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14.1 Introduction

An ordinary differential equation of the form

ẋ(t) + f (t)x(t) − b(t)x2(t) + c(t) = 0 (14.1)

is known as a Riccati equation, deriving its name from Jacopo Francesco, Count Riccati (1676–1754) [1],
who studied a particular case of this equation from 1719 to 1724.

For several reasons, a differential equation of the form of Equation 14.1, and generalizations thereof
comprise a highly significant class of nonlinear ordinary differential equations. First, they are intimately
related to ordinary linear homogeneous differential equations of the second order. Second, the solutions
of Equation 14.1 possess a very particular structure in that the general solution is a fractional linear
function in the constant of integration. In applications, Riccati differential equations appear in the classical
problems of the calculus of variations and in the associated disciplines of optimal control and filtering.

The matrix Riccati differential equation refers to the equation

Ẋ(t) + X(t)A(t) − D(t)X(t) − X(t)B(t)X(t) + C(t) = 0 (14.2)

defined on the vector space of real m × n matrices. Here, A, B, C, and D are real matrix functions of
the appropriate dimensions. Of particular interest are the matrix Riccati equations that arise in optimal
control and filtering problems and that enjoy certain symmetry properties. This chapter is concerned
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14-2 Control System Advanced Methods

with these symmetric matrix Riccati differential equations and concentrates on the following four major
topics:

• Basic properties of the solutions
• Existence and properties of constant solutions
• Asymptotic behavior of the solutions
• Methods for the numerical solution of the Riccati equations

14.2 Optimal Control and Filtering: Motivation

The following problems of optimal control and filtering are of great engineering importance and serve to
motivate our study of the Riccati equations.

A linear-quadratic optimal control problem consists of the following. Given a linear system

ẋ(t) = Fx(t) + Gu(t), x(t0) = c, y(t) = Hx(t), (14.3)

where x is the n-vector state, u is the q-vector control input, y is the p-vector of regulated variables, and
F, G, H are constant real matrices of the appropriate dimensions. One seeks to determine a control input
function u over some fixed time interval [t1, t2] such that a given quadratic cost functional of the form

η(t1, t2, T) =
∫ t2

t1

[y′(t)y(t) + u′(t)u(t)] dt + x′(t2)Tx(t2), (14.4)

with T being a constant real symmetric (T = T ′) and nonnegative definite (T ≥ 0) matrix, is afforded a
minimum in the class of all solutions of Equation 14.3, for any initial state c.

A unique optimal control exists for all finite t2 − t1 > 0 and has the form

u(t) = −G′P(t, t2, T)x(t),

where P(t, t2, T) is the solution of the matrix Riccati differential equation

−Ṗ(t) = P(t)F + F ′P(t) − P(t)GG′P(t) + H ′H (14.5)

subject to the terminal condition
P(t2) = T .

The optimal control is a linear state feedback, which gives rise to the closed-loop system

ẋ(t) = [F − GG′P(t, t2, T)]x(t)

and yields the minimum cost
η∗(t1, t2, T) = c′P(t1, t2, T)c. (14.6)

A Gaussian optimal filtering problem consists of the following. Given the p-vector random process z
modeled by the equations

ẋ(t) = Fx(t) + Gv(t),

z(t) = Hx(t) + w(t),
(14.7)

where x is the n-vector state and v, w are independent Gaussian white random processes (respectively,
q-vector and p-vector) with zero means and identity covariance matrices. The matrices F, G, and H are
constant real ones of the appropriate dimensions.



�

�

�

�

�

“73648_C014” — 2010/7/15 — 15:57 — page 3 — #3

�

Riccati Equations and their Solution 14-3

Given known values of z over some fixed time interval [t1, t2] and assuming that x(t1) is a Gaussian
random vector, independent of v and w, with zero mean and covariance matrix S, one seeks to determine
an estimate x̂(t2) of x(t2) such that the variance

σ(S, t1, t2) = Ef ′[x(t2) − x̂(t2)][x(t2) − x̂(t2)]′f (14.8)

of the error encountered in estimating any real-valued linear function f of x(t2) is minimized.
A unique optimal estimate exists for all finite t2 − t1 > 0 and is generated by a linear system of the form

˙̂x(t) = Fx̂(t) + Q(S, t1, t)H ′e(t), x̂(t0) = 0, e(t) = z(t) − Hx̂(t),

where Q(S, t1, t) is the solution of the matrix Riccati differential equation

Q̇(t) = Q(t)F ′ + FQ(t) − Q(t)H ′HQ(t) + GG′ (14.9)

subject to the initial condition
Q(t1) = S.

The minimum error variance is given by

σ∗(S, t1, t2) = f ′Q(S, t1, t2)f . (14.10)

Equations 14.5 and 14.9 are special cases of the matrix Riccati differential Equation 14.2 in that A, B, C,
and D are constant real n × n matrices such that

B = B′, C = C′, D = −A′.

Therefore, symmetric solutions X(t) are obtained in the optimal control and filtering problems.
We observe that the control Equation 14.5 is solved backward in time, while the filtering Equation 14.9

is solved forward in time. We also observe that the two equations are dual to each other in the sense that

P(t, t2, T) = Q(S, t1, t)

on replacing F, G, H , T , and t2 − t in Equation 14.5 respectively, by F ′, H ′, G′, S, and t − t1 or, vice versa,
on replacing F, G, H , S, and t − t1 in Equation 14.9 respectively, by F ′, H ′, G′, T , and t2 − t. This makes it
possible to dispense with both cases by considering only one prototype equation.

14.3 Riccati Differential Equation

This section is concerned with the basic properties of the prototype matrix Riccati differential equation

Ẋ(t) + X(t)A + A′X(t) − X(t)BX(t) + C = 0, (14.11)

where A, B, and C are constant real n × n matrices with B and C being symmetric and nonnegative
definite,

B = B′, B ≥ 0 and C = C′, C ≥ 0. (14.12)

By definition, a solution of Equation 14.11 is a real n × n matrix function X(t) that is absolutely
continuous and satisfies Equation 14.11 for t on an interval on the real line R.

Generally, solutions of Riccati differential equations exist only locally. There is a phenomenon called
finite escape time: the equation

ẋ(t) = x2(t) + 1

has a solution x(t) = tan t in the interval (−π
2 , 0) that cannot be extended to include the point t = −π

2 .
However, Equation 14.11 with the sign-definite coefficients as shown in Equation14.12 does have global
solutions.
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Let X(t, t2, T) denote the solution of Equation 14.11 that passes through a constant real n × n matrix
T at time t2. We shall assume that

T = T ′ and T ≥ 0. (14.13)

Then the solution exists on every finite subinterval of R, is symmetric, nonnegative definite and enjoys
certain monotone properties.

Theorem 14.1:

Under the assumptions of Equations 14.12 and 14.13 Equation 14.11 has a unique solution X(t, t2, T)
satisfying

X(t, t2, T) = X ′(t, t2, T), X(t, t2, T) ≥ 0

for every T and every finite t, t2, such that t ≥ t2.

This can most easily be seen by associating Equation 14.11 with the optimal control problem described
in Equations 14.3 through 14.6. Indeed, using Equation 14.12, one can write B = GG′ and C = H ′H for
some real matrices G and H . The quadratic cost functional η of Equation 14.4 exists and is nonnegative
for every T satisfying Equation 14.13 and for every finite t2 − t. Using Equation 14.6, the quadratic form
c′X(t, t2, T)c can be interpreted as a particular value of η for every real vector c.

A further consequence of Equations 14.4 and 14.6 follows.

Theorem 14.2:

For every finite t1, t2 and τ1, τ2 such that t1 ≤ τ1 ≤ τ2 ≤ t2,

X(t1, τ1, 0) ≤ X(t1, τ2, 0)

X(τ2, t2, 0) ≤ X(τ1, t2, 0)

and for every T1 ≤ T2,
X(t1, t2, T1) ≤ X(t1, t2, T2).

Thus, the solution of Equation 14.11 passing through T = 0 does not decrease as the length of the
interval increases, and the solution passing through a larger T dominates that passing through a smaller T .

The Riccati Equation 14.11 is related in a very particular manner with linear Hamiltonian systems of
differential equations.

Theorem 14.3:

Let

Φ(t, t2) =
[
Φ11 Φ12

Φ21 Φ22

]

be the fundamental matrix solution of the linear Hamiltonian matrix differential system

[
U̇(t)
V̇ (t)

]
=

[
A −B

−C −A′
] [

U(t)
V (t)

]
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that satisfies the transversality condition

V (t2) = TU(t2).

If the matrix Φ11 + Φ12T is nonsingular on an interval [t, t2], then

X(t, t2, T) = (Φ21 + Φ22T)(Φ11 + Φ12T)−1 (14.14)

is a solution of the Riccati Equation 14.11.

Thus, if V (t2) = TU(t2), then V (t) = X(t, t2, T)U(t) and the formula of Equation 14.14 follows.
Let us illustrate this with a simple example. The Riccati equation

ẋ(t) = x2(t) − 1, x(0) = T

satisfies the hypotheses of Equations 14.12 and 14.13. The associated linear Hamiltonian system of
equations reads [

u̇(t)
v̇(t)

]
=

[
0 −1

−1 0

] [
u(t)
v(t)

]

and has the solution [
u(t)
v(t)

]
=

[
cosh t − sinh t
−sinh t cosh t

] [
u(0)
v(0)

]
,

where v(0) = Tu(0). Then the Riccati equation has the solution

x(t, 0, T) = −sinh t + T cosh t

cosh t − T sinh t

for all t ≤ 0. The monotone properties of the solution are best seen in Figure 14.1.

–5 –4 –3
t

x(
t)

–2 –1 0
0

0.5

1

1.5

2

FIGURE 14.1 Graph of solutions.
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14.4 Riccati Algebraic Equation

The constant solutions of Equation 14.11 are just the solutions of the quadratic equation

XA + A′X − XBX + C = 0, (14.15)

called the algebraic Riccati equation. This equation can have real n × n matrix solutions X that are
symmetric or nonsymmetric, sign definite or indefinite, and the set of solutions can be either finite or
infinite. These solutions will be studied under the standing assumption of Equation 14.12, namely

B = B′, B ≥ 0 and C = C′, C ≥ 0.

14.4.1 General Solutions

The solution set of Equation 14.15 corresponds to a certain class of n-dimensional invariant subspaces of
the associated 2n × 2n matrix

H =
[

A −B
−C −A′

]
. (14.16)

This matrix has the Hamiltonian property[
0 I

−I 0

]
H = −H ′

[
0 I

−I 0

]
.

It follows that H is similar to-H ′ and therefore, the spectrum of H is symmetrical with respect to the
imaginary axis.

Now suppose that X is a solution of Equation 14.15. Then

H

[
I
X

]
=

[
I
X

]
(A − BX).

Denote J = U−1(A − BX)U , the Jordan form of A − BX and put V = XU. Then

H

[
U
V

]
=

[
U
V

]
J ,

which shows that the columns of [
U
V

]
are Jordan chains for H , that is, sets of vectors x1, x2, . . . , xr such that x1 �= 0 and for some eigenvalue λ

of H

Hx1 = λx1

Hxj = λxj + xj+1, j = 2, 3, . . . , r.

In particular, x1 is an eigenvector of H . Thus, we have the following result.

Theorem 14.4:

Equation 14.15 has a solution X if and only if there is a set of vectors x1, x2, . . . , xn forming a set of Jordan
chains for H and if

xi =
[

ui

vi

]
,

where ui is an n-vector, then u1, u2, . . . , un are linearly independent.
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Furthermore, if

U = [u1 . . . un], V = [v1 . . . vn],
every solution of Equation 14.15 has the form X = VU−1 for some set of Jordan chains x1, x2, . . . , xn for H.

To illustrate, consider the scalar equation

X2 + pX + q = 0,

where p, q are real numbers and q ≤ 0. The Hamiltonian matrix

H =
⎡
⎣−p

2
−1

q
p

2

⎤
⎦

has eigenvalues λ and −λ, where

λ2 =
(p

2

)2 − q.

If λ �= 0 there are two eigenvectors of H , namely

x1 =
[

1

−p

2
+ λ

]
, x2 =

[
1

−p

2
− λ

]
,

which correspond to the solutions

X1 = −p

2
+ λ, X2 = −p

2
− λ.

If λ = 0 there exists one Jordan chain,

x1 =
[

1

−p

2

]
, x2 =

[
0
1

]
,

which yields the unique solution

X1 = −p

2
.

Theorem 14.4 suggests that, generically, the number of solutions of Equation 14.15 to be expected will

not exceed the binomial coefficient

(
2n
n

)
, the number of ways in which the vectors x1, x2, . . . , xn can be

chosen from a basis of 2n eigenvectors for H . The solution set is infinite if there is a continuous family of
Jordan chains. To illustrate this point consider Equation 14.15 with

A =
[

0 0
0 0

]
, B =

[
1 0
0 1

]
, C =

[
0 0
0 0

]
.

The Hamiltonian matrix

H =

⎡
⎢⎢⎣

0 0 −1 0
0 0 0 −1
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦
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14-8 Control System Advanced Methods

has the eigenvalue 0, associated with two Jordan chains

x1 =

⎡
⎢⎢⎣

a
b
0
0

⎤
⎥⎥⎦ , x2 =

⎡
⎢⎢⎣

c
d

−a
−b

⎤
⎥⎥⎦ , and x3 =

⎡
⎢⎢⎣

c
d
0
0

⎤
⎥⎥⎦ , x4 =

⎡
⎢⎢⎣

a
b

−c
−d

⎤
⎥⎥⎦ ,

where a, b and c, d are real numbers such that ad − bc = 1. The solution set of Equation 14.15 consists of
the matrix

X13 =
[

0 0
0 0

]

and two continuous families of matrices

X12(a, b) =
[

ab −a2

b2 −ab

]
and X34(c, d) =

[−cd c2

−d2 cd

]
.

Having in mind the applications in optimal control and filtering, we shall be concerned with the
solutions of Equation 14.15 that are symmetric and nonnegative definite.

14.4.2 Symmetric Solutions

In view of Theorem 14.4, each solution X of Equation 14.15 gives rise to a factorization of the characteristic
polynomial χH of H as

χH (s) = (−1)nq(s)q1(s),

where q = χA−BX . If the solution is symmetric, X = X ′, then q1(s) = q(−s). This follows from

[
I 0
X I

]−1 [
A −B

−C −A′
] [

I 0
X I

]
=

[
A − BX −B

0 −(A − BX)′
]

.

There are two symmetric solutions that are of particular importance. They correspond to a factorization

χH (s) = (−1)nq(s)q(−s)

in which q has all its roots with nonpositive real part; it follows that q(−s) has all its roots with nonnegative
real part. We shall designate these solutions X+ and X−.

One of the basic results concerns the existence of these particular solutions. To state the result, we recall
some terminology. A pair of real n × n matrices (A, B) is said to be controllable (stabilizable) if the n × 2n
matrix [λI − A B] has linearly independent rows for every complex λ (respectively, for every complex λ

such that Re λ ≥ 0). The numbers λ for which [ λI − A B], loses rank are the eigenvalues of A that are not
controllable (stabilizable) from B. A pair of real n × n matrices (A, C) is said to be observable (detectable)

if the 2n × n matrix

[
λI − A

C

]
has linearly independent columns for every complex λ (respectively, for

every complex λ such that Re λ ≥ 0). The numbers λ for which

[
λI − A

C

]
loses rank are the eigenvalues

of A that are not observable (detectable) in C. Finally, let dim V denote the dimension of a linear space V
and Im M, Ker M the image and the kernel of a matrix M, respectively.

Theorem 14.5:

There exists a unique symmetric solution X+ of Equation 14.15 such that all eigenvalues of A − BX+ have
nonpositive real part if and only if (A, B) is stabilizable.
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Theorem 14.6:

There exists a unique symmetric solution X− of Equation 14.15 such that all eigenvalues of A − BX− have
nonnegative real part if and only if (−A, B) is stabilizable.

We observe that both (A, B) and (−A, B) are stabilizable if and only if (A, B) is controllable. It follows
that both solutions X+ and X− exist if and only if (A, B) is controllable.

For two real symmetric matrices X1 and X2, the notation X1 ≥ X2 means that X1 − X2 is nonnegative
definite. Since A − BX+ has no eigenvalues with positive real part, neither has X+ − X. Hence, X+ − X ≥
0. Similarly, one can show that X − X− ≥ 0, thus introducing a partial order among the set of symmetric
solutions of Equation 14.15.

Theorem 14.7:

Suppose that X+ and X− exist. If X is any symmetric solution of Equation 14.15, then

X+ ≥ X ≥ X−.

That is why X+ and X− are called the extreme solutions of Equation 14.15; X+ is the maximal symmetric
solution, while X− is the minimal symmetric solution. The set of all symmetric solutions of Equation 14.15
can be related to a certain subset of the set of invariant subspaces of the matrix A − BX+ or the matrix
A − BX−. Denote V0 and V+ the invariant subspaces of A − BX+ that correspond, respectively, to the
pure imaginary eigenvalues and to the eigenvalues having negative real part. Denote W0 and W− the
invariant subspaces of A − BX− that correspond, respectively, to the pure imaginary eigenvalues and to
the eigenvalues having positive real part. Then it can be shown that V0 = W0 is the kernel of X+ − X−
and the symmetric solution set corresponds to the set of all invariant subspaces of A − BX+ contained in
V+ or, equivalently, to the set of all invariant subspaces of A − BX− contained in W−.

Theorem 14.8:

Suppose that X+ and X− exist. Let X1, X2 be symmetric solutions of Equation 14.15 corresponding to the
invariant subspaces V1, V2 of V+ (or W1, W2 of W−). Then X1 ≥ X2 if and only if V1 ⊃ V2 (or if and only
if W1 ⊂ W2).

This means that the symmetric solution set of Equation 14.15 is a complete lattice with respect to the
usual ordering of symmetric matrices. The maximal solution X+ corresponds to the invariant subspace
V+ of A − BX+ or to the invariant subspace W = 0 of A − BX−, whereas the minimal solution X−
corresponds to the invariant subspace V = 0 of A − BX+ or to the invariant subspace W− of A − BX−.

This result allows one to count the distinct symmetric solutions of Equation 14.15 in some cases. Thus,
let α be the number of distinct eigenvalues of A − BX+ having negative real part and let m1, m2, . . . , mα

be the multiplicities of these eigenvalues. Owing to the symmetries in H , the matrix A − BX− exhibits the
same structure of eigenvalues with positive real part.
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Theorem 14.9:

Suppose that X+ and X− exist. Then the symmetric solution set of Equation 14.15 has finite cardinality if
and only if A − BX+ is cyclic on V+ (or if and only if A − BX− is cyclic on W−). In this case, the set contains
exactly (m1 + 1) . . . (mα + 1) solutions.

Simple examples are most illustrative. Consider Equation 14.15 with

A =
[

0 0
0 1

]
, B =

[
1 0
0 1

]
, C =

[
1 0
0 3

]

and determine the lattice of symmetric solutions. We have

χH (s) = s4 − 5s2 + 4

and the following eigenvectors of H :

x1 =

⎡
⎢⎢⎣

1
0

−1
0

⎤
⎥⎥⎦ , x2 =

⎡
⎢⎢⎣

1
0
1
0

⎤
⎥⎥⎦ , x3 =

⎡
⎢⎢⎣

0
1
0

−1

⎤
⎥⎥⎦ , x4 =

⎡
⎢⎢⎣

0
1
0
3

⎤
⎥⎥⎦

are associated with the eigenvalues 1, −1, 2, and −2, respectively. Hence, the pair of solutions

X+ =
[

1 0
0 3

]
, X− =

[−1 0
0 −1

]

corresponds to the factorization

χH (s) = (s2 − 3s + 2)(s2 + 3s + 2)

and the solutions

X2,3 =
[

1 0
0 −1

]
, X1,4 =

[−1 0
0 3

]

correspond to the factorization
χH (s) = (s2 − s − 2)(s2 + s − 2).

There are four subspaces invariant under the matrices

A − BX+ =
[−1 0

0 −2

]
, A − BX− =

[
1 0
0 2

]

each corresponding to one of the four solutions above. The partial ordering

X+ ≥ X2,3 ≥ X−, X+ ≥ X1,4 ≥ X−

defines the lattice visualized in Figure 14.2.
As another example, we consider Equation 14.15 where

A =
[

0 0
0 0

]
, B =

[
1 0
0 1

]
, C =

[
1 0
0 1

]

and classify the symmetric solution set.
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X+

X1,4X1,2

X–

FIGURE 14.2 Lattice of solutions.

We have
χH (s) = (s − 1)2(s + 1)2

and a choice of eigenvectors corresponding to the eigenvalues 1, −1 of H is

x1 =

⎡
⎢⎢⎣

1
0

−1
0

⎤
⎥⎥⎦ , x2 =

⎡
⎢⎢⎣

0
1
0

−1

⎤
⎥⎥⎦ , x3 =

⎡
⎢⎢⎣

1
0
1
0

⎤
⎥⎥⎦ , x4 =

⎡
⎢⎢⎣

0
1
0
1

⎤
⎥⎥⎦ .

Hence,

X+ =
[

1 0
0 1

]
, X− =

[−1 0
0 −1

]

are the extreme solutions.
We calculate

A − BX+ =
[−1 0

0 −1

]
, A − BX− =

[
1 0
0 1

]

and observe that the set of subspaces invariant under A − BX+ or A − BX− (other than the zero and the
whole space, which correspond to X+ and X−) is the family of one-dimensional subspaces parameterized
by their azimuth angle θ. These correspond to the solutions

Xϑ =
[

cos ϑ sin ϑ

sin ϑ − cos ϑ

]
.

Therefore, the solution set consists of X+, X− and the continuous family of solutions Xθ. It is a complete
lattice and X+ ≥ Xθ ≥ X− for every θ.

14.4.3 Definite Solutions

Under the standing assumption (Equation 14.12), namely

B = B′, B ≥ 0 and C = C′, C ≥ 0,

one can prove that X+ ≥ 0 and X− ≤ 0. The existence of X+, however, excludes the existence of X− and
vice versa, unless (A, B) is controllable.

If X+ does exist, any other solution X ≥ 0 of Equation 14.15 corresponds to a subspace W of W− that
is invariant under A − BX. From Equation 14.15,

X(A − BX) + (A − BX)′X = −XBX − C.

The restriction of A − BX to W has eigenvalues with positive real part. Since −XBX − C ≤ 0, it follows
from the Lyapunov theory that X restricted to W is nonpositive definite and hence zero. We conclude
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that the solutions X ≥ 0 of Equation 14.15 correspond to those subspaces W of W− that are invariant
under A and contained in Ker C.

The set of symmetric nonnegative definite solutions of Equation 14.15 is a sublattice of the lattice of
all symmetric solutions. Clearly X+ is the largest solution and it corresponds to the invariant subspace
W = 0 of A. The smallest nonnegative definite solution will be denoted by X∗ and it corresponds to W∗,
the largest invariant subspace of A contained in Ker Cand associated with eigenvalues having positive
real part.

The nonnegative definite solution set of Equation 14.15 has finite cardinality if and only if A is cyclic
on W∗. In this case, the set contains exactly (p1 + 1) . . . (ρ+1) solutions, where ρ is the number of distinct
eigenvalues of A associated with W∗ and p1, p2, . . . , pρ are the multiplicities of these eigenvalues.

Analogous results hold for the set of symmetric solutions of Equation 14.15 that are nonpositive
definite. In particular, if X− exists, then any other solution X ≤ 0 of Equation 14.15 corresponds to a
subspace V of V+ that is invariant under A and contained in Ker C. Clearly X− is the smallest solution
and it corresponds to the invariant subspace V = 0 of A. The largest nonpositive definite solution is
denoted by X× and it corresponds to W×, the largest invariant subspace of A contained in Ker C and
associated with eigenvalues having negative real part.

Let us illustrate this with a simple example. Consider Equation 14.15 where

A =
[

1 1
0 1

]
, B =

[
0 0
0 1

]
, C =

[
0 0
0 0

]

and classify the two sign-definite solution sets. We have

X+ =
[

8 4
4 4

]
, X− =

[
0 0
0 0

]
.

The matrix A has one eigenvalue with positive real part, namely 1, and a basis for W∗ is

x1 =
[

1
0

]
, x2 =

[
0

−1

]
.

Thus, there are three invariant subspaces of W∗ corresponding to the three nonnegative definite
solutions of Equation 14.15

X+ =
[

8 4
4 4

]
, X1 =

[
0 0
0 2

]
, X∗ =

[
0 0
0 0

]
.

These solutions make a lattice and

X+ ≥ X1 ≥ X∗.

The matrix A has no eigenvalues with negative real part. Therefore, V∗ = 0 and X− is the only nonpos-
itive definite solution of Equation 14.15.

Another example for Equation 14.15 is provided by

A =
[

0 0
0 0

]
, B =

[
1 0
0 0

]
, C =

[
0 0
0 0

]
.
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It is seen that neither (A, B) nor (−A, B) is stabilizable; hence, neither X+ nor X− exists. The symmetric
solution set consists of one continuous family of solutions

Xα =
[

0 0
0 α

]

for any real α. Therefore, both sign-definite solution sets are infinite; the nonnegative solution set is
unbounded from above while the nonpositive solution set is unbounded from below.

14.5 Limiting Behavior of Solutions

The length of the time interval t2 − t1 in the optimal control and filtering problems is rather artificial.
For this reason, an infinite time interval is often considered. This brings in the question of the limiting
behavior of the solution X(t, t2, T) for the Riccati differential Equation 14.11.

In applications to optimal control, it is customary to fix t and let t2 approach +∞. Since the coefficient
matrices of Equation 14.11 are constant, the same result is obtained if t2 is held fixed and t approaches
−∞. The limiting behavior of X(t, t2, T) strongly depends on the terminal matrix T ≥ 0. For a suitable
choice of T , the solution of Equation 14.11 may converge to a constant matrix X ≥ 0, a solution of
Equation 14.15. For some matrices T , however, the solution of Equation 14.11 may fail to converge to a
constant matrix, but it may converge to a periodic matrix function.

Theorem 14.10:

Let (A, B) be stabilizable. If t and T are held fixed and t2 → ∞, then the solution X(t, t2, T) of Equation 14.11
is bounded on the interval [t, ∞).

This result can be proved by associating an optimal control problem with Equation 14.11. Then stabi-
lizability of (A, B) implies the existence of a stabilizing (not necessarily optimal) control. The consequent
cost functional of Equation 14.4 is finite and dominates the optimal one.

If (A, B) is stabilizable, then X+ exists and each real symmetric nonnegative definite solution X of
Equation 14.15 corresponds to a subset W of W∗, the set of A-invariant subspaces contained in Ker C
and associated with eigenvalues having positive real part. The convergence of the solution X(t, t2, T) of
Equation 14.11 to X depends on the properties of the image of W∗ under T .

For simplicity, it is assumed that the eigenvalues λ1, λ2, . . . , λρ of A associated with W∗ are simple
and, except for pairs of complex conjugate eigenvalues, have different real parts. Let the corresponding
eigenvectors be ordered according to decreasing real parts of the eigenvalue

v1, v2, . . . , vρ,

and denote Wi the A-invariant subspace of W∗ spanned, by v1, v2, . . . , vi .

Theorem 14.11:

Let (A, B) be stabilizable and the subspaces Wi of W∗ satisfy the above assumptions. Then, for all fixed t
and a given terminal condition T ≥ 0, the solution X(t, t2, T) of Equation 14.11 converges to a constant
solution of Equation 14.15 as t2 → ∞ if and only if the subspace Wk+1 corresponding to any pair λk, λk+1

of complex conjugate eigenvalues is such that dim TWk+1 equals either dim TWk−1 or dim TWk−1 + 2.
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Here is a simple example. Let

A =
[

1 −1
1 1

]
, B =

[
1 0
0 1

]
, C =

[
0 0
0 0

]
.

The pair (A, B) is stabilizable and A has two eigenvalues 1 +j and 1 −j. The corresponding eigenvectors

v1 =
[

j
1

]
, v2 =

[−j
1

]

span W∗. Now consider the terminal condition

T =
[

1 0
0 0

]
.

Then,

TW0 = 0, TW2 = Im

[
1
0

]
.

Theorem 14.11 shows that X(t, t2, T) does not converge to a constant matrix; in fact,

X(t, t2, T) = 1

1 + e2(t−t2)

[
2 cos2(t − t2) − sin 2(t − t2)
− sin 2(t − t2) 2 sin2(t − t2)

]

tends to a periodic solution if t2 → ∞. On the other hand, if we select

T0 =
[

0 0
0 0

]

we have

T0W0 = 0, T0W2 = 0

and X(t, t2, T0) does converge. Also, if we take

T1 =
[

1 0
0 1

]

we have
T1W0 = 0, T1W2 = R2

and X(t, t2, T1) converges as well.
If the solution X(t, t2, T) of Equation 14.11 converges to a constant matrix XT as t2 → ∞, then XT

is a real symmetric nonnegative definite solution of Equation 14.15. Which solution is attained for a
particular terminal condition?

Theorem 14.12:

Let (A, B) be stabilizable. Let
XT = lim

t2→∞ X(t, t2, T)

for a fixed T ≥0. Then XT ≥0 is the solution of Equation 14.15 corresponding to the subspace WT of W∗,
defined as the span of the real vectors vi such that TWi = TWi−1 and of the complex conjugate pairs vk,
vk+1 such that TWk+1 = TWk−1.
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The cases of special interest are the extreme solutions X+ and X∗. The solution X(t, t2, T) of Equa-
tion 14.12 tends to X+ if and only if the intersection of W∗ with Ker T is zero, and to X∗ if and only if W∗
is contained in Ker T .

This is best illustrated in the previous example, where

A =
[

1 −1
1 1

]
, B =

[
1 0
0 1

]
, C =

[
0 0
0 0

]

and W∗ = R2. Then X(t, t2, T) converges to X+ if and only if T is positive definite; for instance, the
identity matrix T yields the solution

X(t, t2, I) = 2

1 + e2(t−t2)

[
1 0
0 1

]
,

which tends to

X+ =
[

2 0
0 2

]
.

On the other hand, X(t, t2, T) converges to X∗ if and only if T=0; then

X(t, t2, 0) = 0

and X∗=0 is a fixed point of Equation 14.11.

14.6 Optimal Control and Filtering: Application

The problems of optimal control and filtering introduced in Section 14.2 are related to the matrix Riccati
differential Equations 14.5 and 14.9, respectively. These problems are defined over a finite horizon t2 − t1.
We now apply the convergence properties of the solutions to study the two optimal problems in case the
horizon becomes large.

To fix ideas, we concentrate on the optimal control problem. The results can easily be interpreted in
the filtering context owing to the duality between Equations 14.5 and 14.9.

We recall that the finite horizon optimal control problem is that of minimizing the cost functional of
Equation 14.4,

η(t2) =
∫ t2

t1

[y′(t)y(t) + u′(t)u(t)] dt + x′(t2)Tx(t2)

along the solutions of Equation 14.3,
ẋ(t) = Fx(t) + Gu(t)

y(t) = Hx(t).

The optimal control has the form

u0(t) = −G′X(t, t2, T)x(t),

where X(t, t2, T) is the solution of Equation 14.11,

Ẋ(t) + X(t)A + A′X(t) − X(t)BX(t) + C = 0

subject to the terminal condition X(t2) = T , and where

A = F, B = GG′, C = H ′H .

The optimal control can be implemented as a state feedback and the resulting closed-loop system is

ẋ(t) = [F − GG′X(t, t2, T)]x(t)

= [A − BX(t, t2, T)]x(t).

Hence, the relevance of the matrix A − BX, which plays a key role in the theory of the Riccati equation.
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The infinite horizon optimal control problem then amounts to finding

η∗ = inf
u(t)

lim
t2→∞ η(t2) (14.17)

and the corresponding optimal control u∗(t), t ≥ t1 achieving this minimum cost.
The receding horizon optimal control problem is that of finding

η∗∗ = lim
t2→∞ inf

u(t)
η(t2) (14.18)

and the limiting behavior u∗∗(t), t ≥ t1 of the optimal control uo(t).
The question is whether η∗ is equal to η∗∗ and whether u∗ coincides with u∗∗. If so, the optimal control

for the infinite horizon can be approximated by the optimal control of the finite horizon problem for a
sufficiently large time interval.

It turns out that these two control problems have different solutions corresponding to different solu-
tions of the matrix Riccati algebraic Equation 14.15,

XA + A′X − XBX + C = 0.

Theorem 14.13:

Let (A, B) be stabilizable. Then the infinite horizon optimal control problem of Equation 14.17 has a solution

η∗ = x′(t1)Xox(t1), u∗(t) = −G′Xox(t)

where Xo ≥0 is the solution of Equation 14.15 corresponding to Wo, the largest A-invariant subspace
contained in W∗∩ Ker T.

Theorem 14.14:

Let (A, B) be stabilizable. Then the receding horizon optimal control problem of Equation 14.18 has a
solution if and only if the criterion of Theorem 14.5 is satisfied and, in this case,

η∗∗ = x′(t1)XT x(t1), u∗∗(t) = −G′XT x(t)

where XT ≥ 0 is the solution of Equation 14.16 corresponding to WT and defined in Theorem 14.5.

The equivalence result follows.

Theorem 14.15:

The solution of the infinite horizon optimal control problem is exactly the limiting case of the receding
horizon optimal control problem if and only if the subspace W∗ ∩ KerT is invariant under A.
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A simple example illustrates these points. Consider the finite horizon problem defined by

ẋ1(t) = 2x1(t) + u1(t),
ẋ2(t) = x2(t) + u2(t)

and

η(t2) = [x1(t2) + x2(t2)]2 +
∫ ∫

t2

t1(τ) + u2
2(τ)] dτ,

which corresponds to the data

A =
[

2 0
0 1

]
, B =

[
1 0
0 1

]
, C =

[
0 0
0 0

]

and

T =
[

1 1
1 1

]
.

Clearly W∗ = R2 and the subspace

W∗ ∩ Ker T = Im

[
1

−1

]

is not invariant under A. Hence, the infinite and receding horizon problems are not equivalent.
The lattice of symmetric nonnegative definite solutions of Equation 14.11 has the four elements

X+ =
[

4 0
0 2

]
, X1 =

[
0 0
0 2

]
, X2 =

[
4 0
0 0

]
, X∗ =

[
0 0
0 0

]

depicted in Figure 14.3.
Since the largest A-invariant subspace of W∗ ∩ KerT is zero, the optimal solution Xo of Equation 14.11

is the maximal element X+. The infinite horizon optimal control reads

u1∗(t) = −4x1(t),

u2∗(t) = −2x2(t),

and affords the minimum cost
η∗ = 4x2

1(t1) + 2x2
2(t1).

Now the eigenvectors of A spanning W∗ are

v1 =
[

1
0

]
, v2 =

[
0
1

]

X+

X2X1

X*

FIGURE 14.3 TheQ1 four elements of the lattice of solutions.
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and their T-images

Tv1 =
[

1
1

]
, Tv2 =

[
1
1

]

are linearly dependent. Hence, WT is spanned by v2 only,

WT = Im

[
0
1

]

and the optimal limiting solution XT of Equation 14.11 equals X2. The receding horizon optimal control
reads

u1∗∗(t) = −4x1(t)
u2∗∗(t) = 0

and affords the minimum cost

η∗∗(t) = 4x2
1(t1).

The optimal control problems with large horizon are practically relevant if the optimal closed-loop
system

ẋ(t) = (A − BX)x(t)

is stable. A real symmetric nonnegative definite solution X of Equation 14.15 is said to be stabilizing if
the eigenvalues of A − BX all have negative real part. It is clear that the stabilizing solution, if it exists,
is the maximal solution X+. Thus, the existence of a stabilizing solution depends on A − BX+. having
eigenvalues with only negative real part.

Theorem 14.16:

Equation 14.15 has a stabilizing solution if and only if (A, B) is stabilizable and the Hamiltonian matrix H
of Equation 14.16 has no pure imaginary eigenvalue.

The optimal controls over large horizons have a certain stabilizing effect. Indeed, if X ≥0 is a solution of
Equation 14.15 that corresponds to an A-invariant subspace W of W∗, then the control u(t) = −G′Xx(t)
leaves unstable in A − BX just the eigenvalues of A associated with W ; all the remaining eigenvalues of
A with positive real part are stabilized. Of course, the pure imaginary eigenvalues of A, if any, cannot be
stabilized; they remain intact in A − BX for any solution X of Equation 14.15.

In particular, the infinite horizon optimal control problem leaves unstable the eigenvalues of A asso-
ciated with Ωo, which are those not detectable either in C or in T , plus the pure imaginary eigenvalues.
It follows that the infinite horizon optimal control results in a stable system if and only if Xo is the stabi-
lizing solution of Equation 14.15. This is the case if and only if the hypotheses of Theorem 14.6 hold and
Wo, the largest A-invariant subspace contained in W∗ ∩ KerT , is zero. Equivalently, this corresponds to
the pair ([

C
T

]
, A

)

being detectable.
The allocation of the closed-loop eigenvalues for the receding horizon optimal control problem is

different, however. This control leaves unstable all eigenvalues of A associated with WT , where WT is
a subspace of W∗ defined in Theorem 14.5. Therefore, the number of stabilized eigenvalues may be
lower, equal to the dimension of TW∗, whenever Ker T is not invariant under A. It follows that the
receding horizon optimal control results in a stable system if and only if XT is the stabilizing solution
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of Equation 14.15. This is the case if and only if the hypotheses of Theorem 14.6 hold and WT is zero.
Equivalently, this corresponds to W∗ ∩ KerT = 0. Note that this case occurs in particular if T ≥ X+.

It further follows that under the standard assumption, namely that

(A, B) stabilizable
(A, C) detectable,

both infinite and receding horizon control problems have solutions; these solutions are equivalent for
any terminal condition T ; and the resulting optimal system is stable.

14.7 Numerical Solution

The matrix Riccati differential Equation 14.11 admits an analytic solution only in rare cases. A numer-
ical integration is needed and the Runge–Kutta methods can be applied.

A number of techniques are available for the solution of the matrix Riccati algebraic Equation 14.15.
These include invariant subspace methods and the matrix sign function iteration. We briefly outline these
methods here with an eye on the calculation of the stabilizing solution to Equation 14.15.

14.7.1 Invariant Subspace Method

In view of Theorem 14.4, any solution X of Equation 14.15 can be computed from a Jordan form
reduction of the associated 2n × 2n Hamiltonian matrix

H =
[

A −B
−C −A′

]
.

Specifically, compute a matrix of eigenvectors V to perform the following reduction:

V−1HV =
[−J 0

0 J

]
,

where −J is composed of Jordan blocks corresponding to eigenvalues with negative real part only. If
the stabilizing solution X exists, then H has no eigenvalues on the imaginary axis and J is indeed n × n.
Writing

V =
[

V11 V12

V21 V22

]
,

where each Vij is n × n, the solution sought is found by solving a system of linear equations,

X = V21V−1
11 .

However, there are numerical difficulties with this approach when H has multiple or near-multiple
eigenvalues. To ameliorate these difficulties, a method has been proposed in which a nonsingular matrix
V of eigenvectors is replaced by an orthogonal matrix U of Schur vectors so that

U ′HU =
[

S11 S12

0 S22

]

where now S11 is a quasi-upper triangular matrix with eigenvalues having negative real part and S22 is a
quasi-upper triangular matrix with eigenvalues having positive real part. When

U =
[

U11 U12

U21 U22

]
,
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we observe that [
V11

V21

]
,

[
U11

U21

]

span the same invariant subspace and X can again be computed from

X = U21U−1
11 .

14.7.2 Matrix Sign Function Iteration

Let M be a real n × n matrix with no pure imaginary eigenvalues. Let M have a Jordan decomposition
M = V J V−1 and let λ1, λ2, . . . , λn be the diagonal entries of J (the eigenvalues of M repeated according
to their multiplicities). Then the matrix sign function of M is given by

sgn M = V

⎡
⎢⎣

sgn Reλ1

. . .
sgn Reλn

⎤
⎥⎦ V−1

It follows that the matrix Z = sgn M is diagonalizable with eigenvalues ±1 and Z2 = I . The key
observation is that the image of Z + I is the M-invariant subspace of Rn corresponding to the eigenvalues
of M with negative real part.

This property clearly provides the link to Riccati equations, and what we need is a reliable computation
of the matrix sign. Let Z0 = M be an n × n matrix whose sign is desired. For k = 0, 1, perform the iteration

Zk+1 = 1

2c
(Zk + c2Z−1

k ),

where c = |det Zk|1/n. Then
lim

k→∞
Zk = Z = sgn M.

The constant c is chosen to enhance convergence of this iterative process. If c = 1, the iteration amounts
to Newton’s method for solving the equation

Z2 − I = 0.

Naturally, it can be shown that the iteration is ultimately quadratically convergent.
Thus, to obtain the stabilizing solution X of Equation 14.15, provided it exists, we compute Z = sgn

H , where H is the Hamiltonian matrix of Equation 14.16. The existence of X guarantees that H has no
eigenvalues on the imaginary axis.

Writing

Z =
[

Z11 Z12

Z21 Z22

]
,

where each Zij is n × n, the solution sought is found by solving a system of linear equations

[
Z12

Z22 + I

]
X = −

[
Z11 + I

Z21

]
.

14.7.3 Concluding Remarks

We have discussed two numerical methods for obtaining the stabilizing solution of the matrix Riccati
algebraic Equation 14.15. They are both based on the intimate connection between the Riccati equation
solutions and invariant subspaces of the associated Hamiltonian matrix. The method based on Schur
vectors is a direct one, while the method based on the matrix sign function is iterative.
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The Schur method is now considered one of the more reliable for Riccati equations and has the virtues
of being simultaneously efficient and numerically robust. It is particularly suitable for Riccati equations
with relatively small dense coefficient matrices, say, of the order of a few hundreds or less. The matrix
sign function method is based on the Newton iteration and features global convergence, with ultimately
quadratic order. Iteration formulas can be chosen to be of arbitrary order convergence in exchange for,
naturally, an increased computational burden. The effect of this increased computation can, however, be
ameliorated by parallelization.

The two methods are not limited to computing the stabilizing solution only. The matrix sign iteration
can also be used to calculate X−, the antistabilizing solution of Equation 14.15, by considering the
matrix sgn H − I instead of sgn H + I . The Schur approach can be used to calculate any, not necessarily
symmetric, solution of Equation 14.15, by ordering the eigenvalues on the diagonal of S accordingly.
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