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Abstract. We consider a random series of values and are interested in the
analysis and modeling the occurrence of extremes. There exist several possible
approaches. One of them is the analysis of sequence of block maxima. As we
assume that the series has a trend, we first select a proper regression model
for the block maxima development. From it, a Markov chain of the sequence
of extremes is derived. As the transition probabilities of the chain are not
tractable analytically, we use the Monte Carlo generation of the chain behavior.
Then, from the sample representing the series of block maxima development
we obtain a representation of corresponding predictive distribution. Finally,
we shall apply such a method to real data.
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1 Introduction

Let us consider a sequence of maximal values in a series of random variables X1, X2, . . .. New maximum
(record) is established when Xt+1 > max{X1, ..., Xt}. The case of i.i.d. (independent, identically dis-
tributed) random variables Xt has been analyzed by many authors (cf. Embrechts et al, 1997). It has
been shown that the probability of new record at time t is proportional to 1/t, and that the sequence
new record values R1 < R2 < . . . behaves as a random point process with intensity hx(r) equal to the
intensity of distribution of random variables Xt.

However, quite frequently the assumption of i.i.d. variables is not adequate. Especially in cases when
the series of variables is dependent and changes along certain trend. This contradiction between reality
and the i.i.d. scheme led to the construction of models describing the sequence of extremes (i. e. values,
increments, times) with the aid of convenient functional models for intensity, regression, or time-series
(though we shall speak mostly on maxima, the same concerns the minimal values).

In the paper we are interested in the following questions: In Section 2 we deal with the problem of
trend model fitted to the data. We use the approach of block maxima, i.e. the data are reduced to
maximal values over certain periods. It has an advantage that the dependence in a series is reduced,
on the other hand some local extremes are lost. The statistical tools for the model fit diagnostics are
recalled, too. Then the method of the prediction of further series development is proposed. It is based on
the simulation, as the numerical computations are hardly tractable in this case. The simulation of future
trajectories enables us to estimate prediction bands, i.e. curves which are crossed with given probability
(see ”Peaks over threshold”, POT method, for instance in Beirlant et al, 2004). Notice that when we
deal with block maxima, the POT approach yields a piece-vise constant threshold curve, which is also
one of possible choices of thresholds of POT analysis for the whole data series.

In Section 3 we recall the attempts to model the occurrence of extremes as a random point process.
We actually link up both approaches, by the formulation of random walk process of new extremes based
on the analysis of trend of block maxima. Finally, the last part deals with a brief illustration of presented
methods.
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2 A model of trend

Let X(t) be a series of maximal values in periods t, so that t is the discrete time, periods t = 1, 2, . . .
given by our selection of data. We shall consider the following model form:

X(t) = m(t) + r(t),

where m(t) stands for a trend function, r(t) are the residuals, random errors. We allow for their autore-
gressive structure, so that

r(t) =
K∑

j=1

aj · r(t− j) + σ · εt,

where εt are already i.i.d. N(0, 1) (standard normal) variables, σ > 0 is constant. Naturally, during the
analysis those assumptions have to be checked. An alternative can consider time-dependent variance,
either given by a function of time (as in Volf, 2011) or for instance by an ARCH model. As regards the
selection of trend function, we consider two possibilities:

1. A parametrized function corresponding to the shape of trend. Frequent choices are S-shape Gom-
pertz function or exponential decay curve (see Kuper and Sterken, 2003).

2. Trend constructed from a linear combination of functional units (eg. polynomials, goniometric
functions, polynomial splines or others). Optimal selection of units and a degree of model is
achieved with the aid of tests of parameters significance, the choice may be supported by the use of
some penalized criterion, for instance the BIC. However, as we are interested in a global trend and
also in the possibility to extrapolate (predict) it, the choice of basic functions is rather limited.

Estimation procedure is then based on the method of least squares, even in the case of autoregression
among errors r(t). It can seem that, because we deal with values of block maxima, the use of GEV
(generalized extremal values) distribution should be preferred to normal errors. In such a case, method
of maximal likelihood should be employed. However, the difference is negligible, as we show also in our
example.

Diagnostics of model fit: The goodness-of-fit of selected model, namely the correspondence of errors
εt to the standard normal distribution, can be tested both graphically (by the Q-Q plot) and numerically,
e.g. with the aid of the Kolmogorov-Smirnov test. The selection of degree of eventual autoregression is
standardly based on the maximum likelihood estimation (i.e. the mean squares in the Gauss distribution
case) of autoregression parameters, on the tests of their significance, and also may be supported by the
BIC criterion.

The constantness of σ, i.e. the homoskedasticity of remaining term, can be tested by the White test
(White, 1980). It is based on the coefficient of determination in the linear regression of squared residuals
(i.e. estimated σ ·εt) on regressors contained in m(t). The test statistics is the coefficient of determination
multiplied by the sample size, its critical value is given by corresponding chi-square quantile with p − 1
degrees of freedom, where p is the number of parameters in m(t).

Finally, the independence of εt can be tested for instance by simple nonparametric tests (”series above
and below median”, ”series up and down”).

Generally, the models with smooth trend do not consider any change of conditions, though such
changes are quite frequent in practice. Then, the analysis can be amended by a method searching for
potential changes, as well as by the detection of outlied values.

3 Models of random point process

Such models are based on the notion of intensity of new extreme occurrence (cf. Embrechts at al, 1997,
Beirlant et al, 2004, and references there). The methodology is borrowed from the survival analysis.
Models also allow to incorporate the dependence of intensity on influencing factors, for instance in the
framework of Cox’s regression model. In order to enlarge the point process scheme to the description of
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both new extremes times and values, we can use a model of compound point process. Compound process
means the process of random increments at random times, formally

C(t) =
∫ t

0

Z(s) dN(s),

where Z(s) are (nonnegative) random variables and N(s) is a counting process. If N(s) has intensity
λ(s) and the mean and variance of Z(s) are µ(s), σ2(s), respectively, then the mean development of C(t)
is given as

EC(t) =
∫ t

0

λ(s)µ(s) ds and varC(t) =
∫ t

0

λ(s)
(
µ2(s) + σ2(s)

)
ds.

Now, both components of compound process can depend on explaining factors, via conveniently selected
regression model (as is for instance the model presented in Volf, 2005). In the discrete-time case, i.e. also
in the block maxima approach, we register just whether the new maximum was achieved or not in certain
period. Then the compound process changes to a random walk model. It is described by probabilities
p(t) of new extreme occurrence in period t and random variables Z(t) of its increase.

3.1 New maximum occurrence and value

Let us assume that up to time 0 the maximal value of the series was R. Further, let the block maxima in
following periods be described as (continuous type) random variables X(t), t = 1, 2, . . ., with probability
densities, distribution functions, survival functions ft, Ft, , St = 1−Ft, respectively. Then the probability
that a new maximum will occur in period k is

p(k, R) = P {X(j) < R, j = 1, 2, .., k − 1, X(k) > R} = (1)

=





k−1∏

j=1

P (X(j) < R)



 · P (X(k) > R) =





k−1∏

j=1

Fj(R)



 · Sk(R)

when X(t) are independent (conditionally, given the trend function). Further, the new maximum value
is given by the density

gk(r,R) = P (X(k) = r|X(k) > R) =
fk(r)
Sk(R)

, for r > R, (2)

provided k is the period of new maximum occurrence.

Therefore, when the joint distribution of X(t) is known (estimated, in the present context), the
distributions of random variables TR - the period of new record occurrence, and ZR of new maximum
improvement, can be derived easily. Namely,

P (TR = k) = p(k,R), k = 1, 2, . . .

and the distribution of ZR has the density

g(z, R) =
∞∑

k=1

p(k, R) · gk(R + z,R). for z > 0. (3)

In most instances, including the case of normal distribution, these formulas can be evaluated just numer-
ically.

3.2 A Markov chain of extremes, its prediction

The process of growth of the maximal value can also be treated as a Markov chain, with discrete time and
continuous state space. Again, assume that at time t the actual maximum value is Rt. Then, at time t+1,
no change will occur with probability P (Rt+1 = Rt) = P (X(t+1) ≤ Rt) = Ft+1(Rt), while the transition
probability to a higher value r > Rt is given as in (2), namely by density gt+1(r,Rt) = ft+1(r)/St+1(Rt).

Such a Markov scheme is convenient for random generation of future process paths. Namely, assume
that the data up to period T , X(1), . . . , X(T ), are available and that the parameters of trend model are
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estimated from them. The objective is to predict the process for next periods. First, the trend of X(t)
is extrapolated to t > T . On this basis, we generate random trajectories of Markov process of extremes
described above, starting from value RT at T . From a large number of such random trajectories, the
development of certain sample characteristics of future process course can be computed. For instance the
mean values, variances as well as different quantiles.

3.3 Prediction bands and POT view

Random generation of future trajectories of analyzed process yields a sample of them, say fm(t), t ∈
(T, T1),m = 1, .., M . Then the point-wise (at each t) ’prediction’ intervals for X(t) are obtained imme-
diately from sample quantiles of fm at t. Methods for construction of prediction bands on the whole
interval (T, T1) could be, theoretically, connected with the concept of ’depth of data’ (see for instance
Zuo and Serfling, 2000). Practically, the approach corresponds to the construction of multivariate quan-
tiles, for instance in the following way: Let us consider a sample of functions fm(t) given empirically
by values at the same set of points tj ; j = 1, .., J . For each k < M/2, point-wise k/M or (M − k)/M
sample quantiles (i.e. at each tj) can be constructed. If we join them to a band, we can try to find such
k that, approximately, a given proportion (95%, say) of functions lies below it. As an additional finer
criterion we can compare numbers of points at which the quantiles are crossed. In other words, in such a
way we construct an empirical version of the threshold which is crossed (on the whole interval) just with
probability 5%.
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Figure 1: Block maxima and trend function (above), extrapolation of trend and 90% prediction band

4 Application

Figure 1, in its upper subplot, displays, by points, the development of exchange rate of CZK to Euro,
namely 10 days maxima during approximately last 2 years (May 2009 to April 2011). As we know, the
trend was decreasing, moreover, the data show certain seasonal components and also other non-regular
disturbances. The plot contains also fitted trend curve. It was created as a linear combination of certain
basic function, their selection was optimized as described in Part 2, following the approach 2. Namely,
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Figure 2: Q-Q plot (above) and K-S test (below) comparing empirical distribution of standardized errors
εt with standard normal distribution

we obtained

m(t) = b1+b2 ·t+b3 ·t2+b4·cos(2π/T )+b5 ·sin(4π/T )+b6 ·sin(6π/T )+b7 ·sin(8π/T )+b8 ·cos(8π/T ). (4)

As T is actually the range of times t, sin(2kπ/T ) is a function with k periods during T . Hence, the
trend function has also several periodic components, with a period of 1 year and also with another period
half-year long.

Further, it was detected that the residual values behaved as AR(1) series,

r(t) = a · r(t− 1) + σ · εt.

Parameters were estimated by the least squares method, with results (half–widths of 95% confidence
intervals are in parentheses):

b1 = 27.05412 (18.01561), b2 = −0.00896 (0.00271),

b3 = 0.000008 (0.000004), b4 = −0.58707 (0.20364),

b5 = −0.25745 (0.06260), b6 = −0.12884 (0.05968),

b7 = 0.21106 (0.05863), b8 = 0.11985 (0.05860),

a = 0.42870 (0.21395).

Residual standard deviation σ was estimated as s = 0.15344.

Figure 2 shows the Q-Q plot (above) and graphical version of the Kolmogorov-Smirnov test (below),
both comparing empirical distribution of realizations of εt with N(0, 1) distribution. Neither graph
contradict to the good fit. Numerically, in K-S test the maximal departure of empirical and hypothetical
distribution function was 0.0903 while the critical value for n = 72 is larger, 0.1601.

The homoskedasticity of residual term was tested with the White test (described in Part 2). The test
statistics yielded 12.27, while the 95% quantile of the chi-square distribution with 7 degrees of freedom
was 14.07, so that the hypothesis of constant σ was not rejected.

The assumption of independence of errors εt was checked, too. Two nonparametric tests (”series
above and below median”, ”series up and down”) were employed. The independence was not formally
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rejected by any test, P-values were 0.0576 and 0.1406, respectively (though these P-values are quite close
to their critical border).

Finally, we also tried to predict the behavior of series X(t) for next 13 periods 10 days long. The
result is displayed in Figure 1, lower subplot. The points correspond to extrapolated trend curve m(t),
at t = 715, 725, ..., 845. We then generated 1000 realizations of series of future block maxima, following
the approach described in subsection 3.2. Dashed curve close to m(t) is connecting point-wise sample
medians obtained from them. Remaining curve, dot-dashed, is the threshold which was crossed just by
100 (i.e 10%) of trajectories, in other words, it is an empirical (so that approximate) 90% prediction band
for maxima in the series of exchange rate development.

5 Conclusion

We have proposed a model for the occurrence of extremal values, taking into account the series of block
maxima. Its development is represented by a nonlinear regression (trend) model. From it, the Markov
chain of new extremes occurrence and values has been derived. While, explicitly, the model depends just
on time, an implicit dependence of new maximum on the past maximum duration and value is involved,
too. An application to real data has shown usefulness and good performance of the model. A future
improvement should concentrate to the problems of detection (and prediction) of changes in analyzed
time series. Except the use of statistical methods for changes and outliers detection, one can think
also on selection of informative factors indicating the changes of conditions, and on methods of pattern
recognition for the analysis of those factors.
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