. Notice that there are constants 0 < sσ ≤ Sσ < ∞ so that sσ ≤ σi ≤
Sσ for all i’s. Moreover, as the density of ei is given as fe(r · σ−1

i ) · σ−1
i , there is a

constant fσ < ∞ such that supi∈N supr∈R fei(r) < fσ.

2. ALL SOLUTIONS OF NORMAL EQUATIONS ARE BOUNDED

First of all, we need some auxiliary lemma. Prior to proving it, we have to enlarge
our notation. For any β ∈ Rp the distribution of the product β

′
XX

′
β = (X

′
β)2

will be denoted F(X′β)2(u), i. e.

F(X′β)2(u) = P
(
(X

′
β)2 < u

)
. (14)

The empirical distribution of the sequence of i.i.d. r.v.’s
{
(X ′

jβ)
2
}∞
j=1

will be denoted

F
(n)
(X′β)2(u), so that

F
(n)
(X′β)2(u) =

1

n

n∑
j=1

I
{(

X ′
jβ
)2

< u
}
. (15)

Finally, for any λ ∈ R+ and any a ∈ R put

γλ,a = sup
∥β∥=λ

F(X′β)2(a). (16)

Notice please that due to the fact that the surface of the ball {β ∈ Rp, ∥β∥ = λ} is
compact, there is βγ,a ∈ {β ∈ Rp, ∥β∥ = λ} so that

γλ,a = F(X′βγ,a)
2(a). (17)

Moreover, for any β ∈ Rp denote β̃ = β · ∥β∥−1. Then we have

F(X′β)2(u) = P ((X ′
1β)

2
< u)

= P (
(X ′

1β)
2

∥β∥2
<

u

∥β∥2
) = F(X′ β̃)

2(
u

∥β∥2
).
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Then evidently
γλ,a = γ1, a

λ2
.

It means that we may without any restriction of generality consider only γ1,a. In
what follows there are defined some constants inside the proofs of assertions, lemmas
or theorems. They are assumed to be defined only inside the corresponding proof.
Now we can prove:

Lemma 2.1. Under Conditions C1 and C2 there is a > 0 and b ∈ (0, 1) so that

a · (b− γ1,a) · w(b) > 0 (18)

(for γ1,a see (16)).

P r o o f . Due to Condition C1 there is b ∈ (0, 1) such that w(b) > 0. Fix one such b.
If for all a ≥ 0 we have γ1,a ≥ b, we have

lim inf
a→0+

γ1,a ≥ b.

So, there is a sequence {ak}∞k=1 such that for all k = 1, 2, . . . , ak > 0 and

lim
k→∞

ak = 0 and lim inf
k→∞

γ1,ak
≥ b.

Then, due to the fact that for each γ1,ak
there is βγ,ak

such that

γ1,ak
= F(X′βγ,ak)

2(ak),

see (17), we have a sequence {βγ,ak
}∞k=1 such that

lim inf
k→∞

F(X′βγ,ak)
2(ak) ≥ b.

Applying (again) the argument about the compactness of unit ball, we find finally
β∗ and a subsequence {βγ,akj

}∞j=1 so that limj→∞ βγ,akj
= β∗ coordinatewise and

that
lim inf
j→∞

F(
X′βγ,akj

)2(akj ) ≥ b.

Applying Lema A.8 we conclude that

0 < b ≤ F(X′β∗)
2(0) = P

(
(X

′
β∗)2 < 0

)
which is a contradiction. �

Lemma 2.2. Let Conditions C1 and C2 be fulfilled. Then for any ε > 0 there is
θ > 0, ∆ > 0 and nε,∆ ∈ N such that for any n > nε,∆

P

({
ω ∈ Ω : inf

∥β∥≥θ
− 1

n
β

′
INEY,X,n(β) > ∆

})
> 1− ε.

In other words, any sequence {β̂(LWS,n,w)}∞n=1 of the solutions of the sequence of

normal equations INEZ,n(β̂
(LWS,n,w)) = 0, n = 1, 2, . . . (see (13)) is bounded in

probability.
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P r o o f . Let us multiply (13) from the left by the transposition of a β ∈ Rp and
write it then as

1

n

n∑
i=1

w
(
F

(n)
β (|ri(β)|)

)
β

′
XiX

′

iβ − 1

n

n∑
i=1

w
(
F

(n)
β (|ri(β)|)

)
eiX

′

iβ. (19)

First of all, we shall pay attention to the quadratic part of (19), i. e. to

1

n

n∑
i=1

w
(
F

(n)
β (|ri(β)|)

)
β

′
XiX

′

iβ (20)

and we’ll find a positive definite quadratic form which uniformly for β outside the
ball of diameter equal to 2 and with probability at least 1 − ε is the lower bound
of (20). This quadratic form is then for β ∈ Rp with enough large norm, say larger
then some θ > 0, larger than the linear part of − 1

nβ
′
INEY,X,n(β).

Fix a > 0 and b ∈ (0, 1), existence of which was shown in Lemma 2.1 and denote
the set of all indices i = 1, 2, . . . , n by In. Further, for any β ∈ Rp denote the set

of indices for which F
(n)
β (|ri(β)|) < b by Ib(β). Returning to (10) or (11), we easy

verify that the empirical d.f. overcomes b not later than at its [nb] + 1 jump, i. e.
number of order statistics in (11) at which the empirical d.f. is less or equal to b is
at least [n · b] (where [ ξ ] denotes the integer part of ξ). It means that

#Ib(β) ≥ [n · b] (21)

where #A stays for the number of elements of the setA. Realize please that whenever

index i ∈ Ib(β), we have F
(n)
β (|ri(β)|) < b which implies that for i ∈ Ib(β) we have

(for any β ∈ Rp)

w
(
F

(n)
β (|ri(β)|)

)
≥ w(b). (22)

Now, let us denote Ia(β) the set of indices (among 1, 2, . . . , n) for which β′XiX
′
iβ < a.

Finally, let us estimate #Ib(β) and #Ia(β) and take into account only those terms
of (20) the indices of which are in Ib(β)\Ia(β). (There are some other positive terms
of (20), contribution of which will be neglected, since their weights are smaller than
w(b) or β′XiX

′
iβ is smaller than a.) Note that for the set Ib(β) \ Ia(β) we have

#(Ib(β) \ Ia(β)) ≥ #Ib(β)−#Ia(β). (23)

Now, let us fix ε > 0, δ > 0 and put

κ =
a · (b− γ1,a) · w(b)

2
. (24)

Then, according to Lemma 2.1, κ > 0. Employing Lemma A.6 find n1 ∈ N so that
for all n > n1 we have

P

({
ω ∈ Ω : sup

β∈Rp

sup
u∈R

∣∣∣F (n)
(X′β)2(u)− F(X′β)2(u)

∣∣∣ ≤ κ

a · w(b)

})
> 1− ε

2
(25)
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and denote the corresponding set by B
(1)
n . Recalling that, due to the fact how the

empirical distribution function is defined, we have

F
(n)
(X′β)2(a) =

#{i : β′
XiX

′

iβ < a}
n

=
#Ia(β)

n
.

Then we conclude that (25) implies for any n > n1 and ω ∈ B
(1)
n

#Ia(β) = n ·F (n)
(X′β)2(a) < n ·

(
F(X′β)2(a) +

κ

a · w(b)

)
≤ n ·

(
γ1,a +

κ

a · w(b)

)
(26)

(for γλ,a see (16)). Notice that (26) holds only for {β ∈ Rp, ∥β∥ = 1}. Let us recall
that we have denoted by Ia(β) the number of indices (among 1, 2, . . . , n) for which

β′XiX
′
iβ < a. (26) then says that we have at most n ·

(
γ1,a +

κ
a·w(b)

)
such indices.

Consider ω ∈ B
(1)
n and n > n1, and put

Cn(β) =
{
i ∈ In : F

(n)
β (|ri(β)|) < b and β′XiX

′
iβ > a

}
= Ib(β) \ Ia(β).

Then (21) and (26) imply that the number of indices of the set Cn(β) is at least (see
(23))

#Cn(β) ≥ #Ib(β)−#Ia(β) ≥ n·b−n·
(
γ1,a +

κ

a · w(b)

)
= n·

(
b− γ1,a −

κ

a · w(b)

)
.

Now, we have for any n > n1, any ω ∈ B
(1)
n and any ∥β∥ = 1

1

n

n∑
i=1

w
(
F

(n)
β (|ri(β)|)

)
β

′
XiX

′

iβ ≥ 1

n

∑
i∈Cn(β)

w(b)β
′
XiX

′

iβ

≥ a · (b− γ1,a) · w(b)− κ > κ.

Consider now any β ∈ Rp, ∥β∥ = θ ≥ 1 and put β̃ = θ−1 · β. Then

β
′
XiX

′

iβ = θ2β̃
′
XiX

′

i β̃. (27)

We have proved that for any n > n1, any ω ∈ B
(1)
n and any β∗ ∈ Rp, ∥β∗∥ = 1

#Ia(β
∗) ≤ n ·

(
γ1,a +

κ

a · w(b)

)
(28)

(see (26) and remember that Ia(β
∗) was defined as set of those indices from {1, 2, . . . , n}

for which β′XiX
′
iβ < a). Further, let’s recall that Ib(β) was defined so that

F
(n)
β (|ri(β)|) < b and hence

#Ib(β) ≥ [b · n] (29)

and for any i ∈ Ib(β)

w
(
F

(n)
β (|ri(β)|)

)
≥ w(b). (30)
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Now, we have from (27), (28), (29) and (30)

1

n

n∑
i=1

w
(
F

(n)
β (|ri(β)|)

)
β

′
XiX

′

iβ ≥ 1

n

∑
i∈Ib(β)

w(b)β
′
XiX

′

iβ

=
1

n
θ2

∑
i∈Ib(β)

w(b)β̃
′
XiX

′

i β̃ ≥ 1

n
θ2

∑
i∈Ib(β)−Ia(β̃)

w(b)β̃
′
XiX

′

i β̃

≥ θ2 (a · (b− γ1,a) · w(b)− κ) ≥ θ2 · κ. (31)

So, we have proved that for any n > n1 and any ω ∈ B
(1)
n and

1

n

n∑
i=1

w
(
F

(n)
β (|ri(β)|)

)
β

′
XiX

′

iβ ≥ θ2 · κ = ∥β∥ · κ.

Now, we shall consider the second term in (19). Let e be a r.v. distributed according
to Fe(u) and denote IE {|e| · ∥X1∥} = τ and lim supi→∞ σi = η. Then find n2 ∈ N
so that for any n > n2 there is B

(2)
n so that P (B

(2)
n ) > 1− ε/2 and for any ω ∈ B

(2)
n

we have (remember that w(r) ∈ [0, 1])

1

n

∣∣∣∣∣
n∑

i=1

w
(
F

(n)
β (|ri(β)|)

)
eiX

′

iβ

∣∣∣∣∣ ≤ 1

n

n∑
i=1

∣∣∣eiX ′

iβ
∣∣∣ ≤ 2τ · η · ∥β∥. (32)

Consider n > max {n1, n2} and ω ∈ Bn = B
(1)
n ∩B

(2)
n . It follows that P (Bn) > 1−ε

and (31) and (32) imply that for any β ∈ Rp ∥β∥ ≥ 1 and for κ we have defined in
(24)

− 1

n
β

′
INEY,X,n(β) ≥ ∥β∥2 · κ− 2τ · η · ∥β∥.

Then for any ∆ > 0 there is a θ ≥ 1 such that for any β ∈ Rp, ∥β∥ > θ with
probability at least 1− ε we have

− 1

n
β

′
INEY,X,n(β) > ∆. �

Prior to deriving consistency of β̂(LWS,n,w) we need some other results. For proving
them we have to strengthen the assumptions.

Conditions C1′. The weight function w(u) is continuous nonincreasing, w : [0, 1]
→ [0, 1] with w(0) = 1. Moreover, w is Lipschitz in absolute value, i. e. there is L
such that for any pair u1, u2 ∈ [0, 1] we have |w(u1)− w(u2)| ≤ L · |u1 − u2|.

Further let’s put

F n,β(v) =
1

n

n∑
i=1

Fβ,i(v) (33)

where
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Fβ,i(v) = P (|Yi −X ′
iβ| < v) = P (|ei −X ′

iβ| < v) (34)

(remember that ei’s have different variances σ2
i and that we have assumed that

β0 = 0).

Lemma 2.3. Let Conditions C1′ and C2 be fulfilled. Then for any ε > 0, δ ∈ (0, 1)
and ζ > 0 there is nε,δ,ζ ∈ N so that for any n > nε,δ,ζ we have

P

({
ω ∈ Ω : sup

∥β∥≤ζ

∣∣∣∣∣ 1n
n∑

i=1

{
w
(
F

(n)
β (|ri(β)|)

)
β

′
Xi

(
ei −X

′

iβ
)

−β
′
IE
[
w
(
F n,β(|ri(β)|)

)
Xi

(
ei −X

′

iβ
)]} ∣∣∣ < δ

})
> 1− ε.

P r o o f . Throughout the proof please keep in mind that we have put

F n,β(v) =
1

n

n∑
i=1

Fβ,i(v).

Denoting IE ∥X1∥2 = κ, let us fix a positive ε, δ ∈ (0, 1) and ζ > 0. Recalling that
we have assumed that β0 = 0, we shall consider for β ∈ Rp, ∥β∥ ≤ ζ the normal
equations (13)

INEY,X,n(β) =
1

n

n∑
i=1

w
(
F

(n)
β (|ri(β)|)

)
β

′
XiX

′

iβ − 1

n

n∑
i=1

w
(
F

(n)
β (|ri(β)|)

)
eiX

′

iβ.

(35)
Let us start (again) with the first term in (35) and put τ (1) = δ/(20κζ2 · L), for L
see Condition C1′. Due to Lemma A.7 we can find n1 ∈ N so that for any n > n1

there is a set B
(1)
n such that P (B

(1)
n ) > 1− ε/10 and for any ω ∈ B

(1)
n

sup
β∈Rp

sup
r∈R

∣∣∣F (n)
β (r)− F n,β(r)

∣∣∣ ≤ τ (1). (36)

Employing the law of large numbers, find n2 > n1 so that for any n > n2 there is a

set B
(2)
n such that P (B

(2)
n ) > 1− ε/10 and for any ω ∈ B

(2)
n

1

n

n∑
i=1

∥Xi∥2 < 2κ. (37)

Since then for any n > n2 and any ω ∈ B
(1)
n ∩B

(2)
n

1

n
sup

∥β∥≤ζ

∥∥∥∥∥
n∑

i=1

{
w
(
F

(n)
β (|ri(β)|)

)
− w (Fβ(|ri(β)|))

}
XiX

′

i

∥∥∥∥∥
≤ 1

n
L · τ (1) ·

n∑
i=1

∥Xi∥2 ≤ L · τ (1) · 2κ =
δ

10ζ2
,



12 J. Á. VÍŠEK

we have for any n > n2 and any ω ∈ B
(1)
n ∩B

(2)
n

1

n
sup

∥β∥≤ζ

∣∣∣∣∣
n∑

i=1

{
w
(
F

(n)
β (|ri(β)|)

)
− w

(
F n,β(|ri(β)|)

)}
β

′
XiX

′

iβ

∣∣∣∣∣ ≤ δ

10
. (38)

Employing Lemma A.8, find for ∆ = δ
20·L·κζ2 such τ (2) > 0 that for

T (ζ, τ (2)) =
{∥∥∥β(1)

∥∥∥ ≤ ζ,
∥∥∥β(2)

∥∥∥ ≤ ζ,
∥∥∥β(1) − β(2)

∥∥∥ < τ (2)
}

(39)

we have
sup

(β(1),β(2))∈T (ζ,τ (2))

sup
i∈N

sup
r∈R

∣∣Fβ(1),i(r)− Fβ(2),i(r)
∣∣ < ∆

and hence also

sup
(β(1),β(2))∈T (ζ,τ(2))

sup
r∈R

∣∣∣F n,β(1)(r)− F n,β(2)(r)
∣∣∣

= sup
(β(1),β(2))∈T (ζ,τ(2))

sup
r∈R

∣∣∣∣∣ 1n
n∑

i=1

Fβ(1),i(r)−
1

n

n∑
i=1

Fβ(2),i(r)

∣∣∣∣∣ < ∆ (40)

Let’s recall that we have restricted ourselves on ∥β∥ ≤ ζ. Then due to (37), (39) and

(40) for any n > n2 and any ω ∈ B
(1)
n ∩B

(2)
n

1

n
sup

(β(1),β(2))∈T (ζ,τ(2))

∣∣∣ n∑
i=1

{
w
(
F n,β(2)(|ri(β(2))|)

)
−w
(
F n,β(1)(|ri(β(2))|)

)}
[β(2)]

′
XiX

′

iβ
(2)
∣∣∣

≤ L ·∆ · ζ2 · 1
n

n∑
i=1

∥Xi∥2 ≤ δ

10
(41)

(notice that the in the previous inequality the subindices of the d.f.’s are β(1) and

β(2) but the arguments are at the same point β(2)). Further denote γ(1) = IE ∥X1∥2q,
γ(2) = IE ∥X1∥ and applying the law of large numbers find n3 > n2 so that for any

n > n3 there is a set B
(3)
n such that P (B(3)) > 1 − ε/10 and for any ω ∈ B

(3)
n we

have
1

n

n∑
i=1

∥Xi∥2q < 2γ(1) and
1

n

n∑
i=1

∥Xi∥ < 2γ(2).

Finally, let us recall that w(r) ∈ [0, 1], so that for any pair r1, r2 ∈ R we have
|w(r1)− w(r2)| ≤ 1 and hence for any q′ > 1

|w(r1)− w(r2)|q
′
≤ |w(r1)− w(r2)|. (42)

Let q′ be such that 1
q′ +

1
q = 1 (for q see Conditions C2). Then select some

τ (3) ∈

0,min

τ (2), δ ·

(
23q

′+q · fσ · L
[
γ(1)

] q′
q · γ(2) · ζ2q

)−1
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(for fσ see Remark 1.6, for L Conditions C1′) and put

T (ζ, τ (3)) =
{∥∥∥β(1)

∥∥∥ ≤ ζ,
∥∥∥β(2)

∥∥∥ ≤ ζ,
∥∥∥β(1) − β(2)

∥∥∥ < τ (3)
}
.

Then (remember that supi∈N supr∈R fei(r) < fσ, see Remark 1.6) for any n > n3

and any ω ∈ B(1) ∩B(2) ∩B(3)

sup
(β(1),β(2))∈T (ζ,τ(3))

1

n

∣∣∣∣∣
n∑

i=1

w
(
F n,β(1)(|ri(β(2))|)

)
−w

(
F n,β(1)(|ri(β(1))|)

)∣∣∣ ≤ L · fσ · τ (3) · ∥Xi∥. (43)

(For a sake of space write in a few next lines wn,β(1)(i, β(2)) instead of

w(F n,β(1)(|ri(β(2))|)).) Employing Hőlder’s inequality we arrive at (again for any

n > n3 and any ω ∈ B(1) ∩B(2) ∩B(3))

sup
(β(1),β(2))∈T (ζ,τ (3))

1

n

∣∣∣ n∑
i=1

{wn,β(1)(i, β(2))− wn,β(1)(i, β(1))} [β(2)]
′
XiX

′

iβ
(2)
∣∣∣

≤ sup
(β(1),β(2))∈T (ζ,τ (3))

{[ 1
n

n∑
i=1

∣∣wn,β(1)(i, β(2))− wn,β(1)(i, β(1))
∣∣q′] 1

q′ ·

·
[ 1
n

n∑
i=1

|X ′
i · β(2)|2q

] 1
q
}

≤ sup
(β(1),β(2))∈T (ζ,τ (3))

{[ 1
n

n∑
i=1

|wn,β(1)(i, β(2))− wn,β(1)(i, β(1))|
] 1

q′ ·

·
[ 1
n

n∑
i=1

∥β(2)∥2q · ∥Xi∥2q
] 1

q
}

≤ sup
(β(1),β(2))∈T (ζ,τ (3))

{[ 1
n

n∑
i=1

|wn,β(1)(i, β(2))− wn,β(1)(i, β(1))|
] 1

q′ ·

· ζ2q
[ 1
n

n∑
i=1

∥Xi∥2q
] 1

q
}

≤ sup
(β(1),β(2))∈T (ζ,τ (3))

{
f

1
q′
σ · L

1
q′ · [τ (3)]

1
q′ ·
[ 1
n

n∑
i=1

∥Xi∥
] 1

q′ · ζ2q
[ 1
n

n∑
i=1

∥Xi∥2q
] 1

q
}

≤ ζ2 · f
1
q′
σ · L

1
q′ · [τ (3)]

1
q′ · [2γ(2)]

1
q′ · [2γ(1)]

1
q ≤ δ

10
(44)

where the step from the fourth to fifth line used (43). Along similar lines we derive

sup
(β(1),β(2))∈T (ζ,τ(3))

1

n

∣∣∣∣∣
n∑

i=1

w
(
F n,β(1)(|ri(β(1))|)

){[
β(2)

]′
XiX

′

iβ
(2)

−
[
β(1)

]′
XiX

′

iβ
(1)

}∣∣∣∣ ≤ δ

10
. (45)
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Finally, utilizing Lemma A.9 find τ (4) ∈ (0,min
{
δ/10, τ (3)

}
) so that for any pair

β(1), β(2)ıRp, ∥β(1)∥ ≤ ζ, ∥β(2)∥ ≤ ζ, ∥β(1) − β(2)∥ ≤ τ (4), we have uniformly in
i ∈ N and uniformly in n ∈ N∣∣∣[β(1)]IE

[
wn,β(1)(i, β(1))Xi

(
ei −X

′

iβ
(1)
)]

−[β(2)]
′
IE
[
wn,β(2)(i, β(2))Xi

(
ei −X

′

iβ
(2)
)]∣∣∣ ≤ δ

10
. (46)

where again wn,β(ℓ)(i, β(ℓ)) was written instead of w
(
F n,β(ℓ)(|ri(β(ℓ))|)

)
. Now find a

system of open balls of type B(β, τ (4)) covering the p-dimensional ball with center at
zero and radius ζ, i. e. covering B(ζ) = {β ∈ Rp : ∥β∥ ≤ ζ}. Due to the compactness
of B(ζ) there is a subsystem of balls covering B(ζ) which has finite number of balls,

say K(ζ), and denote this system by
{
B(β(j), τ (4))

}K(ζ)

j=1
. Utilizing the law of large

numbers find for any j ∈ {1, 2, . . . ,K(ζ)} some n∗
j ∈ N so that for all n > n∗

j the
set

B
(4)
nj =

{
ω ∈ Ω :

1

n

∥∥∥∥∥
n∑

i=1

{
wn,β(j)(i, β(j))XiX

′
i

−IE
[
wn,β(j)(i, β(j))XiX

′
i

]}∥∥∥ <
δ

10ζ2

}
(47)

has probability at least 1 − ε
10K(ζ) . Finally put n

(1)
ε,δ,ζ = max{n3, n

∗
1, n

∗
2, . . . , n

∗
K(ζ)}

and Bn = B
(1)
n ∩ B

(2)
n ∩ B

(3)
n ∩K(ζ)

j=1 B
(4)
nj . We have P (Bn) > 1 − ε

2 . Since for any

β ∈ Rp, ∥β∥ ≤ ζ there is j ∈ {1, 2, . . . ,K(ζ)} so that
∥∥β − β(j)

∥∥ < τ (4), taking into
account (38), (40), (41), (44), (45), (46) and (47) we have for any ω ∈ Bn and any

n > n
(1)
ε,δ,ζ

sup
∥β∥≤ζ

1

n

∣∣∣∣∣β′
n∑

i=1

{
w
(
F

(n)
β (|ri(β)|)

)
XiX

′

i − IE
[
w
(
F n,β(|ri(β)|)

)
XiX

′

i

]}
β

∣∣∣∣∣ < δ

2
.

(48)
Now, we shall consider the second term in (35). Along similar lines as in the first

part of the proof, we can find n
(2)
ε,δ,ζ ∈ N so that for any n > n

(2)
ε,δ,ζ there is Cn so

that P (Cn) > 1− ε/2 and for any ω ∈ Cn we have

sup
∥β∥≤ζ

1

n

∣∣∣∣∣
n∑

i=1

{
w
(
F

(n)
β (|ri(β)|)

)
eiX

′

iβ − IE
[
w
(
F n,β(|ri(β)|)

)
eiX

′

iβ
]}∣∣∣∣∣ < δ

2
. (49)

Put nε,δ,ζ = max
{
n
(1)
ε,δ,ζ , n

(2)
ε,δ,ζ

}
. Then for any n > nε,δ,ζ we have P (Bn∩Cn) > 1−ε

and taking into account (48) and (49), we conclude the proof. �
Similarly as in other situations when estimating (identifying) parameters of a model
we need some identification condition. Prior to give it, let us prove:
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Lemma 2.4. Let Conditions C2 hold and moreover 1
n

∑n
i=1 |1− σi| = 0. Finally,

let e be a r.v. distributed according to Fe(v) and for any β ∈ Rp denote Fβ(v) =
P (|e−X ′

1β| < v). Then for any λ > 0

lim
n→∞

sup
−∞<v<∞

sup
∥β∥≤λ

∣∣∣F n,β(v)− Fβ(v)
∣∣∣ = 0. (50)

P r o o f . First of all, notice please that P (ei < v) = P (eσi < v). We have to show
that

∀(ε > 0) ∃(nε ∈ N ) ∀(n > nε) : sup
−∞<v<∞

sup
∥β∥≤λ

∣∣∣F n,β(v)− Fβ(v)
∣∣∣ < ε.

So, let’s fix an ε > 0 and recall that

F n,β(v) =
1

n

n∑
i=1

Fβ,i(v),

Fβ,i(v) = P (|ei −X ′
iβ| < v) =

∫
{−v<r−x′β<v}

dFX(x)fei(r)dr

=

∫
x∈Rp

{∫
{−v+x′β<r<v+x′β}

fe(rσ
−1
i )σ−1

i dr

}
dFX(x) (51)

and

Fβ(v) =

∫
{−v<r−x′β<v}

dFX(x)fe(r)dr

=

∫
x∈Rp

{∫
{−v+x′β<r<v+x′β}

fe(r)dr

}
dFX(x). (52)

Let us put for any σ > 0 Fβ,σ(v) = P (|eσ −X ′
1β| < v). Then due to absolute

continuity of Fe(v), we have

Fβ,σ(v) = P (|eσ−X ′
1β|<v) =

∫
x∈Rp

{∫
{−v+x′β<r<v+x′β}

fe(rσ
−1)σ−1dr

}
dFX(x)

(53)
is continuous and hence, for any β ∈ Rp and any σ > 0, there is vβ,σ > 0 so that

Fβ,σ(vβ,σ,ε) = 1− ε

2
. (54)

Put
v∗u,ε = sup

∥β∥≤λ

sup
sσ≤σ≤Sσ

vβ,σ,ε. (55)

Generally we can have v∗u,ε = ∞. But, taking into account that {∥β∥ ≤ λ}× [sσ, Sσ]
is compact, using standard arguments we find (βu, σu) ∈ {∥β∥ ≤ λ} × [sσ, Sσ] so
that

Fβu,σu(v
∗
u,ε) = 1− ε

2
. (56)
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Hence 0 ≤ v∗u,ε < ∞ and for any β ∈ {∥β∥ ≤ λ} and any i = 1, 2, . . .

1− ε

2
= Fβu,σu(v

∗
u,ε) ≤ Fβ,i(v

∗
u,ε). (57)

Finally, find v∗ε do that Fβ(v
∗
ε ) = 1− ε

2 , put vu,ε = max
{
v∗u,ε, v

∗
ε

}
and keep in mind

that Fβ,i(0) = 0 for all i = 1, 2, . . . as well as Fβ(0) = 0. Then for any β ∈ {∥β∥ ≤ λ},
any n = 1, 2, . . . and any v ∈ (−∞, 0] ∪ [vu,ε,∞)∣∣∣F n,β(v)− Fβ(v)

∣∣∣ ≤ ε. (58)

Now, employing substitution y = r · σi, we obtain from (51)

Fβ,i(v) =

∫
x∈Rp

{∫
{−v+x′β

σi
<y< v+x′β

σi
}
fe(y)dy

}
dFX(x).

Then

|P (|e−X ′
1β| < v)− Fβ,i(v)| ≤ fσ

∫
x∈Rp

{∫ bi

ai

dr +

∫ di

ci

dr

}
dFX(x)

where ai = min{−v+x′β
σi

,−v+x′β}, bi = max{−v+x′β
σi

,−v+x′β}, ci = min{v+x′β
σi

, v+

x′β} and di = max{ v+x′β
σi

, v + x′β}. It means that
∣∣ai − bi

∣∣ ≤ |v + x′β| ·
∣∣∣ 1
σi

− 1
∣∣∣ ≤

|v+x′β|
sσ

· |1− σi|. It gives

|P (|e−X ′
1β| < v)− Fβ,i(v)| ≤ 2·fσ |v + IEX ′

1β|·
∣∣∣∣1− σi

σi

∣∣∣∣ ≤ 2·fσ |v + IEX ′
1β|·

|1− σi|
sσ

.

Then

sup
−∞<v<∞

sup
∥β∥≤λ

|F n,β(v)− Fβ(v)| ≤ 2 · fσ
[vu,ε + λIE∥X1∥]

sσ
· 1
n

n∑
i=1

|1− σi|

and the proof follows. �

Lemma 2.5. Let Conditions C1′ and C2 be fulfilled. Let again e be a r.v. distributed
according to Fe(v) and denote for any β ∈ Rp Fβ(v) = P (|e − X ′

1β| < v) and
r(β) = e−X ′

1β. Finally, let limn→∞
1
n

∑n
i=1 σi = 1. Then for any λ > 0

lim
n→∞

sup
∥β∥≤λ

β
′

{
1

n

n∑
i=1

IE
[
w
(
F n,β(|ri(β)|)

)
Xi

(
ei −X

′

iβ
)]

IE
[
w (Fβ(|r(β)|))X1

(
e−X

′

1β
)]}

= 0.
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P r o o f employs Lemma 2.4 and similar technical steps as the proof of Lemma
2.3. �

Corollary 2.6. Let Conditions C1′ and C2 be fulfilled. Moreover, let limi→∞
1
n

∑n
i=1 σi

= 1. Then for any ε > 0, δ ∈ (0, 1) and ζ > 0 there is nε,δ,ζ ∈ N so that for any
n > nε,δ,ζ we have

P

({
ω ∈ Ω : sup

∥β∥≤ζ

∣∣∣∣∣ 1n
n∑

i=1

w
(
F

(n)
β (|ri(β)|)

)
β

′
Xi

(
ei −X

′

iβ
)

−β
′
IE
[
w (Fβ(|r(β)|))X1

(
e−X

′

1β
)]∣∣∣ < δ

})
> 1− ε.

P r o o f follows from Lemma 2.3 and 2.5. �

Conditions C3. There is the only solution of

IE
[
w (Fβ(|r(β)|))X1

(
e−X

′

1β
)]

= 0 (59)

namely β0 = 0 (the equation (59) is assumed as a vector equation in β ∈ Rp).
Moreover limn→∞

1
n

∑n
i=1 σi = 1.

Remark 2.7. For w(u) ≡ 1, i. e. for the (Ordinary) Least Squares, (59) is fulfilled
as the normal equations have the only solution, namely the orthogonal projection
of Y = (Y1, Y2, . . . , Yn)

′
into the linear envelope of the columns of matrix X =

(X1, X2, . . . , Xn)
′
.

Theorem 2.8. Let Conditions C1′, C2 and C3 be fulfilled. Then any sequence
{β̂(LWS,n,w)}∞n=1 of the solutions of sequence of normal equations INEY,X,n(β̂

(LWS,n,w))
= 0, n = 1, 2, . . ., is weakly consistent.

P r o o f . To prove the consistency of {β̂(LWS,n,w)}∞n=1, we have to show that for any
ε > 0 and δ > 0 there is nε,δ ∈ N such that for all n > nε,δ

P
({

ω ∈ Ω :
∥∥∥β̂(LWS,n,w) − β0

∥∥∥ < δ
})

> 1− ε. (60)

So fix ε1 > 0 and δ1 > 0 and recall that INEY,X,n(β) =
∑n

i=1 w(F
(n)
β (|ri(β)|)) ·

·β′
Xi(ei −X

′

iβ).

According to Lemma 2.2 there are ∆1 > 0 and θ1 so that for ε1 there is n∆1,ε1 ∈ N
so that for any n > n∆1,ε1

P

({
ω ∈ Ω : inf

∥β∥≥θ1
− 1

n
β

′
INEY,X,n(β) > ∆1

})
> 1− ε1

2
(61)

(denote the corresponding set by Bn). It means that for all n > n∆1,ε1 all solutions
of the normal equations INEY,X,n(β) = 0 with probability at least 1− ε1

2 are inside
the ball B(0, θ1).
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Further, consider the compact set C(δ1, θ1) = {β ∈ Rp : δ1 ≤ ∥β∥ ≤ θ1} and find

τC(δ1,θ1) = inf
β∈C(δ1,θ1)

{
−β

′
IE
[
w (Fβ(|r(β)|))X1

(
e−X

′

1β
)]}

.

Assume that τC(δ1,θ1) = 0. Due to compactness of C(δ1, θ1), there is a {βk}∞k=1 ⊂
C(δ1, θ1) such that

lim
k→∞

β
′

kIE
[
w (Fβ(|r(β)|))X1

(
e−X

′

1β
)]

= −τC(δ1,θ1).

Also due to compactness of C(δ1, θ1), there is a β̄ ∈ C(δ1, θ1) and a subsequence{
βkj

}∞
j=1

such that

lim
j→∞

βkj = β̄

(where the convergence is assumed coordinatewise) and due to the continuity of

β
′
IE
[
w (Fβ(|r(β)|))X1

(
e−X

′

1β
)]

(see Lemma A.10) we have

− β̄′IE
[
w
(
Fβ̄(|r(β̄)|)

)
X1

(
e−X

′

1β̄
)]

= τC(δ1,θ1) = 0. (62)

Then, Condition C3 implies that
∣∣τC(δ1,θ1)

∣∣ ̸= 0.

Now, put ∆ = min

{
|τC(δ1,θ1)|

2 , ∆1

2

}
and utilizing Corollary 2.6 we may find for ε1, δ1,

θ1 and ∆ such nε1,δ1,θ1,∆ ∈ N that nε1,δ1,θ1,∆ ≥ nε1,δ,θ1 and for any n > nε1,δ1,θ1,∆

there is a set Dn (with P (Dn) > 1− ε
2 ) such that for any ω ∈ Dn

sup
∥β∥≤θ1

∣∣∣∣∣ 1n
n∑

i=1

w
(
F

(n)
β (|ri(β)|)

)
β

′
Xi

(
ei −X

′

iβ
)

−β
′
IE
[
w (Fβ(|r(β)|))X1

(
ei −X

′

1β
)]∣∣∣ < ∆. (63)

But (61) and (63) imply that for any β ∈ Rp, ∥β∥ = θ1 IE[w(Fβ(|r(β)|))X1(ei−
X

′

1β)] > ∆. If then τC(δ1,θ1) < 0 there would be a solution of equation (59) inside
the compact C(δ1, θ1) = {β ∈ Rp : δ1 ≤ ∥β∥ ≤ θ1}. Hence τC(δ1,θ1) > 0 (and hence
also ∆ > 0) and for any n > nε1,δ1,θ1,∆ and any ω ∈ Bn ∩Dn we have

inf
∥β∥>δ1

− 1

n
β

′
INEY,X,n(β) > ∆. (64)

Clearly, P (Bn ∩Dn) > 1− ε1. But it means that all solutions of normal equations
(13) are inside the ball of radius δ1 with probability at least 1 − ε1, i. e. in other

words, β̂(LWS,n,w) is weakly consistent. �
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3. CONCLUDING REMARKS

As we have already said, the results allow to establish the robustified version of
covariance matrix of the estimates by LWS resistant to heteroscadasticity (as a
generalization of White estimator of this matrix for OLS) which in turn enable us
to make right conclusion about significance of explanatory variables. Empolying
them, we can also proceed in study of robustified versions of diagnostic tools and
sensitivity characteristics for LWS2 analogous to the tools and characteristics used
by classical econometrics for the OLS.

The results were derived – due to the fact that we assumed the linear regression
framework – by simple methods under weak assumptions, usually imposed on corre-
sponding entities in the regression framework. Moreover a brief discussion included
them into up to now obtained results on robust regression. Of course, strengthening
a bit assumptions would allow to employ results by Vaart, Welner [15] or Koul [9]
on empirical processes. Our approach may appear more suitable as the forthcom-
ing research will assume further modifications of the basic method of LWS – in the
sense in which econometrics developed a lot of modifications of OLS for regression
model for variety of (economic) types of data (e. g. ARCH model) and (economic)
frameworks (e. g. errors-in-variables model, limited response variable, etc.).

4. APPENDIX

We need to recall some (general) results.

Lemma A.1. (Štěpán [13], page 420, VII.2.8) Let a and b be positive numbers.
Further let ξ be a random variable such that P (ξ = −a) = π and P (ξ = b) = 1− π
(for a π ∈ (0, 1)) and IEξ = 0. Moreover let τ be the time for the Wiener process
W (s) to exit the interval (−a, b). Then

ξ =D W (τ)

where “=D” denotes the equality of distributions of the corresponding random vari-
ables. Moreover, IEτ = a · b = var ξ.

Remark A.2. Since the book by Štěpán [13] is in Czech language we refer also to
Breiman [2] where however this assertion is not isolated. Nevertheless, the assertion
can be found directly in the first lines of the proof of Proposition 13.7 (page 277) of
Breiman’s book. (See also Theorem 13.6 on the page 276.) The next assertion can
be found, in a bit modified form also in Breiman’s book, Proposition 12.20 (page
258).

Lemma A.3. (Štěpán [13], page 409, VII.1.6) Let a and b be positive numbers.
Then

P

(
max
0≤t≤b

|W (t)| > a

)
≤ 2 · P (|W (b)| > a) .

2Some of these studies will require, of course, to derive asymptotic representation (and possibly
asymptotic normality) of LWS.
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Definition A.4. Let S be a subset of a separable metric space. The stochastic
process V = (V (s), s ∈ S) is called separable if there is a countable dense subset
T ⊂ S (i. e. T is countable and dense in S) such that for any (ω, s) ∈ Ω× S there is
a sequence such that

sn ∈ T, lim
n→∞

sn = s and lim
n→∞

V (ω, sn) = V (ω, s).

Lemma A.5. (Štěpán [13], page 85, I.10.4) Let V = (V (s), s ∈ S) be a separable
stochastic process defined on the probability space (Ω,A, P ). Moreover, let G ⊂ S
be open and denote by k(G) the set of all finite subsets of G. Then for any close set
K ⊂ Rp we have

{ω ∈ Ω : V (s) ∈ K, s ∈ G} ∈ A

and

P ({ω ∈ Ω : V (s) ∈ K, s ∈ G}) = inf
J∈k(G)

P ({ω ∈ Ω : V (s) ∈ K, s ∈ J}) .

P r o o f . Since the book by Štěpán is in Czech language and the proof is short, we
will give it. Let T be countable dense subset of S. Then we have

{ω ∈ Ω : V (s) ∈ K, s ∈ G} = {ω ∈ Ω : V (s) ∈ K, s ∈ G ∩ T}

and

P ({ω ∈ Ω : V (s) ∈ K, s ∈ G}) ≤ inf
J∈k(G)

P ({ω ∈ Ω : V (s) ∈ K, s ∈ J})

≤ inf
J∈k(G∩S)

P ({ω ∈ Ω : V (s) ∈ K, s ∈ J}) = P ({ω ∈ Ω : V (s) ∈ K, s ∈ G ∩ S})

= P ({ω ∈ Ω : V (s) ∈ K, s ∈ G}) . �

Let’s recall that we have denoted in (14) the d.f. of (X ′
1β)

2 by F(X′β)2(u) and in

(15) the corresponding empirical d.f. by F
(n)
(X′β)2(u), i. e.

F
(n)
(X′β)2(u) =

1

n

n∑
i=1

I
{
(X ′

iβ)
2
< u

}
. (A.65)

Lemma A.6. Let the Conditions C2 hold. For any ε > 0 there is a constant Kε

and nε ∈ N so that for all n > nε

P

({
ω ∈ Ω : sup

v∈R+

sup
β∈Rp

√
n
∣∣∣F (n)

(X′β)2(u)− F(X′β)2(u)
∣∣∣ < Kε

})
> 1− ε. (A.66)

P r o o f . Fix ε > 0 and put Kε =
√

8
ε + 1 together with

bi(u, β) = I
{
ω ∈ Ω : (X ′

iβ)
2
< u

}
. (A.67)
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Further put
ξi(u, β) = bi(u, β)− IEbi(u, β) (A.68)

and denote

πi(u, β) = IEbi(u, β) = P (bi(u, β) = 1) = F(X′
iβ)

2(u). (A.69)

Then {ξi(u, β)}∞i=1, for any u ∈ R+ and any β ∈ Rp, is a sequence of independently
distributed r.v.’s. Finally, (A.65), (A.67) and (A.69) yield

1

n

n∑
i=1

ξi(u, β) = F
(n)
(X′β)2(u)− F(X′β)2(u),

i. e.
1√
n

∣∣∣∣∣
n∑

i=1

ξi(u, β)

∣∣∣∣∣ = √
n
∣∣∣F (n)

(X′β)2(u)− F(X′β)2(u)
∣∣∣ .

Moreover
P (ξi(u, β) = 1− πi(u, β)) = πi(u, β)

and
P (ξi(u, β) = −πi(u, β)) = 1− πi(u, β).

Now, we are going to employ Lemma A.1. We have already mentioned that
{ξi(u, β)}∞i=1 is a sequence of independently distributed r.v.’s. Let us denote by
{Wi(s)}∞i=1 the sequence of independent Wiener processes (we may assume e. g. that
each of them is defined on “an own probability space”, say {(Ωi,Ai, Pi)}∞i=1 and then
consider the product space (Ω,A, P ) in the same way as it is done in the proof of
Daniell-Kolmogorov theorem, see e. g. Tucker [14] and let us define τi(u, β) to be
the time for the Wiener process Wi(s) to exit the interval (−πi(u, β), 1 − πi(u, β))
(please keep in mind that τi(u, β) is r.v., i. e. τi(u, β) = τi(u, β, ω)). Then ξi(u, β) =D
Wi(τi(u, β)) and hence for any β ∈ Rp

n− 1
2

n∑
i=1

ξi(u, β) =D n− 1
2

n∑
i=1

Wi(τi(u, β)) =D W1

(
n−1

n∑
i=1

τi(u, β)

)
(A.70)

where the last equality follows from the properties of the Wiener process. Further,
let us define Ui to be the time for the Wiener process Wi(s) to exit interval (−1, 1).
Due to the fact that for all i = 1, 2, . . . , n for any u ∈ R+ and any β ∈ Rp

πi(u, β) ≤ 1 and 1−πi(u, β) ≤ 1, i. e. (−πi(u, β)), 1− πi(u, β)) ⊂ (−1, 1) ,

we conclude that for any u ∈ R+, any β ∈ Rp and any ω ∈ Ω

τi(u, β) ≤ Ui

and hence (again for any ω ∈ Ω)

n−1
n∑

i=1

τi(u, β) ≤ n−1
n∑

i=1

Ui. (A.71)
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Of course, {Ui}∞i=1 is the sequence of i.i.d r.v.’s and due to Lemma A.1 we have

IEUi = 1,

so, employing the law of large numbers, we can find n1 so that for all n > n1 and
for

Bn =

{
ω ∈ Ω : n−1

n∑
i=1

Ui ≤ 2

}
we have

P (Bn) ≥ 1− ε

2
. (A.72)

Let us consider n > n1 and a fix ω0 ∈ Bn and let us realize that for any u ∈ R+ and
any β ∈ Rp the left hand side of (A.71), i. e. n−1

∑n
i=1 τi(u, β) = n−1

∑n
i=1 τi(u, β, ω0),

is not larger than n−1
∑n

i=1 Ui = n−1
∑n

i=1 Ui(ω0) ∈ [0, 2]. So for our fix ω0, we
have{

t∈R : t=n−1
n∑

i=1

τi(v, β, ω0), v∈R+, β∈Rp

}
⊂

{
t∈R : 0≤ t≤n−1

n∑
i=1

Ui(ω0)

}
.

It means that

sup
v∈R+

sup
β∈Rp

W

(
n−1

n∑
i=1

τi(v, β, ω0)

)
≤ sup

0≤t≤n−1
∑n

i=1 Ui(ω0)

|W1 (t, ω0)| . (A.73)

So, we arrived at: We have two processes which are equivalent in distribution, i. e.

n∑
i=1

ξi(u, β, ω) =D W1

(
n−1

n∑
i=1

τi(u, β, ω)

)

with the same index sets, u ∈ R, β ∈ Rp (see (A.70)), both of them are separable.
Then employing Lemma A.5, we obtain

n− 1
2 sup
u∈R+

sup
β∈Rp

∣∣∣∣∣
n∑

i=1

ξi(u, β, ω0)

∣∣∣∣∣ =D sup
u∈R+

sup
β∈Rp

∣∣∣∣∣W1

(
n−1

n∑
i=1

τi(u, β, ω0)

)∣∣∣∣∣
and due to (A.73)

n− 1
2 sup
u∈R+

sup
β∈Rp

∣∣∣∣∣
n∑

i=1

ξi(u, β, ω0)

∣∣∣∣∣ ≤ sup
0≤t≤n−1

∑n
i=1 Ui(ω0)

|W1 (t, ω0)| .

In other words, for any n > n1 and any ω ∈ Bn

n− 1
2 sup
u∈R+

sup
β∈Rp

∣∣∣∣∣
n∑

i=1

ξi(u, β)

∣∣∣∣∣ ≤ sup
0≤t≤n−1

∑n
i=1 Ui

|W1 (t)| . (A.74)
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Further, employing (A.74), we arrive at

P

({
ω ∈ Ω : n− 1

2 sup
u∈R+

sup
β∈Rp

∣∣∣∣∣
n∑

i=1

ξi(u, β)

∣∣∣∣∣ > K

})

≤ P

({
ω ∈ Ω : n− 1

2 sup
u∈R+

sup
β∈Rp

∣∣∣∣∣
n∑

i=1

ξi(u, β)

∣∣∣∣∣ > K

}
∩

{
ω ∈ Ω : n−1

n∑
i=1

Ui > 2

})

+P

({
ω ∈ Ω : sup

0≤t≤n−1
∑n

i=1 Ui

|W1 (t)| > K

}
∩

{
ω ∈ Ω : n−1

n∑
i=1

Ui ≤ 2

})

≤ P

({
ω ∈ Ω : n−1

n∑
i=1

Ui > 2

})
+ P

({
ω ∈ Ω : sup

0≤t≤2
|W1 (t)| > K

})
. (A.75)

Now, utilizing Lemma A.3, we obtain

P

(
sup

0≤t≤2
|W1(t)| > K

)
≤ 2 · P (|W1(2)| > K) . (A.76)

Further, recalling the fact that var {W (2)} = 2 and using Chebyshev’s inequality,
we arrive at

2 · P (|W1(2)| > K) ≤ 4 · 1

K2
=

ε

2
. (A.77)

Finally, (A.72), (A.75), (A.76) and (A.77) imply

P

(
n− 1

2 sup
u∈R+, β∈Rp

∣∣∣∣∣
n∑

i=1

ξi(u, β)

∣∣∣∣∣ > K

)
≤ ε

which concludes the proof. �

Let’s recall that we have denoted by F
(n)
β (v) the empirical d. f. of error terms ei’s,

i. e.

F
(n)
β (v) =

1

n

n∑
i=1

I {|ei −X ′
iβ| < v}

and that we have put

F n,β(v) =
1

n

n∑
i=1

Fβ,i(v)

(see (33)) where

Fβ,i(v) = P (|Yi −X ′
iβ| < v) = P (|ei −X ′

iβ| < v) .

Lemma A.7. Let the Conditions C2 hold. For any ε > 0 there is a constant Kε

and nε ∈ N so that for all n > nε

P

({
ω ∈ Ω : sup

v∈R+

sup
β∈Rp

√
n
∣∣∣F (n)

β (v)− F n,β(v)
∣∣∣ < Kε

})
> 1− ε.
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For a P r o o f of the lemma see Vı́̌sek [25] (the proof runs along similar lines as the
proof of the previous lemma).

Lemma A.8. Under Conditions C2 the distribution functions Fβ,i(r) and F(X′β)2(r)
are, uniformly in i = 1, 2, . . . and in r ∈ R, uniformly continuous in β, i. e. for any
δ > 0 there is ζ ∈ (0, 1) so that for any pair β(1) and β(2) such that

∥∥β(1) − β(2)
∥∥ < ζ

we have
sup
i∈N

sup
r∈R

∣∣Fβ(1),i(r)− Fβ(2),i(r)
∣∣ ≤ δ

and
sup
r∈R

∣∣∣F(X′β(1))
2(r)− F(X′β(2))

2(r)
∣∣∣ ≤ δ.

P r o o f . Let us recall that (see (34))

Fβ,i(r) = P
(∣∣∣ei −X

′

iβ
∣∣∣ < r

)
=

∫
I{
∣∣∣s− x

′
β
∣∣∣ < r}dFX,ei(x, s)

and that (under Conditions C2) there is fσ < ∞ so that supi∈N supr∈R fei(r) < fσ.
Then

sup
i∈N

sup
r∈R

∣∣Fβ(1),i(r)− Fβ(2),i(r)
∣∣

≤ sup
i∈N

sup
r∈R

∫ ∣∣∣I{|s− x
′
β(1)| < r} − I{|s− x

′
β(2)| < r}

∣∣∣ dFX,ei(x, s)

= sup
i∈N

sup
r∈R

∫ ∣∣∣I{|s− x
′
β(1)| < r} − I{|s− x

′
β(2)| < r}

∣∣∣ fei(s)dsdFX(x).

Further ∫ ∣∣∣I {|s− x
′
β(1)| < r

}
− I

{
|s− x

′
β(2)| < r

}∣∣∣ fei(s)ds
≤

∫ max{−r+x
′
β(1),−r+x

′
β(2)}

min{−r+x′β(1),−r+x′β(2)}
fei(s)ds+

∫ max{r+x
′
β(1),r+x

′
β(2)}

min{r+x′β(1),r+x′β(2)}
fei(s)ds

≤ 2 · fσ ·
∣∣∣x′

β(1) − x
′
β(2)

∣∣∣ .
Hence

sup
i∈N

sup
r∈R

∣∣Fβ(1),i(r)− Fβ(2),i(r)
∣∣ ≤ 2 · fσ

∫ ∣∣∣x′
β(1) − x

′
β(2)

∣∣∣ fX(x)dx

≤ 2 · fσ · IE ∥X1∥ ·
∥∥∥β(1) − β(2)

∥∥∥ .
So, for any δ > 0, putting ζ = 1

2δ·f
−1
σ ·IE−1 ∥X1∥, for any β(1), β(2) ∈ Rp,

∥∥β(1) − β(2)
∥∥

≤ ζ we have
sup
r∈R

∣∣Fβ(1),i(r)− Fβ(2),i(r)
∣∣ ≤ δ.

The proof of the second part of the lemma runs along similar lines. �
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Lemma A.9. Let Conditions C1 and C2 hold. Then for any positive ζ

β
′
IE
[
w
(
F n,β(|ri(β)|)

)
Xi

(
ei −X

′

iβ
)]

is uniformly in i = 1, 2, . . . and uniformly in n = 1, 2, . . . uniformly continuous in β
on B = {β ∈ Rp : ∥β∥ ≤ ζ}.

P r o o f . Fix a positive ζ and ε and for the sake of space write again in a few next

lines wn,β(1)(i, β(2)) instead of w
(
F n,β(1)(|ri(β(2))|)

)
. We have to show that then

there is δε,ζ > 0 such that for any pair of β(1), β(2) such that
∥∥β(1)

∥∥ ≤ ζ,
∥∥β(2)

∥∥ ≤ ζ

and
∥∥β(1) − β(2)

∥∥ < δε,ζ we have for all i = 1, 2, . . . and for all n = 1, 2, . . .∣∣∣∣[β(1)
]′
IE
[
wn,β(1)(i, β(1))Xi

(
ei −X

′

iβ
(1)
)]

−
[
β(2)

]′
IE
[
wn,β(2)(i, β(2))Xi

(
ei −X

′

iβ
(2)
)]∣∣∣∣ ≤ ε.

Firstly consider

sup
n∈N

sup
i∈N

∣∣∣∣[β(1)
]′
IEwn,β(1)(i, β(1))Xi · ei −

[
β(2)

]′
IEwn,β(2)(i, β(2))Xi · ei

∣∣∣∣ (A.78)

≤ sup
n∈N

sup
i∈N

∥∥∥β(1) − β(2)
∥∥∥ · IEwn,β(1)(i, β(1)) ∥Xi∥ · |ei| (A.79)

+ sup
n∈N

sup
i∈N

∥∥∥β(2)
∥∥∥ · IE ∣∣∣wn,β(1)(i, β(1))− wn,β(1)(i, β(2))

∣∣∣ · ∥Xi∥ · |ei| (A.80)

+ sup
n∈N

sup
i∈N

∥∥∥β(2)
∥∥∥ · IE ∣∣∣wn,β(1)(i, β(2))− wn,β(2)(i, β(2))

∣∣∣ · ∥Xi∥ · |ei| .(A.81)

Denoting τ1 = IE ∥X1∥ < ∞ and finding Ae = supi∈N IE |ei| < ∞, put δ1 =
1
6ε · τ

−1
1 ·A−1

e . Then for any pair
∥∥β(1) − β(2)

∥∥ < δ1 (A.79) is less than 1
6ε. Putting

δ2 = 1
6ε · ζ

−2 · τ−1
1 · A−1

e · L−1 · f−1
σ (for fσ see Remark 1.6), we have also for any

pair
∥∥β(1) − β(2)

∥∥ < δ2 (A.80) is less than 1
6ε. Finally, utilizing Lemma A.8 find δ3

so that for any pair
∥∥β(1) − β(2)

∥∥ < δ3 we have

sup
i∈N

sup
r∈R

∣∣Fβ(1),i(r)− Fβ(2),i(r)
∣∣ ≤ 1

6
ε · ζ−2 · τ−1

1 ·A−1
e · L−1.

Then for any pair
∥∥β(1) − β(2)

∥∥ < δ3 (A.81) is also less than 1
6ε. Finally, (A.79),

(A.80) and (A.81) imply that for any pair
∥∥β(1) − β(2)

∥∥ < min {δ1, δ2, δ3} (A.78) is
less that 1

2ε. The rest of proof employs the same ideas. �

Lemma A.10. Let Conditions C1 and C2 hold. Let e be a r.v. distributed according
to Fe(v) and denote for any β ∈ Rp Fβ(v) = P (|e − X ′

1β| < v) and r(β) = e −
X ′

1β.Then for any positive ζ

β
′
IE
[
w (Fβ(|r(β)|))X1

(
e−X

′

1β
)]

is uniformly continuous in β on B = {β ∈ Rp : ∥β∥ ≤ ζ}.
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P r o o f runs along similar lines as the proof of the previous lemma. �

Lemma A.11. Let Conditions C1 hold. Then for any ε > 0 and δ ∈ (0, 1) there is
ζ > 0 and nε,δ ∈ N so that for all n > nε,δ

P

ω ∈ Ω : sup
r∈R

sup
∥β(1)−β(2)∥<ζ

∣∣∣F (n)

β(1)(r)− F
(n)

β(2)(r)
∣∣∣ < δ


 > 1− ε. (A.82)

P r o o f . Fix ε > 0 and δ ∈ (0, 1) and according to Lemma A.8 find ζ > 0 so that
for any pair

∥∥β(1) − β(2)
∥∥ < ζ we have

sup
i∈N

sup
r∈R

∣∣Fβ(1),i(r)− Fβ(2),i(r)
∣∣ ≤ δ

3
.

Then also

sup
r∈R

∣∣F β(1)(r)− F β(2)(r)
∣∣ ≤ 1

n

n∑
i=1

sup
i∈N

sup
r∈R

∣∣Fβ(1),i(r)− Fβ(2),i(r)
∣∣ ≤ δ

3
. (A.83)

Employing Lemma A.6 find K < ∞ and nε,K ∈ N so that for any n > nε,K and

Bn =

{
ω ∈ Ω : sup

r∈R+

sup
β∈Rp

√
n
∣∣∣F (n)

β (r)− F β(r)
∣∣∣ < K

}
(A.84)

we have P (Bn) > 1− ε.
Further select nε,K,δ ∈ N , nε,K,δ > nε,K so that

K
√
nε,K,δ

<
δ

3
. (A.85)

Then, due to (A.83), (A.84) and (A.85), for any n > nε,K,δ and ω ∈ Bn we have

sup
r∈R

sup
∥β(1)−β(2)∥<ζ

∣∣∣F (n)

β(1)(r)− F
(n)

β(2)(r)
∣∣∣ ≤ sup

r∈R
sup

β(1)∈Rp

∣∣∣F (n)

β(1)(r)− F β(1)(r)
∣∣∣

+ sup
r∈R

sup
∥β(1)−β(2)∥<ζ

∣∣F β(1)(r)− F β(2)(r)
∣∣ + sup

r∈R
sup

β(2)∈Rp

∣∣∣F (n)

β(2)(r)− F β(2)(r)
∣∣∣ < δ.

�
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Praha 1 and Department of Econometrics, Institute of Information Theory and Automa-

tion – Academy of Sciences of the Czech Republic, Pod Vodárenskou věž́ı 4, 182 08 Praha 8.
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