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Blur Invariants Constructed From Arbitrary Moments

Jaroslav Kautsky and Jan Flusser, Senior Member, IEEE

Abstract—This paper deals with moment invariants with respect
to image blurring. It is mainly a reaction to the works of Zhang
et al. and Chen et al., recently published in these Transactions. We
present a general method on how to construct blur invariants from
arbitrary moments and show that it is no longer necessary to sep-
arately derive the invariants for each polynomial basis. We show
how to discard dependent terms in blur invariants definition and
discuss a proper implementation of the invariants in orthogonal
bases using recurrent relations. An example for Legendre moments
is given.

Index Terms—Blur invariants, image moments, moment invari-
ants, orthogonal moments.

I. INTRODUCTION

N 1996, Flusser et al. [3] introduced a new class of

moment-based image descriptors (features), which are in-
variant to convolution of an image with an arbitrary symmetric
kernel. Their research has been motivated by the need for recog-
nition of images degraded by an unknown blur (which might
originate from wrong focus, media turbulence, object/camera
motion, etc.) without the necessity of estimating this blur and
restoring the image.

Assuming the image acquisition time is so short that the blur-
ring factors do not change during the image formation and also
assuming that the blurring is of the same kind for all pixels
and all colors/gray levels, we can describe the observed blurred
image g(z,y) of a scene f(x,y) as convolution, i.e.,

gz, y) = (f *h)(z,y) )

where kernel iz, y) stands for the point-spread function (PSF)
of the imaging system. Model (1) is a frequently used compro-
mise between universality and simplicity—it is general enough
to describe many practical situations such as out-of-focus blur
of a flat scene, motion blur of a flat scene in case of linear con-
stant-velocity motion, and media turbulence blur. At the same
time, its simplicity allows reasonable mathematical treatment.
In many cases, we do not need to know the whole orig-
inal image of which the estimation may be ill posed, time
consuming, or even impossible; we only need, for instance,
to localize or recognize some objects on it (typical examples
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are matching of a blurred template against a database and
recognition of blurred characters). In such situations, only the
knowledge of a certain incomplete but robust representation of
the image is sufficient. However, such a representation should
be independent of the imaging system and should actually de-
scribe the original image, not the degraded one. We are looking
for a functional 7 that is invariant to degradation (1), i.e.,

I(f) =I(f % h) )

must hold for any admissible A (z,y). Descriptors satisfying
condition (2) are called blur invariants or convolution invari-
ants.

Although the PSF is supposed to be unknown, we still have to
accept certain assumptions about it to find invariants. For an ar-
bitrary PSF, no blur invariants exist; the more we assume about
the PSF shape, the more invariants can be found. Since 1998,
when a fundamental paper [4] was published, almost all au-
thors have considered centrosymmetric blur for which A(x, y) =
h{—z, —y). This is a natural choice because many real imaging
systems behave in this way, and we keep this assumption in this
paper, too. Flusser and Suk [4] derived a system of blur invari-
ants that were based on geometric moments of the image. Their
first results initiated intensive research. These moment invari-
ants (as well as their equivalent counterparts in Fourier domain)
have become very popular image descriptors and have found
numerous applications, namely, in image matching and regis-
tration in remote sensing [4]-[7], in medical imaging [8], [9],
in face recognition on out-of-focus photographs [3], in normal-
izing blurred images into canonical forms [10], [11], in blurred
digit and character recognition [12], in robot control [13], [14],
in image forgeries detection [15], in aircraft silhouette recogni-
tion [16], in traffic sign recognition [17], and in animal shape-
based classification [18] (interested readers can find a compre-
hensive review in [19]).

In the last few years, several authors attempted derivation
of blur invariants, which are functions of orthogonal moments
rather than of geometric moments. Legendre moments [1], [20]
and Zernike moments [2], [21] were employed for this pur-
pose. It should be noted that moment invariants in any two dif-
ferent polynomial bases are mutually dependent and theoret-
ically equivalent in terms of discrimination power; therefore,
there is no chance to derive “new” or “better” independent in-
variants just by changing the polynomial basis. It is, however,
well known that numerical calculation of orthogonal moments
is more robust to precision loss when properly implemented.
That is a justifiable motivation for developing invariants using
orthogonal polynomial bases, which, surprisingly, was not ex-
plicitly mentioned in the papers quoted above. The authors ei-
ther skipped any deeper analysis and ended up with a small in-
complete subset of the invariants (this is the case of [21] and
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[22] where only Zernike moments of equal indexes are consid-
ered) or followed the original derivation presented in [4] “from
scratch” and repeated the whole process for a chosen orthog-
onal basis [1], [2], [20]. Since the original derivation is long
and difficult, even for the simplest polynomial basis {z73*},
they ended up with extremely complicated and nontransparent
formulas for Legendre and Zernike moments. Obviously, this
nontransparency has led to several errors, incorrect conclusions,
and misunderstandings.

In [20], the general formula for blur invariants (the authors
used slightly different definition of blur symmetry) from Le-
gendre moments (see [20, eq. (33)]) is incorrect. It can be easily
proved that most invariants listed in the Appendix of [20] are
not invariant at all (for instance B, B3, Bs, etc.). A better at-
tempt to derive Legendre invariants for centrosymmetric blur
was published in [1] where the resulting invariants (see [1, eqgs.
(25) and (26)]) are “almost” correct. They are actually invariant,
but due to the summation over redundant indexes, they become
correlated since higher order invariants contain useless terms
comprising lower order invariants, which were already used be-
fore (see [1, Appendix A]). Such terms should be discarded.
Apparently, because of extremely complicated formulas (sex-
tuple sums, complex recurrences, etc.) the authors were not able
to analyze and correct this phenomenon. In the next paper of
the same group of authors [23], the lack of deeper analysis led
to a serious mistake in geometric normalization of blurred im-
ages (the normalization parameters with respect to rotation and
stretching were calculated from the second-order Legendre mo-
ments, but these quantities depend on the particular blur).

This paper is mainly a reaction to the aforementioned pa-
pers [1], [2] published recently in these Transactions. Our pri-
mary motivation is to provide the readers (and prospective au-
thors) with an insight into the subject and, consequently, to pre-
vent mistakes both in theory and numerical computation. We
demonstrate that it is useless to derive blur moment invariants
with respect to each polynomial basis separately. We show that
there exists a simple relation between blur invariants in dif-
ferent bases. As soon as we have the blur invariants in stan-
dard basis {27}, we can easily generate invariants in any poly-
nomial basis {p;(x)}, and in that way, we avoid error-prune
individual derivations. For the sake of simplicity, we show that
for a 1-D case. The generalization to the 2-D (or even N-di-
mensional) images presents no significant complications while
being too lengthy for this paper. (More precisely, it is straight-
forward for separable polynomial bases of type {p;(z)qr(v)}
where p(z) and ¢(y) are any 1-D polynomial bases. Legendre
and Chebyshev polynomials are typical examples. Extension to
nonseparable 2-D orthogonal bases is more demanding because
the construction and proper implementation of such bases may
be complicated.)

The second goal of this paper is to develop an algorithm for
discarding dependent terms in the definition formulas in blur
invariants, which reduces correlation and simplifies the com-
putations. Such method has never been proposed; in fact, this
problem has never been identified and formulated.

Finally, the third goal is to suggest how to properly implement
the blur invariants in orthogonal bases using recurrent relations.
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In Section II, we recall the “traditional” 1-D blur invariants
from geometric moments and present their definition in a new
matrix notation. In Section III, we derive a recurrence for blur
invariants for any polynomial basis, i.e., for arbitrary moments.
In Section IV, we discuss blur invariants for any symmetric or-
thogonal polynomials, demonstrate how to systematically dis-
card useless terms, and also present a special case for Legendre
moments.

II. RECALLING FLUSSER—SUK BLUR INVARIANTS IN 1-D

Let f(x) be an arbitrary integrable image function and let
i = /.Ljf(ﬂ,)d.ll j=0.1,...

be its moments with respect to standard powers (commonly
referred as geometric moments). We define the following for
i=1,2,...

14 (2j— 1
boj_1 = proj-1 — ” ; ( .2i )bQ(ji)l,“'?i‘ 3)

Note that even-order invariants bz, by, bg, . . . do not exist (some
authors formally define b2; = O to get more compact formulas).
Flusser and Suk proved that b1, b3, b5, . . ., defined by recurrence
(3), form a complete and independent set of invariants with re-
spect to arbitrary centrosymmetric blur (see [4] for the “full”
proof in 2-D or [24] for a simplified 1-D version).

We want to express (3) in a matrix form. We introduce a
vector notation, i.e.,

H1 Ho b1

M3 M2 bs

B = . > Mg = . 3 b= .
Hon -1 Hon -2 b2n—1

The sum in (3) can be captured in two different ways. We have
either

b= By — LB(b)ll’c or

1
b= B, — C(Me)b (4)
Ho Ho

where we indicate what matrices I3 and C depend on.
For example, for n = 4, matrices I and C are

0 0 0 0
o 3, 0 o0
BO=10 106, 501 0 |
0 21b; 33by Thy

0 0 0 0
32 0 0 0
5/14 10/,62 0 0 ' (5)
Tpe  35p4 21ps 0

Clpy) =

III. BLUR INVARIANTS FROM ANOTHER MOMENT SET

In this section, we describe how to derive Flusser—Suk blur
invariants (4) in terms of modified moments, that is, moments
with respect to arbitrary polynomial basis, as long as this basis
preserves the symmetric/antisymmetric property of the standard
powers. This property has been essential in the original deriva-
tion of the Flusser—Suk blur invariants.
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Let p,;(x) be a sequence of polynomials of exact degree 7,
3 =0,1,...,2n — 1. To have the aforementioned symmetry
property, odd-degree p2;_1 (antisymmetric) must be combina-
tions of odd powers, and even-degree p2; (symmetric) must be
combinations of even powers only. Denote

T 1
z3 z?
T, = T, = .
3521;,71 :L,zﬁfz
b1 Po
P3 P2
p(l = . ps - .
Pon—1 Poan—2
Then, we have
pa, = Laza and ps = LSI:S

for certain nonsingular lower triangular matrices L, and L,.
Similarly, if K is any nonsingular lower triangular matrix, then

b= (b1 by ban-1)" = Kb

defines a complete and mutually independent set of blur invari-

ants.
Can we derive a recurrence defining b in terms of moments

7= [ pio) o
with respect to the new polynomial basis? We note that
Ty = Lyp, and 7, = L.p,

where, again, we denoted &, = (7 772,,,,_1)T andw, =

(7o 7on_2) L. Substituting into (4), we obtain
. 1 ~ -
b= K=n,— —B(b)r, (6)
1o
and also
L 1 . .
b=Kmr, — —C(m,)b @)
Ho

where K = KL, B(b) = KB(K 'b)L,*, and C(m,) =
KC(L,'n )K 1.

Thus, to obtain B(b) from B(b), we, besides the premultipli-
cation and postmultiplication by the transform matrices, replace
each by; 1 in B(b) by a linear combination of by, by, . .., baj 1,
as found in the jth row of K ~'b. Similar procedure applies to
matrix C(,).

Before turning to orthogonal moments we make some general
observations.

1) The lower triangular shape of B and C' is preserved in B

and C'. In fact, C and C' are strictly lower triangular.
2) Both (6) and (7) are thus recurrences defining the same
invariants b.
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3) System (7) appears more transparent and useful as it pro-
vides the invariants as the solution, by forward substitu-
tion, of the linear system,

(I + ié(m)) b=Km, ®)
Ho
with system matrix I + (1/40)C/(m,), the numerical con-
dition of which can be assessed for a given set of modified
moments.

4) For simplicity and without loss of generality, we will re-
strict ourselves to unit lower triangular matrices L, L,
and K. The diagonal elements represent just a scaling of
the new polynomials/invariants. Then, always mg = g
and we can interchange (19 with 7y in the equations. Spe-
cial cases of such matrices L, and L, generating orthog-
onal polynomials are shown in (10).

5) The choice of matrix K influences the form of the blur
invariants b. Any nonsingular lower triangular X generates
some invariants, but apparently, some choices are more
convenient than others. The most natural choiceis K = L,
so that K = I and the recurrences (6) and (7) for the new
invariants b resemble those for the original invariants b.
However, as we will see later, some other choices of K
may produce simpler invariants.

IV. ORTHOGONAL POLYNOMIALS

A. Recurrence Relations for Orthogonal Polynomials

The main reason for replacing the invariants with respect to
moments using standard powers by invariants with respect to
modified moments using another polynomial basis is the nu-
merical instability inherent in any calculation with powers of
higher degree. A typical choice of a well-conditioned basis in-
volves polynomials orthogonal on some domain with respect to
certain weight function w(z). To obtain polynomial basis satis-
fying the symmetry condition previously mentioned, it is suffi-
cient and necessary to choose a weight function symmetric with
respect to the origin (see [25, Theorem 4.3]).

Monic polynomials (i.e., those leading coefficients that are
equal to one) orthogonal with respect to a symmetric weight
function satisfy a three-term recurrence (see [25, Theorem 4.1]),
ie.,

piti(z) = xp;(x) — Bipj—1(x), 7=1,2,... (9

with pg = 1 and p; = x. Here, constants J; must be positive,
and they fully determine the orthogonal polynomials. Matrices
Lq and L, then depend only on constants 3;; here, we show
them for size 3 x 3 as

1 0 0
La= —B1— P 1 0 (10)
| BsBi+Ba(BrtBe) —Pr—P2—PFs—Ps 1
[ 1 0 0
Li= | -0 1 0 (11)
| 3381 —Bi—Pa—03 1

Using a formula-manipulating software (e.g., Maple), we can
find matrix C' (or B) of any reasonable size and translate it into
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a form suitable for numerical evaluation. In the following is the
case where n = 3 for any orthogonal polynomials and with
K =1L,
[ 0 0 0]
C = | 3817 + 3my 0 0 (12)
[ C31 1050 + 107, ()J

where

Cy1 = 3(4(01 + B2) — B3 — B4) Brimo
+ (12(,@1 + ﬁg) + 2/35 - 364) T2 + 57’1’4.

B. Simplifying the New Invariants

When we choose a new polynomial basis (matrices L, and
L, which also determine matrix C(L Lo, )), then any choice of
matrix K will give a set of blur invariants as a solution of (7). We
already mentioned that the natural choice is K = L,. However,
this choice (and most of other “random” choices of K') leads to
invariants containing useless terms. This means that the invari-
ants of higher orders include terms consisting of lower order in-
variants. Such terms are completely useless—they cannot con-
tribute to discrimination power, and they increase not only com-
puting complexity but also correlation between the invariants.
Discarding such terms does not affect the invariance property
and is highly desirable. (Note that the blur invariants published
recently in [1] and [2] contain such useless terms.) An impor-
tant question arises: What is the “optimal” (or at least “good”)
choice of K with respect to the number of terms in invariants
by, bs, bs,...2

To illustrate what we are talking about, let us start with k' =
L, . Then, the first invariant is simply b = m;. For the next one

i 737T1517T0+37T17T2*7T37F0 T2

3 = =m3—3

o o

— 3/3171’1.

The last term is just a multiple of b1 and should be omitted.
The simplified form of this invariant (we denote the simplified
invariants as b) is

.77171'2
b3:7T3—3

13)
o

(Note that 133 does not depend on [; thus, it is the same for any

set of orthogonal moments.)

Simplification of b2; _; for j > 2 is not so obvious. Looking
atrecurrence (6), we observe that the first column of Bis always
multiplied, and also divided, by 7. Thus, this column generates
terms with isolated lower order invariants not being multiplied
by any moments. This makes it a candidate for bringing in use-
less terms. The first column of B can be expressed as
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where S is a strictly lower triangular matrix (displayed here for
size 3 X 3), i.e.,

0 0 0
361 0 0
3451 + 462 — B3 — Ba)Br 106, O

Note that the Sy ; element exactly represents what we omitted
from l~73.

Now, we can observe (using, for instance, formal calculations
in Maple) that choosing K = (I + 5)L, for this particular .
leads to invariants b with significantly less number of terms. We
tested this up to the order nine, and the saving against b was
always about 30%. Hence, we consider this choice a very good
one and worth recommending. (Although we did not formally
prove that, with this particular S, K = (4 .5)L, minimizes the
number of terms, it is highly probable. We tested several other
choices of S and K, but they never yielded such a big saving.)

The recurrence analogous to (7) for these simpler invariants
is

S =

! C(my)b

b=(I+Sm, —
( ) o

where
Clr) =T+ 8)C(x)I+9)?

However, S has the remarkable property that .S and C (m) com-
mute. Then, I + S and C'(x,) also commute and, as a conse-
quence

O(m,) = C(xy).

This implies that to obtain the simpler invariants, we use in (8)
the same system matrix I + (1/7q)}C(m,) and only change the
right-hand side from 7, to (I + S)m,. Now, we can also see the
relationship between the simplified invariants b and the “nat-
ural” ones (obtained by choosing K = L,): b= b+ Sb.

C. Legendre Polynomials

Here, we present blur invariants for a particular case of Le-
gendre polynomials, which were also used in [1], [20], and [23].
Legendre polynomials are orthogonal on interval [—1, 1], with
a constant weight function. The coefficients in their defining re-
currence are

Bj =

4j2 —

R . The matrix C (w,) defining blur invariants in terms of Legendre
B(-,1) = Sb moments is at the bottom of the page.
0 0 0 0
~ . o + 379 0 0 0
Clm,) = Yoo+ W) 4 5my Ly + 107 0 0
2923 —+ 21‘)413‘) T + 312413 T4 —+ 771'6 110197971'0 —+ 14)0 T2 —+ 3571'4 771'0 —+ 217['2 0
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The matrix needed to premultiply the right-hand side to ob-
tain the simpler form of the invariants is

I+S=
17 10
2923 1099
L% e (1

The “natural” invariants (with K = L) are

by = —m + 73 — 32
Ty
g8 10
5 = 9 T T3 3 3
274 _
+ —7T2—57|'4 7T1—107T271'3 o
21
+3072
o
- 1631 793
AR T R T
n e + 6797 10567
T T a3 2™
4010
+ 7!'372171’5 7r27357r47r3 7T(]71
39
4842 ) i
+ 21077471’2— 13 Vig] 7Tl—|—21071'2 T3 ) Tg
3
— 6302
70

whereas the simplified invariants are

63 =73 *37‘—171—2
0
o 64 _
by =75 + ((ﬁ’ﬂ'z — 571'4) T — 107r27r3) o
2
+307L2
]
i — n 1792 7 1536
07 =77 143 T4 6 143 Ty ) T

1280 .
+ _21W5+Wﬂ-3 7T2—357T47T3 Vi)

2112, 9
+ — 3 mo” + 210mmo | w1 + 21072 g

myme?

3 -

X g 2 — 630
™0

D. Practical Consequences of the Simplification

Apart from a clear theoretical result—simplifying the explicit
formulas—discarding the dependent useless terms, as described
in the two previous sections, has also a practical impact. Al-
though each system is algebraically independent, one may ex-
pect that removing unnecessary terms should decrease the cor-
relation between individual invariants. We tried to verify this
assumption experimentally. We took 40 audio signals of length
80 samples, calculated both “original” and “simplified” invari-
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TABLE 1
CORRELATION OF THE SIMPLIFIED INVARIANTS (ABOVE THE DIAGONAL) AND
THE ORIGINAL INVARIANTS (BELOW THE DIAGONAL)

[ 5 6 b5 by

by 1 0.83 -0.66 0.84
b3 -0.96 1 -0.16 043
bs 088  -0.97 1 -0.83
br -0.85 094 -0.99 1

ants, and then estimated correlation between individual invari-
ants. The sample correlation between the invariants are sum-
marized in Table I. The values for the simplified invariants are
above the diagonal, whereas the values for the original invari-
ants are below the diagonal. One can observe that the corre-
lation between the simplified invariants is always less than or
equal to the correlation between the original invariants and sig-
nificantly less in some cases. Hence, simplification also decore-
lates the blur invariants, which is a desirable property in prac-
tice. However, the correlation values depend on the signals, and
the previous observation cannot be absolutely generalized—one
can create artificial examples where this correlation decrease is
1 and counterexamples where it is 0. We repeated this corre-
lation measurement many times with various audio and other
signals. The results were mostly similar to those presented in
Table I—some invariants were decorrelated, whereas correla-
tion between the others changed only slightly.

We also tested robustness of both systems to noise because
one might expect that, due to error accumulation, the original in-
variants are more vulnerable than the simplified ones. Although
this effect is observable in some cases, no statistically signifi-
cant differences were found.

V. CONCLUSION

We have presented a general method on how to derive mo-
ment invariants to image blurring from an arbitrary kind of mo-
ments when knowing them in terms of one particular basis. We
have proven that if we want to derive invariants from moments
of a new type, there is no need to construct them “from scratch”
as other authors did. We have shown that there exist simple
one-to-one transformations between any two polynomial bases
and, consequently, between any two systems of blur invariants.
Due to this, the whole process is much simpler and correct. The
invariants presented in [1], [2], [20], and [23] can be derived
as particular examples of our general approach. Moreover, we
showed how to avoid the useless dependent terms that provide
us with computationally more efficient and less correlated in-
variants. This issue has been totally ignored so far.

We also wish to provide the readers with several general com-
ments and recommendations on how to use orthogonal moments
(and the respective invariants) in numerical applications. Most
of them are not restricted just to blur invariants. Apparently,
the researchers using orthogonal moments in practice are quite
often not familiar with their proper implementation.

1) The choice of the domain is critical. While orthogonal
polynomials are perfectly conditioned on the interval of or-
thogonality, they are useless (and even worse than the stan-
dard powers) outside this interval. Hence, the whole image
domain must be mapped into the area of orthogonality.



KAUTSKY AND FLUSSER: BLUR INVARIANTS CONSTRUCTED FROM ARBITRARY MOMENTS

2) Matrices 1, and L, which express the orthogonal poly-
nomials in terms of powers, are badly conditioned, getting
worse with increasing size n. They are, therefore, only of
theoretical interest, useful in deriving relations and final
formulas but must be avoided in actual calculations.

3) Therefore, modified moments @ must not be calculated
from the geometric moments but directly using recurrent
relations and other properties of orthogonal polynomials
[25].
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