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a b s t r a c t

Decomposition of acceleration was investigated as an alternative to commonly used direct spectral anal-
ysis of measured acceleration or angular velocity for tremor quantification. An orientation estimation
algorithm was devised to decompose the measured acceleration into the gravitational artifact and the
inertial acceleration caused by sensor movement in an inertial reference frame. Resulting signals, beside
the measured acceleration and angular velocity, were used to assess tremor amplitude and frequency
eywords:
remor
ccelerometer

nertial measurement unit
ravitational artifact
egression

by spectral peak detection. The algorithm was tested on experimental data from a clinical study includ-
ing patients with essential tremor. The testing comprised of the classification of measurements to come
from a patient or a healthy control and of the regression of the visual assessment of tremor amplitude.
Small improvements in performance measures were achieved by using the decomposed acceleration. The
regression accuracy was comparable to the accuracy achieved in other works. The influence of sensor
calibration and connections of results to an analytic approach were analyzed briefly.
remor rating scale

. Introduction

Tremor is defined as a rhythmical, involuntary oscillatory move-
ent of a body part [1]. Its quantification is necessary for clinical
onitoring as well as for studies of movement disorders featur-

ng tremor [2]. Clinical examination with various rating scales has
een the most frequently used approach, although inertial sensors
ave also become widely used in research studies. Direct spectral
nalysis of signals measured by accelerometers has mostly been
mployed. This, however, may lead to several problems includ-
ng the contamination of the measured linear acceleration by the
ariable projection of gravity, which implies the deterioration of
simple estimate of displacement (or its amplitude) using double

ntegrated acceleration, as used for instance in [2,3]. A component
f the gravitational artifact may have a frequency that is double of
he frequency of tremor due to the non-linear properties of the peri-
Please cite this article in press as: O. Šprdlík, et al., Tremor analysis by deco
inertial measurement unit, Biomed. Signal Process. Control (2010), doi:10.

dic alternate movement with a rotational character [4]. However,
uch frequency doubling may be present even in the movement
cceleration.
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These problems can be reduced by a suitable arrangement of
the test procedure and a choice of the most suitable sensor axis for
the analysis. In a typical case the measurement is conducted with
the patient’s hands kept horizontally and only the sensor axis that
is approximately vertical is processed [2,5,6]. In addition, the hand
motion can be restricted as in [3]. This case is analyzed with the
use of a simplified model of a hand in [4]. Nevertheless, analysis
of just one sensor axis obscures the other movement components
and the choice of the vertical axis is not always appropriate, espe-
cially if some movement task is to be accomplished, like in tests for
intention tremor.

A different approach to cope with the gravitational artifact may
be the use of the magnitude of the 3D output of a triaxial accelerom-
eter. The main idea is that the magnitude is steady and equals
gravity if no linear acceleration is applied to the sensor, even if
the sensor changes its orientation in time [7,8]. Besides sacrific-
ing the possibility to estimate the direction of the movement when
using only the magnitude of the signal, the measured magnitude
minus gravity does not exactly correspond to the amplitude of the
acceleration caused by linear movement because it depends also on
the direction of the movement with respect to gravity. Moreover, a
mposition of acceleration into gravity and inertial acceleration using
1016/j.bspc.2010.09.004

movement with rotational character may produce some additional
DC component in the magnitude while the alternating component
may be quite low. Therefore, the amplitude of such a tremulous
movement may be underestimated when using the AC component
of the magnitude. Nevertheless, the magnitude-based approach
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Fig. 1. Sketch of tasks conduc

as used in several studies to roughly quantify a movement [9]
f tremor [10].

Alternative sensors have also their own disadvantages: MEMS
yroscopes [11–14] may be a good choice especially for the cases
here the movement is limited to a particular joint near to the site

f measurement, or if sensors are placed at several segments of the
rm [12], but they also obscure some more complex movements.
isplacement sensors like mechanical devices [15], camera kine-
atic systems [16], and magnetic systems [17] are usually bulky

nd expensive. Moreover, the limited resolution of common camera
ystems makes the analysis of a very mild tremor infeasible.

Attitude estimation using measured data from both accelerom-
ters and gyroscopes is a way to decompose the measured
cceleration into the gravitational and motional components,
ence it makes short-time estimates of displacement by double

ntegration feasible. The bulky size of an inertial measurement unit
IMU) used to be the limiting factor, but with the advances in MEMS
ased devices, this is no longer a major issue. Nowadays, even
evices containing accelerometers and gyroscopes suitable for fix-

ng to a human finger are available – KinesiaTM by CleveMed [14].
owever, in the present work, slightly larger units were used.

The task of tremor measurement by a set of inertial sensors
hat allow decoupling from the gravitational artifact was already
ealt with in several works: [18] proposed a pure-accelerometer
ystem for tremor sensing and active compensation of surgeon’s
remor in a microsurgical instrument with accelerometer units
xed 10 cm apart from each other. The size of one of the units was
educed in [19], but the need of the two distant sites on a rigid body
emains. In [20] a system was designed for estimation of an upper
imb orientation from inertial sensors placed at several sites on the
rm. Sensitivity analysis with the use of simulations demonstrated
ts proficiency at frequencies of tremor. The proficiency was also
emonstrated by means of comparison with the measurement by
mechanical device. The angle of an elbow joint manifesting tremor
as the observed quantity. However, in this approach a mathemat-

cal model of the arm and a set of several sensor units are needed. In
14] gravity was not explicitly decoupled from accelerometer mea-
urement, although sensors potentially allowed it. Rather, clinical
cores were regressed by linear models with several features of the
easured signals acting as inputs.
The goal of our study was to demonstrate the feasibility of quan-

ifying tremor using the decomposition of the signal registered
ith accelerometers into the gravitational and movement com-
onents by inertial estimation of orientation (attitude). This is to
ake the tremor quantification as independent as possible from

he orientation and the direction of movement of the observed body
egment relative to gravity. Frequency spectrum-based features of
he measured signals and of the outputs of the decomposition were
xtracted and their performance was compared in two tasks,
Please cite this article in press as: O. Šprdlík, et al., Tremor analysis by deco
inertial measurement unit, Biomed. Signal Process. Control (2010), doi:10.

to classify a single measurement from one hand or both hands
to come from a patient or a healthy control, provided only the
information that the measurement is from a test for postural hand
tremor, without the knowledge of the particular task,
test rest and postural tremor.

• to predict a visual assessment of tremor amplitude by clinicians,
without the knowledge of the type of tremor (rest/postural) and
particular task. The performance of the regression was compared
to results of other works.

A regression of a visual tremor assessment by quantities from an
instrumented assessment was already done in a number of studies.
Part of them deal with long-term ambulatory monitoring of tremor
(e.g. [13,21–23]), other with short measurements in defined hand
positions (e.g. [14,15,24,25]).

2. Methods

2.1. Subjects

The algorithm was used to quantify tremor on a sample of 59
subjects: 30 patients with essential tremor diagnosed according to
the clinical criteria [1], age (mean ± standard deviation) 55.8 ± 18.1
years (range 19–81), disease duration 24.8 ± 16.5, Fahn-Tolosa-
Marín Tremor Rating Scale score [26] 27.0 ± 13.4 (range 9–67), 8
females, and 29 healthy individuals without any tremor-inducing
disorder, age 53.8 ± 17.4 years (range 19–81), 8 females.

2.2. Experimental setup and data acquisition

Hand tremor was measured in several conditions, all with the
subjects sitting in an armchair (see Fig. 1),

• forearms leaned on the armrests and hands hanging freely down,
• forearms leaned on the armrests and hands extended forward

horizontally,
• arms held forward horizontally towards a horizontal target

placed in front of the subject at the height of shoulders, hands
pronated,

• “wing” position.

The first task is intended for the assessment of the rest tremor.
The other tasks are intended for the assessment of the postural
tremor. Tests lasted 20 s and were conducted twice (except for two
subjects). Totally, 464 recordings of tasks to test the rest and postu-
ral tremor were acquired with sensors placed on both hands, that
means 928 recordings from a hand in a test were obtained. Whole
trials were 8–15 min long and included also tests for the intention
tremor.

Integrated inertial measurement units MTx® by Xsens® were
placed on subjects’ hand dorsa over third and fourth metacarpal
bones using neoprene bands with hook-and-loop fasteners. The
units measure acceleration, angular rate, and local magnetic field in
three axes. Internally computed estimates of the orientation may
mposition of acceleration into gravity and inertial acceleration using
1016/j.bspc.2010.09.004

be acquired too. The measured quantities were transmitted with
the sampling frequency of 100 Hz by cables to a personal computer
and acquired using our own software. The software served also to
identify starts of the tests by pressing keys on the PC keyboard by
one of investigators. The internal orientation estimates provided

dx.doi.org/10.1016/j.bspc.2010.09.004
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Fig. 2. Block scheme of e

y the unit were not acquired because in our original clinical study
e were only interested in the acceleration. Moreover, technical
roblems with the software at the beginning of the study hindered
he acquisition of orientation estimates.

.3. Preprocessing and inertial estimation

Time-varying gyroscope biases may produce large errors in the
stimation of orientation. To reduce them, they were calibrated
ut in each measurement trial using the following scheme. The
ntensity of movement was quantified by means of variation of
he gyroscope signal ω and the filtered accelerometer signal a
low-pass, 8 Hz) in 0.3 s segments. Segments with RMS of stan-
ard deviations over the 3 axes (�a, �ω) lying below the predefined
hreshold (0.1 m s−2 and 0.05 rad s−1 for accelerometer and gyro-
cope, respectively) were marked as quasistatic. Each segment
as characterized by its mean measured angular rate, �a, and �ω .
onsecutive segments with similar properties were joined. Gyro-
cope bias was then estimated as the mean angular rate in the
uasistatic segments. Similar approach was used for the calibra-
ion of accelerometers in several calibration sessions. The sensor
as rotated into 6 different inclinations and the measurements
ere segmented as described above. The biases and gains of the

ccelerometers were obtained using the quasistatic state approach
27] with the use of a different optimization procedure [28] and
/�2

a as weights in the optimization criterion.
The orientation estimate provided by IMU was not acquired

n real-time during measurement, instead, we applied own esti-
ation of orientation with the use of calibrated data off-line. The

nscented Kalman filter (UKF) [29,30] was used to fuse the infor-
ation from IMU data (linear acceleration in 3 axes, angular rate

round 3 axes and 3 components of local Earth magnetic field). The
KF was chosen as the tool because the unscented transform can
ropagate covariances better through a nonlinear system than the
ore commonly used Extended Kalman filter (EKF) using lineariza-

ion of the system equations. Better accuracy of UKF compared to
KF was demonstrated in a navigation application involving a non-
inear equation of quaternion update [31]. Quaternion update is a
undamental part of our model too. The filter forms the UKF block
n Fig. 2.

First three blocks represent preprocessing and inertial estima-
ion, the last block represents amplitude and frequency extraction.
alues a, ω, m are the acceleration, angular rate and local mag-
etic field, respectively, measured in the coordinate system of the
easurement unit. Decomposition outputs are agL (gravitational

rtifact), aiL (acceleration due to movement observed in the sensor
rame), and aiG (the same quantity transformed into the inertial
rame).

The data fusion filter is based on quaternion representation
f kinematics. Quaternions and their algebra provide an efficient
Please cite this article in press as: O. Šprdlík, et al., Tremor analysis by deco
inertial measurement unit, Biomed. Signal Process. Control (2010), doi:10.

ool for representing rotations in 3D lacking the gimbal lock of
-angle systems (e.g. Euler angles) and using only four numbers
q = [q0 q1 q2 q3]T) instead of nine in 3 × 3 rotation matrices, see for
xample [32]. The rotation from an Earth-fixed inertial reference
rame to the reference frame of the sensor was used to represent
tion and quantification.

the orientation of the sensor. The rotation matrix R corresponding
to a known quaternion with unit size may be expressed for example
by

R =
[

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

]
.(1)

The quaternion representation of the orientation forms the state
vector of the data fusion filter. The angular velocity acts as an input.
The projection of gravity and the projection of the local Earth mag-
netic field to the sensor coordinate frame are model outputs. The
continuous quaternion update equation and output equations are

q̇(t) = 1
2

[˝(t)]q(t), (2)

agL(t), = R(q(t))[0 0 g]T , (3)

m(t) = R(q(t))m0, m0 = [cos(�m)0 − sin(�m)]T, (4)

where q is the quaternion of the rotation from the global reference
frame to the local frame of sensor, R(q) is the corresponding rotation
matrix, agL is the projection of gravity to the local reference frame, g
is the size of gravitational acceleration, m is the estimated direction
of the magnetic measurement, ϕm is the local magnetic inclination,
and [˝] is the matrix defined by the angular rate ω as follows, (time
argument omitted)

[˝] =

⎡
⎢⎣

0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

⎤
⎥⎦ . (5)

Approximate Euler discretization of the quaternion update was
used as the state update equation in the model,

q(tk+1) = f (q(tk), ω(tk)) = q(tk) + 1
2

[˝(tk)]q(tk)Ts, (6)

where Ts denotes the sampling period (0.01 s in our case). To ensure
numerical stability of the quaternion estimate, it was divided by its
amplitude between samples. Hence, the norm of the quaternion
was forced to equal one. The (calibrated) measured angular rate ω
was used as the input. The output measurements were

• measured acceleration a as a measure of the projection of gravity
(that is a good measure under static conditions),

• measured vector of magnetic field – the sensors used were
calibrated to give vectors of amplitude approximately 1 in non-
corrupted Earth magnetic field.

In a standard setting, Kalman filter assumes exactly known
mposition of acceleration into gravity and inertial acceleration using
1016/j.bspc.2010.09.004

inputs. That is not our case because of the noisy measurement of the
angular velocity. The noise was taken into account using a covari-
ance added to the process noise covariance in the model as shown
for linear systems in [33]. The instant linearization of discretized
quaternion update equation (6) at the estimated quaternion was

dx.doi.org/10.1016/j.bspc.2010.09.004
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sed as the input matrix, (time argument omitted)

= ∂f (q, ω)
∂ω

= 1
2

Ts

⎡
⎢⎣

−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1

−q2 q1 q0

⎤
⎥⎦ . (7)

Then the process noise covariance used was

(tk) = B(tk)VωBT (tk) + εpI4, (8)

here Vω is the covariance of the gyroscope measurement noise,
p is a small constant (10−12 was used), and I4 is diagonal matrix.
he small diagonal term was used as imaginary process noise to
ope with errors caused by the discretization and to ensure positive
efiniteness of Q.

Simple rules modifying the observation covariance matrix were
ncorporated to reduce influence of magnetic disturbances and
nfluence of movement to the accelerometer as a sensor of gravity.
he rules are based on differences between the magnitudes of the
easured acceleration and magnetic field vectors and the expected

izes.

a(tk) = Va + kaN2
a (tk)I3; Rm(tk) = Vm + kmN2

m(tk)I3, (9)

here Va and Vm are covariances of accelerometer and magnetome-
er noise, respectively. Local relative discrepancies between found
nd expected amplitudes of measured signals as measures of the
odel outputs are defined

a(tk) = WA
( |||a(�)||2 − g|

g

)
; tk − n ≤ � ≤ tk + n, (10)

m(tk) = WA(|||m(�)||2 − 1|); tk − n ≤ � ≤ tk + n, (11)

here operation WA stands for a weighted average. The averaging
s a filtering by a noncausal FIR filter with length 2n + 1. The length
sed was 3 (n = 1) and weights [0.25 0.5 0.25]. Constants ka = 200
nd km = 2 were found experimentally by iterating on their val-
es and comparing a known displacement with the displacement
stimated by double numerical integration of the movement accel-
ration estimated via the orientation estimation procedure – sensor
as moved several times by hand from one place and put back or

o another place at known distance.
The Unscented Kalman filter was implemented using ReBEL

oolkit [34] in Matlab® without particular focus on computational
fficiency. Having obtained the estimates of orientation, gravity
as projected to the sensor reference frame and subtracted from

he measured acceleration. Finally, we analyzed five 3D signals,

a measured acceleration, calibrated,
agL estimated projection of gravity to the local frame,
called also gravitational artifact or component in the text,
agL(tk) = R(tk)·[0 0 g]T, where R(tk) is the rotation matrix deter-
mined by the estimated quaternion,
aiL estimated acceleration due to movement in an iner-
tial reference frame, observed in the local (sensor) frame,
called also inertial acceleration or component in the text,
aiL(tk) = a(tk) − agL(tk),
aiG inertial acceleration observed in the global inertial reference
frame, aiG(tk) = RT(tk) aiL(tk),
ω measured angular velocity, with estimated bias removed.

See Fig. 3 for examples of the acceleration decomposition. The
Please cite this article in press as: O. Šprdlík, et al., Tremor analysis by deco
inertial measurement unit, Biomed. Signal Process. Control (2010), doi:10.

btained inertial acceleration can be transformed to the global ref-
rence frame and potentially used for an estimation of position by
ouble integration (Fig. 4).

The signals were measured with the same patient: (a) and (c)
re from the first test on postural tremor, (b) is from the test on
Fig. 3. Examples of decomposition.

rest tremor. Approximate hand positions and the used axes are dis-
played. Means were subtracted from a and a signals to get plots
mposition of acceleration into gravity and inertial acceleration using
1016/j.bspc.2010.09.004

gL
ranging around zero.

The displacement estimate (mm) in a one-second interval of a
measurement of relatively strong tremor is displayed (gray). The
double integration of aiG was combined with high pass filtering

dx.doi.org/10.1016/j.bspc.2010.09.004
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Fig. 4. Example of tremor movement reconstructed by inertial estimation.

o eliminate drift caused by the integration of errors in aiG. The
stimated orientation of the sensor is visualized at two instants
stars), 0.1 s apart, using black line boxes (16 mm × 12 mm × 8 mm).

Sensors are subject to errors, especially biases that deterio-
ate the quality of orientation estimate and consequently our
remor detection scheme. We did some calibration as noted
bove. But even if the initial calibration had been perfect,
rrors could arise from the drift of biases. Therefore, check
as made for additional errors in measured quantities. Namely,

iases of 0.02 m s−2 and 0.01 rad s−1 were added to Y axes
f accelerometers and gyroscopes, respectively. The errors are
pproximately of the size of the biases found in single axes
f the sensors used: Biases of the two accelerometers found
n one of the calibration sessions were [−0.019 0.027 −0.017]
nd [0.021 −0.054 −0.043] m s−2. Gyroscope biases found in the
9 measurement sessions were (mean ± standard deviation)
0.001 ± 0.004, 0.004 ± 0.002, 0.017 ± 0.002] rad s−1 for one gyro
nd [−0.030 ± 0.005, 0.015 ± 0.002, 0.022 ± 0.003] rad s−1 for the
econd one.

The acceleration was decomposed twice in addition to the orig-
nal decomposition – using a corrupted by the constant bias and
sing ω corrupted by the constant bias. The resulting acceleration
omponents were fed to the peak quantification scheme. Obtained
mplitudes were compared to the amplitudes of the components
erived using the original, calibrated, measurements.

.4. Amplitude and frequency extraction

Fast Fourier transform was used to quantify tremor fre-
uency and amplitude as it is widely used technique in the field
2,3,5,6,11,14,15] and provides a straightforward representation
f frequency distribution of the signal amplitude. As alternatives,
ime-domain algorithms based on thresholds [21], parametric
dentification methods [13,35], and techniques based on empiri-
Please cite this article in press as: O. Šprdlík, et al., Tremor analysis by deco
inertial measurement unit, Biomed. Signal Process. Control (2010), doi:10.

al mode decomposition (EMD) [12] have been proposed in the
iterature.

First, means were removed from signals. Then, power spectral
ensity (PSD) was computed for every component of a 3D signal
ia a filtered periodogram. The periodogram was smoothed by a
 PRESS
ing and Control xxx (2010) xxx–xxx 5

weighted moving average with the window of width approximately
1 Hz and triangular weights b defined by

b(k) = hl − |k|∑m=hl−1
m=−hl+1hl − |m|

; −hl < k < hl; hl

= round
(

0.5
	f

)
; 	f = Fs

dl
, (12)

where Fs is the sampling frequency (Hz), 	f frequency step in the
periodogram (Hz), dl data length (samples), hl length of a half of the
averaging window (number of frequency steps), and b is the vector
of filter coefficients.

This method gives a high frequency resolution compared to
averaged periodogram. The length was chosen based on the heuris-
tic idea not to oversmooth the periodogram and on our visual
observations (see Fig. 5 for examples). The length of 1 Hz coincides
with the choice in [36], where it was used to get an initial estimate
of PSD to start a more complex adaptive scheme.

Frequency distribution of power of 3D signal was computed as
a sum of the three PSD. Peaks were detected in the composite PSD
by the following algorithm.

1. in the interval 1–15 Hz find all local minima and maxima
between them,

2. reduce the number of maxima to get the set of highest maxima
separated from each other by minima deep at least 3 dB (with
the value half the lower of the resting neighbor maxima),

3. take the position of the highest resting maximum between 3.5
and 12 Hz as tremor frequency f˛, where ˛ stands for the name
of the signal used (a, aiL, aiG, agL, or ω).

Usually, this algorithm gives the same frequency as a simple
position of the maximum of PSD in the interval 3.5–12 Hz. The dif-
ference was especially in the cases where a non-tremor movement
produces a low frequency artifact with amplitude higher than the
tremor peak and with falling slope of PSD crossing the lower bound-
ary of the frequency range of tremor (Fig. 5, in the middle), and in
the cases where there was no marked peak (no peak separated from
the rest of PSD by sufficiently deep minima). The first situation may
arise especially in measurements where a combination of marked
voluntary movement and tremor occurs. An alternative to cope the
voluntary movement could be found with the use of parametric
methods or EMD [12,37].

For each signal ˛ (˛ standing for a, aiL, aiG, agL, or ω), its ampli-
tude A˛, called also tremor amplitude in the text, was determined.
The amplitude (effective value) was computed as the square root
of the numerical integral of PSD in the ±1 Hz neighborhood of the
detected frequency f˛. The width of 2 Hz was found enough to cover
the width of typical peaks, although in some cases parts of sidelobes
were missing (Fig. 5). When no peak was detected, the amplitude
was set to zero.

Composite PSD estimates of 3D accelerometer signals from three
measurements. Thin line corresponds to the periodogram method;
thick line corresponds to the method of filtered periodogram.
Dashed line corresponds to the PSD estimate of the inertial compo-
nent of acceleration. Two vertical lines mark ±1 Hz neighborhood
of the peak frequency.

2.5. Correlations of amplitudes and frequencies detected for
different signals
mposition of acceleration into gravity and inertial acceleration using
1016/j.bspc.2010.09.004

The signals (a, aiL, aiG, agL, ω) were compared in terms of Pear-
son’s linear correlation coefficients between the amplitudes (A) and
between the frequencies (f) derived from the peaks detected in their
spectra. The cases where no peaks were detected in some of the
signals were removed from this analysis.

dx.doi.org/10.1016/j.bspc.2010.09.004
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Fig. 5. Examp

Amplitudes may range over several decades, and then linear
orrelation coefficients between raw amplitudes may be domi-
antly determined by several highest amplitudes. Logarithms of
mplitudes reduce the influence of highest values to correlation
oefficients. They were also found to be linearly related to tremor
everity as rated by clinicians [24]. Therefore, correlations of ampli-
ude logarithms were computed too.

.6. Alignment with hand axes

Part of the measurements was also treated in more detail via
he calculation of amplitudes in individual axes. Estimated axes of
ands were used instead of axes of sensors. The relative orientation
f hand and sensor axes was determined from the task with arms
eld forward towards a horizontal target. Rotation matrices were
omputed using following rules. Axes Z of hands are considered
o be vertically heading up during the test. Axes X are consid-
red to be parallel to the average of projections of sensor’s axes X
aligned approximately to proximodistal axes of hands) to horizon-
al plane. Axes Y then head horizontally to the left from the view of
he subject. Amplitudes obtained for the inertial and gravitational
omponents in the estimated axes were compared.

.7. Differences between groups

The group of patients with essential tremor and the group
f healthy subjects were compared in averages and variances of
mplitude logarithms. The amplitude of the acceleration aZ mea-
ured in the direction perpendicular to the hand was analyzed
eside the amplitudes of the 3D signals.

In cases where no peak was detected the amplitude was set to a
mall value to get a finite logarithm. The value chosen was 0.0025
or AaZ, 0.01 for Aa, AaiL, and AaiG, 0.001 for AagL and 0.005 for Aω ,
hat is near to the least nonzero amplitude (0.0025, 0.0114, 0.0107,
.0012, 0.0052 for AaZ, Aa, AaiL, AagL, Aω , respectively). Such a limited

ogarithm of an amplitude A˛ is denoted L˛.
Two-sample t-test was accomplished to trace differences

etween the groups. It was applied to amplitude logarithms from

the test for rest tremor,
all the tests for postural tremor taken together.

Two parameters of receiver operating characteristic (ROC) curves
ere extracted for the amplitudes from all the tests for postural
Please cite this article in press as: O. Šprdlík, et al., Tremor analysis by deco
inertial measurement unit, Biomed. Signal Process. Control (2010), doi:10.

remor taken together,

the area under the ROC curve (AUC),
potential percentage of correct classification of the signal to come
from the group of patients or controls based on its amplitude.
2 4 6 8 10 12
f [Hz]

8 10 12
Hz]

PSD estimate.

First, all the parameters were obtained for the scenario that the
amplitude derived from the signal only in one hand in one test was
used to classify the subject as a patient or as a control. In the second
scenario, the greater of the amplitudes from the left and right hand
in one test was used. Note that in the first scenario the number of
samples was twice the number of samples in the second scenario
because the amplitudes from the left hand and from the right hand
were taken separately.

2.8. Regression of visual assessment

In part of the measurements (177 tests with 21 patients and
two controls), a video of hands and arms of subjects was recorded
simultaneously with the acquisition of inertial data. Tremor ampli-
tude in both hands was assessed from the video recordings by two
trained clinicians according to the amplitude assessment in the
Fahn-Tolosa-Marín Tremor Rating Scale (0, 1, 2, 3, 4). When scores
assessed by the two clinicians differed, the average was used for sta-
tistical analysis. Totally, 354 scores of a hand tremor were obtained
(177 tests, 2 hands).

The score was regressed using the linear least squares method.
The regression functions were polynomials with the logarithms
(limited, see the previous section) of the obtained amplitudes as
variables. Polynomials in a single amplitude logarithm were used
with the degree up to 15. 2D polynomials were used with total
degree up to 15. 3D polynomials were used with total degree up
to 13. For example, the total degree of 2D polynomial in La, and Lω ,
b00 + b10 La + b01 Lω + b11 La Lω + b02 L2

ω + b12LaL2
ω , is considered to

be 3 (1 in La and 2 in Lω).
The leave-one-out method was used to verify the ability of the

different polynomial structures of the regression function to predict
the visual assessment. One visual score and the corresponding set
of amplitudes were left out each time. The root mean squares error
(RMSE), mean absolute error (MAE), coefficient of determination (r2),
and percentage of predictions with error lower than 1 (%E<1) were
computed as the measures of regression accuracy.

3. Results

3.1. Influence of sensor biases

The amplitudes of acceleration components obtained using the
acceleration measurement corrupted by the additional bias and
using the angular rate measurement corrupted by the additional
bias were compared to the amplitudes of acceleration components
mposition of acceleration into gravity and inertial acceleration using
1016/j.bspc.2010.09.004

obtained using the calibrated data, see Table 1. The differences
between amplitudes were relatively low, especially for the inertial
component. The most apparent mean differences were contributed
by several occurrences of the situation, when in calibrated or
impaired data a peak was found fulfilling the criteria stated in

dx.doi.org/10.1016/j.bspc.2010.09.004
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Table 1
Influence of calibration accuracy.

Correlation Mean difference (%)

Bias in a Bias in ω Bias in a Bias in ω
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Table 2
Correlation coefficients between amplitudes derived from spectral peaks of different
signals.

Corr. of amplitudes Corr. of logarithms

AaiL AagL Aω AaiL AagL Aω

Aa 0.999 0.92 0.93 0.9995 0.94 0.95
AaiL 0.90 0.91 0.94 0.95
AagL 0.996 0.97

Left: Correlations of amplitudes. Right: Correlations of amplitude logarithms. Cor-
relations of AaiG and its logarithms (not included in the table) with AaiL and its
logarithms were greater than 0.9998. Differences between their correlations with
other quantities were lower than 0.0005.

Table 3
Correlation coefficients between tremor frequencies derived from different signals.

Correlations of frequencies

faiL fagL fω

fa 0.96 0.71 0.68
faiL 0.67 0.65
AaiL 0.99999999 0.999991 0.08 0.2
AaiG 0.99999999 0.999998 0.08 0.2
AagL 0.99998 0.9999 2.8 5.6

ec. 2.4 and in the other not. The relative difference was 100% in
uch situation. Note that amplitudes AagL were much lower than
mplitudes of the inertial component (see Fig. 6 and Table 4).

Left: Pearson’s correlation coefficients between amplitudes of
D signals calculated from the calibrated sensors data and ampli-
udes calculated from the data corrupted by additional errors in
cceleration (a) and angular rate (ω). The amplitudes were calcu-
ated from peaks in PSD of the signals.

Right: Mean relative differences between the original ampli-
udes and amplitudes from corrupted signals. Mean relative
ifference was defined as the mean of absolute values of the
ifferences between the two values divided by the maxima of
he two values, e.g. for the amplitude of inertial component AaiL
btained from one measurement with the use of the calibrated
Please cite this article in press as: O. Šprdlík, et al., Tremor analysis by deco
inertial measurement unit, Biomed. Signal Process. Control (2010), doi:10.

ata and the amplitude obtained with the acceleration corrupted
y additional bias (AaiL, corrupted a) the relative difference was

AaiL − AaiL, corrupted a|/max(AaiL, AaiL corrupted a). Where both ampli-
udes were zero, the relative difference was also considered zero.

ig. 6. Means and standard deviations of the amplitudes obtained from peaks in
pectra of the measured acceleration in axis perpendicular to the hand aZ, mea-
ured 3D acceleration a, movement acceleration in local coordinates aiL, projection
f gravity agL, and measured angular velocity ω. (A) Amplitudes from the test for rest
remor. (B) Amplitudes from all the tests for postural tremor. Means and standard
eviations were computed in logarithmic coordinates. Left (black) bars correspond
o the group of patients; right (gray) bars correspond to the group of healthy subjects.
fagL 0.79

Differences between correlations of faiG (not included in the table) and faiL with
others were lower than 0.0005.

3.2. Relationships between amplitudes and frequencies detected
for different signals

The amplitudes and frequencies were compared in terms of cor-
relation coefficients according to section 2.5. The cases where no
peaks were detected in some of the signals were removed from this
analysis. A peak was detected in PSD of a in 891 from 928 tests, in
895 cases for aiL, 894 for aiG, in 455 for agL, and in 878 for ω. Totally,
449 tests remained with peaks detected in all the signals.

Correlation coefficient for both raw amplitudes and their log-
arithms to base 10 are listed in Table 2. The most correlated
amplitudes were AaiL and AaiG. They also correlate well with the
amplitude of the measured acceleration (Aa). Amplitude of the grav-
itational component (AagL) correlate better with the amplitude of
angular rate (Aω) than do these two amplitudes with amplitudes
of other accelerations (Aa, AaiL, AaiG). The same holds for the loga-
rithms of amplitudes.

Correlation coefficients between peak frequencies of different
signals are listed in Table 3. The highest correlations are again for
Aa, AaiL, and AaiG mutually. Frequency of agL correlates the most
with the frequency of ω.

The amplitudes of the gravitational component of acceleration
were lower than the amplitudes of inertial acceleration (about one-
tenth, see Fig. 6 and Table 4).

Usually, the frequency of the detected peak was (at least approx-
imately) the same from all signals where a peak was detected in
mposition of acceleration into gravity and inertial acceleration using
1016/j.bspc.2010.09.004

the same test. In some cases the frequency differed notably (e.g. fa
and fagL). In 238 tests from 928 the maximum difference between
detected peaks was greater than 1 Hz. Most of these cases occurred
in tests with signals of relatively low amplitudes. Part of the cases

Table 4
Ratios of amplitudes of gravitational and inertial acceleration.

X Y Z All

Postural
Max 0.50 0.42 0.09 0.17
Average 0.18 0.11 0.02 0.07
Min 0.05 0.02 0.001 0.03

Rest
Max 0.56 1.11 0.51 0.49
Average 0.09 0.14 0.10 0.12
Min 0.02 0.03 0.02 0.04

dx.doi.org/10.1016/j.bspc.2010.09.004
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nvolved such peaks that the frequency of one of them was approx-
mately double of the frequency of another one. That may stem
rom the nonlinear properties of periodic movement with rota-
ional character mentioned in the introduction.

.3. Analysis in individual axes

More detailed analysis was done for the test on postural tremor
ith hands extended horizontally and for the test on rest tremor
ith hands hanging freely down from arm support. Amplitudes
ere computed not only from composite PSD of 3-component sig-
als but also for all signal components separately. Hand axes were
sed instead of sensor axes. Ratios between amplitudes of gravita-
ional artifact and inertial acceleration were studied

See Table 4 for ratios of gravitational and inertial acceleration
mplitudes. In the test on postural tremor the ratio is notably lowest
n the Z axis. That agrees with the results of the analysis realized in
4]. In the test on the rest tremor the difference between the mean
atios in individual axes is not so high – Z axis is more inclined from
he vertical due to the hanging position of the hand and its sensi-
ivity to changes of the gravitational component due to rotations is
reater.

Mean and extremal ratios found between the amplitudes of
ravitational artifact and inertial acceleration (AagL/AaiL) in tests
or postural and rest tremor. The ratio is listed for different sen-
or axes as well as for the overall amplitudes of three-component
ignals. Cases where some of the two amplitudes was zero were
ot included in the averaging.

.4. Differences between groups

Means and standard deviations of limited amplitude logarithms
ere computed. For the visualization they were transformed back

o absolute values and shown in Fig. 6 in logarithmic coordinates.
In all signals both groups were far from having same mean

mplitude logarithm (P < 10−8). Not surprisingly, in tests for pos-
ural tremor the groups were distinguished better (see Fig. 6). The
ests are known to be more suitable to distinguish the groups as
ostural tremor is more typical in essential tremor patients than
est tremor. The parameters of ROC curves were also extracted for
mplitudes of each signal in all the tests for postural tremor taken
ogether.

See Table 5 for the results. In most of separability measures,
mplitudes of inertial acceleration (AaiL and AaiG) and the ampli-
ude of measured acceleration (Aa) distinguished the groups best.
he exception is the P-value in the first scenario that is lower for
he amplitude of angular rate (Aω). ROC parameters of Aω are com-
arable to the parameters of Aa, AaiL, and AaiG in the first scenario.

In some parameters (P-value in both scenarios and potential
lassification accuracy in the first scenario), amplitudes of inertial
omponents performed a little better than the amplitude of the
easured acceleration. The amplitude derived from the accelera-

ion measured in the approximately vertical axis (AaZ) performed
orse in all the parameters than Aa, AaiL, and AaiG and in most of

he parameters worse than Aω .

.5. Regression of the visual assessment

The visual assessment of tremor severity by clinicians was inter-
olated by polynomials of different degrees and in different number
f variables. Limited logarithms of amplitudes were used as the
Please cite this article in press as: O. Šprdlík, et al., Tremor analysis by deco
inertial measurement unit, Biomed. Signal Process. Control (2010), doi:10.

ariables. See Section 2.8 for more details and Fig. 7 for an exam-
le. The proficiency of different regression function structures was
uantified by root mean square error (RMSE) and by the percentage
f predicted tremor scores that differed from the values assessed by
linicians by less than 1 with the use of the leave-one-out method-
Fig. 7. Mean visual scores and corresponding limited logarithms of the amplitudes
derived for the measured acceleration (La). Scores were regressed by a polynomial
in La , degree = 3, dashed line.

ology. See Table 6 for an excerpt of results. For the sake of brevity,
only several combinations of 2 and 3 amplitudes are shown, that
reached the best RMSE. Only results for the two best polynomial
degrees are presented for each amplitude combination shown, plus
the results of the first degree polynomials with one variable (linear
regression).

From the first degree polynomials, the regression function using
the angular rate amplitude had the lowest RMSE. However, when
using the optimal degree, regression functions using amplitudes
derived from measured and inertial acceleration performed better.

Using more than one amplitude in the regression function
usually improved the proficiency. All the presented regression
functions using two and three amplitudes performed better in
RMSE than any regression function using only one amplitude.
All the regression functions using two variables presented in the
Table 6 also performed better or equally in the %E<1 parameter.

The optimal regression function structure, according to RMSE in
the leave-one-out setting, was a polynomial of total degree 5 in log-
arithms of the three amplitudes derived from the angular rate, the
inertial acceleration in the inertial frame and the inertial accelera-
tion in the sensor frame. The error was 0.377 on the tremor rating
scale.

For most amplitude combinations presented, the proportion of
predictions with error lower than 1 was about 98%. The exceptions
are 1D regression functions using AagL and Aω .

The proficiency of regression functions was presented for the
polynomial degrees that were the best according to the root mean
square error (RMSE) with the leave-one-out method used. The lim-
ited logarithms of the amplitudes listed were the variables of the
polynomials. For the 2D and 3D polynomials, the numbers in the
Degree columns correspond to degrees in the amplitude logarithms
in the order as listed. Columns %E<1 contain the percentage of
predicted tremor scores that differed from the values assessed by
clinicians by less than 1. For the combinations of amplitudes listed
in round brackets, %E<1 was the same as listed in the table, RMSE
differed by less than 0.002. The choice of the polynomial degree
that was the second best according to RMSE is presented for each
combination of amplitudes listed in the table. The proficiency of lin-
ear regression functions (polynomial degree = 1) with one variable
is presented too.

Coefficients of determination (r2) and mean absolute errors
mposition of acceleration into gravity and inertial acceleration using
1016/j.bspc.2010.09.004

(MAE) were also computed in the leave-one-out setting for the
regression function structures presented in Table 6. From the linear
functions, the one using Aω was the best according to both crite-
ria: r2 = 0.72, MAE = 0.375. From the other regression functions, the

dx.doi.org/10.1016/j.bspc.2010.09.004
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Table 5
Measures of the separability of the groups of patients and controls in terms of tremor amplitude of postural tremor. Top: Tremor amplitude taken from a hand in one test.
Bottom: Greater of the amplitudes from the left and right hand in one test. Best values (with some tolerance) are highlighted in bold.

AaZ Aa AaiL AaiG AagL Aω

First scenario: A�

P-Value 2.1 × 10−35 3.8 × 10−43 2.2 × 10−43 1.1 × 10−43 3.7 × 10−40 1.3 × 10−44

AUC 0.783 0.809 0.808 0.809 0.747 0.808
Potential accuracy (%) 74.4 76.7 76.9 76.9 73.6 76.1

Second scenario: max(A� left, A� right)
P-Value 9.3 × 10−24 7.2 × 10−26 1.5 × 10−26 1.5 × 10−26 2.4 × 10−25 1.5 × 10−25

AUC 0.807 0.834 0.833 0.833 0.793 0.821
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Potential accuracy (%) 78.7 79.9

-value: P-values of two-sample t-tests applied to amplitudes of pNote that in the
he area under the ROC curve. Potential accuracy: Percentage of correct group class

ne using AaiL, AaiG, and Aω , degree [1 2 2], was the best according
o r2 (0.83) and the one using AaiL and Aω , degree [5 2], was the
est according to MAE (0.273). The coefficients of determination
ere greater than 0.8 and MAE lower than 0.3 for all the 2D and 3D

egression function structures listed and for all the 1D polynomials
f optimal degrees listed that use Aa or AaiL.

. Discussion

Findings about the ratio between the amplitudes of the esti-
ates of the gravitational artifact and the inertial acceleration agree
ith the analytic findings about the component of gravitational

rtifact in [4]: The AC component of the gravitational artifact is rel-
tively lowest in the (approximately) vertical axis and it is much
reater in the other axes. The ratio implies that in other axes an
rror of up to tens of percent may occur if the measured acceleration
s directly used to estimate the amplitude of spatial displacement
y double integration.

Following the simplified model in [4], the ratio in the proxi-
odistal hand axis in the first test for postural tremor should be

otably higher than that in Table 4 and observed in the example in
ig. 3(c). The difference can be explained by differences between
he measurement setup and the simplified model:

The sensors were placed notably above the hand axis.
Sensor/hand alignment and the orientation itself might be esti-
mated inaccurately.
Although the flexion–dorsiflexion movement of hands implying
the high ratio in the model was typical in the used test for postural
tremor, other movements also occurred.

Amplitudes and frequencies derived from the estimated 3D
Please cite this article in press as: O. Šprdlík, et al., Tremor analysis by deco
inertial measurement unit, Biomed. Signal Process. Control (2010), doi:10.

ravitational artifact correlate more with amplitudes and frequen-
ies of the angular rate than do amplitudes and frequencies of the
stimated inertial acceleration. That agrees with the fact that any
hanges in the gravitational component are only caused by rota-
ions.

able 6
esults of the regression of the visual assessment.

Amplitudes used Degree (best) RMSE %E<1 Deg

Aa 7 0.402 98.0
AaiL (AaiG) 7 0.403 98.0
AagL 7 0.516 94.1
Aω 5 0.453 95.5
AaiL, Aω (AaiG, Aω) 10 1 0.380 98.0 5
Aa , Aω 5 2 0.384 98.0 6
AaiL, AagL (AaiG, AagL) 3 2 0.389 98.3 2
AaiL, AaiG, Aω 1 2 2 0.377 98.0 2 1
AaiL, AagL, Aω (AaiG, AagL, Aω) 3 1 1 0.384 97.7 1 3
AaiL, AaiG, AagL 1 1 3 0.387 98.3 2 1
Aa , AagL, Aω 3 1 1 0.387 97.5 1 3
.9 79.9 77.9 77.3

d scenario, the number of samples is half of the number in the first scenario. AUC:
ons with the amplitude thresholds set up optimally in terms of this criterion.

Several measures were used to quantify the performance of
amplitudes of different signals to distinguish the group of patients
from healthy subjects: parameters of the ROC curve and the two-
sample t-test applied to amplitude logarithms. The amplitudes
of the 3D measured and inertial acceleration (Aa, AaiL, AaiG) and
the amplitude of angular rate (Aω) distinguished the groups best
according to different criteria. All these amplitudes performed bet-
ter in most of the measures than the single accelerometer axis
perpendicular to the hand that is used widely in the literature. In
some separability measures, the amplitudes of the inertial com-
ponent performed better than the amplitude of the measured
acceleration. However, the differences were low.

Polynomial regression functions with suitable inputs and poly-
nomial degrees were able to predict the visual assessment of tremor
intensity with the root mean square error under 0.4. In about 98%
of the measurements they predicted the score with the error lower
than 1. The performance was very good with respect to the fact that
the resolution of the visual assessment was 1 (0.5 when averag-
ing two raters with different rates). The regression functions using
several amplitudes including the amplitude of inertial component
performed a little better than if using the measured acceleration
instead of the inertial component.

A number of other works deal with the regression or correlation
of a visual rating with quantities from an instrumented assess-
ment. Part of them deal with a long-term ambulatory monitoring
of tremor [13,22,23], other part use short measurements in defined
hand positions [14,15,24,25]. The first approach differs from this
study as the data were captured and averaged in long time intervals
on one hand, but the setup was more relaxed on the other hand –
even measurements from free movement of persons were included.
In the second approach, the setup was tighter than our: The regres-
sion was done for a particular task and well defined hand position
mposition of acceleration into gravity and inertial acceleration using
1016/j.bspc.2010.09.004

each time. Moreover, various clinical scales were used in the stud-
ies as the quantities to regress (or to use as regressors of measured
amplitudes). Due to these facts, it cannot be judged which regres-
sion was of the best quality directly by comparing the coefficients
of determination, residual errors, etc.

ree (2nd best) RMSE %E<1 RMSE (degree = 1) %E<1

8 0.403 98.0 0.502 96.9
8 0.404 98.0 0.498 96.9
5 0.517 93.5 0.655 89.5
7 0.454 95.5 0.481 95.5
2 0.381 98.0
2 0.384 98.0
3 0.391 98.3
2 0.378 98.0
1 0.394 98.0
2 0.387 98.0
1 0.396 98.0

dx.doi.org/10.1016/j.bspc.2010.09.004
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A specialized time-domain algorithm using data from
ccelerometers placed on forearms was presented in [21] to
ssess in daily life the tremor amplitude and the proportion of time
ith tremor present. Other movements were also quantified beside

remor. The algorithm was further refined, ported to different
ardware, and validated in [22,23]. Relatively long-term measure-
ent and simultaneous minute-by-minute UPDRS rating of tremor

mplitude were done. Tremor detection accuracy was good. High
orrelations were found between the obtained quantities and
PDRS when averaging over long time periods. The correlation of

he estimated mean tremor duration with the mean clinical score
as as high as r = 0.96 (r2 about 0.92) in [22]. However, without

veraging, the correlations of minute-by-minute quantities were
ublished only within subjects, causing them relatively low due to
limited variation of tremor amplitude and occurrence in a single

ubject: Mean correlation coefficient was 0.71 (corresponding to
2 about 0.5) in [22].

In [13] another method was proposed to quantify tremor in daily
ife using gyroscopes placed on forearms instead of accelerometers.
he algorithm was tested on a sample of 10 patients with Parkin-
on’s disease (PD) and 10 control subjects. Very high sensitivity and
pecificity was found when detecting tremor in periods of 3 seconds
n a long protocol when compared to the visual assessment from
video recording. Correlations up to r = 0.87 (r2 about 0.76) were

ound between an UPDRS tremor subscore (items 20 + 21, rest and
ction tremor) and mean logarithm of amplitudes computed from
easurement in a 45 min long fixed protocol. The protocol was per-

ormed immediately after the UPDRS rating. Similar correlation was
ound in a free-move setting when averaging amplitude logarithms
n periods of 30 or 45 min preceding the UPDRS evaluations.

A wide range of clinical scales and instrumented assessments at
everal institutions was studied in [24]. Two regressions respect-
ng approximately logarithmic relations of amplitudes and clinical
cores were done, one of them being linear regression with the
se of the amplitude logarithm as the independent variable. The

nstrumented assessment was based on short-time measurements,
ut the visual assessment was not done simultaneously. In some
ub-studies, the assessment was done immediately before or after
he measurement. In others, the time lag was up to several weeks.
n one sub-study, scores assessing social handicap and amount of

ater spilled when pouring from one tube to another were used
nstead of a direct visual assessment of the tremor amplitude.
oefficients of determination were computed from the published
orrelation coefficients. The coefficients range from r2 = 0.17 (for
0–3 scale, spilled water) and 0.30 (for a 0–4 scale, visual ampli-

ude) to 0.74 in sub-studies using accelerometers, from r2 = 0.65 to
.78 in sub-studies using digitizing tablets, and r2 = 0.89 in a sub-
tudy using the linkage device [15]. The latter result is very good.
owever, each regression function was trained to a particular arm
osition and the correlations were computed for all the data avail-
ble, no leave-one-out or similar methodology was used in [15,24].
nstead, standard errors of the estimated slopes of regression lines

ere estimated, being about 10% of the values, see [24], Table 2.
n the other hand, all their results may suffer from the fact that

he acquisition of the amplitude and the visual rating by a clinician
ere not synchronized.

In [14], visual score of the postural and rest tremor in PD patients
as regressed using short-time accelerometer and gyroscope mea-

urements. Measurements were done simultaneously with video
ecordings used for the visual assessment. The regression results for
he rest/postural tremor were r2 = 0.89/0.90 when using all the data,
Please cite this article in press as: O. Šprdlík, et al., Tremor analysis by deco
inertial measurement unit, Biomed. Signal Process. Control (2010), doi:10.

nd r2 = 0.85/0.88, RMSE = 0.32/0.35 when using the leave-one-out
pproach. The performance measures are better than ours. How-
ver, the resolution of the visual scale they used was more fine than
he scale we used (see [14], Fig. 6), reducing the error caused by the
iscrete nature of clinical scales. Moreover, the regression func-
 PRESS
ing and Control xxx (2010) xxx–xxx

tion was trained to assess a concrete type of tremor in a concrete
hand posture while we included several hand postures. In [14], all
amplitudes from separate sensor axes were used while we used
only the overall amplitudes derived from the composite spectra of
3D signals. On the other hand, only linear functions of the ampli-
tude logarithms were used as regression functions in [14], while
we used more general polynomials besides the linear regression by
one amplitude logarithm.

Paper [25] extends [14] by correlations with another visual scale
used to quantify the postural and kinetic tremor in patients with the
essential tremor. A relatively small sample of tremor assessments
was used in the study. The correlation between the score provided
by the used system and the visual score in the postural tremor was
r = 0.738 (r2 about 0.54) and error MAE = 0.42. The found accuracy
of the regression is lower than our results. The accuracy may suffer
from the fact that they used much smaller sample of data from a
similar number of subjects as we involved.

5. Conclusions

Estimates of the inertial acceleration caused purely by a trans-
lational movement in the inertial frame and of the gravitational
artifact were used for tremor quantification in addition to the actu-
ally measured acceleration and angular rate. The decomposition of
the acceleration into the two components was performed with the
use of an orientation (posture, pose, attitude) estimation using the
data provided by the inertial measurement unit.

The orientation estimation accuracy was not directly validated
using any alternative methodology, but low sensitivity of the pro-
posed detection scheme to corruption of the measured data with
constant bias was demonstrated. It appears that high accelerations
of a severe tremor may influence the orientation estimate. An anal-
ysis of this influence and its reduction may be a subject of future
investigations.

The performance in separating the group of patients from
healthy persons and in the regression of the visual tremor rating
was good and comparable to the results presented in other publica-
tions. 3D accelerometry was more efficient in separating the groups
than uniaxial accelerometry. The use of the decomposed accelera-
tion further improved the performance in both tasks. However, the
differences were low and further investigation may be needed to
make a definite conclusion about the better suitability of the accel-
eration components for tremor detection and quantification when
compared to raw measured signals.

Other movement variables like position or linear velocity are
often used as the quantities for tremor analysis as they are better
related to visual observations by a human. In the future work, they
may be estimated from the acceleration and investigated beside the
variables from the presented work in order to find reasonable rep-
resentation of tremor intensity and frequency without dependence
on particular hand position. More information about the movement
may be also extracted and utilized for the regression or classifica-
tion if quantifying amplitudes in separate axes instead of the single
amplitude for a 3D signal. In such a case, separating the gravita-
tional component may be more helpful, as the amplitude of its
spectral peak manifests more in some particular axes than in the
case when the amplitudes derived from 3D acceleration are used.
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