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The paper presents a general method of an automatic deriving affine moment invariants of any weights

and orders. The method is based on representation of the invariants by graphs. We propose an

algorithm for eliminating reducible and dependent invariants. This method represents a systematic

approach to the generation of all relevant moment features for recognition of affinely distorted objects.

We also show the difference between pseudoinvariants and true invariants.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Recognition of objects and patterns that are deformed in
various ways has been a goal of much recent research. There are
basically three major approaches to this problem—brute force
(full search), image normalization, and invariant features. In the
brute force approach we search the parametric space of all
possible image degradations which leads to extreme time
complexity. In the normalization approach, the objects are
transformed into a certain standard position before they enter
the classifier. This is very efficient in the classification stage but
the object normalization itself usually requires solving difficult
inverse problems that are often ill-conditioned or even ill-posed.

The approach using invariant features has appeared to be the
most promising and has been used extensively. Its basic idea is to
describe the objects by a set of measurable quantities called
invariants that are insensitive to particular deformations and that
provide enough discrimination power to distinguish among
objects belonging to different classes. From mathematical point
of view, invariant I is a functional defined on the space of all
admissible image functions which does not change its value under
degradation operator D, i.e. which satisfies the condition
Iðf Þ ¼ IðDðf ÞÞ for any image function f. This property is called
invariance. Another desirable property of I, as important as
invariance, is discriminability. For objects belonging to different
classes, I must have significantly different values. Clearly, these
two requirements are antagonistic—the broader the invariance,
the less discrimination power and vice versa. Choosing a proper

trade-off between invariance and discrimination power is a very
important task in feature-based object recognition.

The existing invariant features used for describing 2D objects
can be categorized from various points of view. Most straightfor-
ward is the categorization according to the type of invariance. We
recognize translation, rotation, scaling, affine, projective, and
elastic geometric invariants. Another possible categorization is
according to the mathematical tools used and yet another
viewpoint reflects what part of the object is needed to calculate
the invariant. One can find hundreds of papers belonging to each
category.

In this paper we focus on invariants with respect to affine
transform of spatial coordinates, which are based on image
moments. Such features are called Affine moment invariants

(AMIs).
Invariants to affine transform play a very important role in

object recognition. In most cases, we represent 3D objects and
structures by their projections onto a 2D plane because photo-
graphy is a 2D medium. An exact model of photographing a planar
scene by a pin-hole camera whose optical axis is not perpendi-
cular to the scene is a projective transform

xu ¼
a0þa1xþa2y

1þc1xþc2y
,

yu ¼
b0þb1xþb2y

1þc1xþc2y
: ð1Þ

Since the projective transform is non-linear, construction of
projective invariants is generally difficult; construction of projec-
tive moment invariants is even impossible (see [1,2] for details).
Fortunately, affine transformation (which is linear) can—under
certain circumstances—approximate the projective transform.
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Affine transformation is defined as

xu ¼ a0þa1xþa2y,

yu ¼ b0þb1xþb2y: ð2Þ

It maps a square onto a general parallelogram and preserves
collinearity (see Fig. 1). The Jacobian of the affine transform is
J¼a1b2�a2b1. In this paper, we consider only regular affine
transforms whose Jacobian is non-zero. Contrary to the projective
transform, J does not depend on the spatial coordinates x and y,
which makes searching for invariants easier. Affine transform is a
particular case of the projective transform with c1¼c2¼0. If the
object is small comparing to the camera-to-scene distance, then
both c1 and c2 approach zero, the perspective effect becomes
negligible, and the affine model is a reasonable approximation of
the projective model. This is why the affine transform and affine
invariants are so important in computer vision.

Among various affine invariants published in the literature, AMIs
have an important position. Their rich history began almost 50 years
ago. The first attempt to derive moment invariants to affine
transform was presented already in the first Hu’s paper [3] but the
Fundamental theorem of affine invariants was stated incorrectly there.
Thirty years later, Reiss [4] and Flusser and Suk [5,6] independently
discovered and corrected this mistake, published new sets of the
AMI’s and proved their applicability in simple recognition tasks. In
their papers, the derivation of the AMI’s originated from the
traditional theory of algebraic invariants from the 19th century,
e.g. [7–11]. The same results achieved by a slightly different
approach were later published by Mamistvalov [12].

The AMI’s can be derived in several ways that differ from each
other by mathematical tools used [13]. Apart from the above
mentioned algebraic invariants, one may use graph theory, tensor
algebra, direct solution of proper partial differential equations,
and derivation via image normalization. All these methods end up
with equivalent sets of invariants.

In this paper, we present a method using graph theory. It is
probably the simplest and the most transparent way allowing to
generate systematically affine moment invariants of any orders
and weights. In a preliminary version, it was proposed in [14] and
is similar to an earlier tensor method [15] and geometric moment
invariants [16]. One of the main advantages of the graph method
is that it provides an insight into the structure of the invariants
and allows to eliminate the dependencies among them. The
algorithm which identifies dependent invariants is a major
contribution of this paper.

The automatic generation of the affine moment invariants
based on the graph theory is described in Section 3. The algorithm

for elimination of the dependent invariants is presented in Section
4. In Section 5 we show two illustrative numerical experiments.

2. Basic terms

Let us introduce a few basic terms first.
By image function (or image) we understand any real function

f(x,y) having a bounded support and a finite non-zero integral.
Geometric moment mpq

(f) of the image f(x, y), where p, q are non-
negative integers and (p+q) is called order of the moment, is
defined as

mðf Þpq ¼

Z 1
�1

Z 1
�1

xpyqf ðx,yÞdx dy: ð3Þ

Corresponding central moment mðf Þpq is defined as

mðf Þpq ¼

Z 1
�1

Z 1
�1

ðx�xcÞ
p
ðy�ycÞ

qf ðx,yÞdx dy, ð4Þ

where the coordinates xc¼m10/m00, yc¼m01/m00 denote the
centroid of f(x,y). Central moments are invariant to translation
of the image, hence any function of central moments is shift
invariant.

The theory of affine moment invariants has been traditionally
connected to the theory of algebraic invariants. Hilbert [11] defined
an algebraic invariant as a polynomial function of the coefficients
a,b,yof binary forms that satisfies the equation

Iðau

0,au

1, . . . ,au

pa
; bu

0,bu

1, . . . ,bu

pb
; . . .Þ ¼ JwIða0,a1, . . . ,apa ; b0,b1, . . . ,bpb

; . . .Þ,

ð5Þ

where w is called the weight of the invariant. The Fundamental
theorem describes the link between algebraic and moment invariants.

Theorem 1. Fundamental theorem of affine moment invariants. If

the binary forms of orders pa, pb,yhave an algebraic invariant of

weight w and degree r

Iðau

0,au

1, . . . ,au

pa
; bu

0,bu

1, . . . ,bu

pb
; . . .Þ ¼ JwIða0,a1, . . . ,apa ; b0,b1, . . . ,bpb

; . . .Þ,

then the moments of the same orders have the same invariant but

with the additional factor jJjr:

Iðmu

pa0,mu

pa�1,1, . . . ,mu

0pa
;mu

pb0,mu

pb�1,1, . . . ,mu

0pb
; . . .Þ

¼ JwjJjrIðmpa0,mpa�1,1, . . . ,m0pa
;mpb0,mpb�1,1, . . . ,m0pb

; . . .Þ:

If we knew an algebraic invariant, we can construct
a corresponding affine moment invariant easily just by
interchanging the coefficients and the central moments and

Fig. 1. The affine transform maps a square to a parallelogram.
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normalizing the invariant by mwþ r
00 to eliminate the factor Jw � jJjr .

Unfortunately, the Theorem does not provide any instructions
how to find algebraic invariants and this is why many other
techniques of the AMI’s construction have appeared. In the rest of
the paper, the Theorem is not employed at all.

3. AMIs generated by graphs

The construction of the AMIs which we call graph method is
based on creating all possible functionals of the form

Iðf Þ ¼

Z 1
�1

� � �

Z 1
�1

Yr

k,j ¼ 1

C
nkj

kj �
Yr

i ¼ 1

f ðxi,yiÞ dxi dyi, ð6Þ

where the cross-product Ckj¼xkyj�xjyk is the oriented double area
of the triangle, whose vertices are (xk, yk), (xj, yj), and (0,0), and nkj

are non-negative integers. Note that it is meaningful to consider
only j4k, because Ckj¼�Cjk and Ckk¼0. After an affine transform
(for simplicity, we assume a0¼b0¼0) it holds C u

kj ¼ J � Ckj. Hence,
functional I(f) becomes after the transform

Iðf Þu ¼ JwjJjr � Iðf Þ, ð7Þ

where w¼
P

k,jnkj is the weight of the invariant and r is the degree

of the invariant (these terms are equivalent to those used in the
Fundamental theorem). If I(f) is normalized by mwþ r

00 , we obtain a
desirable absolute affine invariant

Iðf Þ

mwþ r
00

� �
u

¼ ðsign JÞw
Iðf Þ

mwþ r
00

� �
: ð8Þ

The maximum order of moments contained in the invariant is
called the order of the invariant. The order is always less than or
equal to the weight. Another important characteristic of the
invariant is its structure. The structure of the invariant is defined
by an integer vector s¼(k2,k3,y,ks), where s is the invariant order
and kj is the total number of moments of the jth order contained
in each term of the invariant (all terms have the same structure).
Since always k0¼k1¼0, these two quantities are not included in
the structure vector.

If w is odd then the invariant changes its sign if the respective
affine transform contains mirror reflection (i.e. if Jo0). Such
invariants are not ‘‘true’’ AMIs and are called pseudoinvariants

[17]. As we will see in the experiment, the use of pseudoinvariants
may be desirable if mirror reflection of the objects cannot occur.
On the other hand, if admissible transforms may contain
mirroring, the use of the pseudoinvariants would be misleading
and they should be avoided. The pseudoinvariants are also useless
for recognition of axially symmetric objects. All pseudoinvariants
of any object with at least one axis of symmetry are identically
zero. One of the advantages of the graph method is that from Eq.
(6) we can immediately see whether or not the given functional I

is true invariant or pseudoinvariant.
We illustrate the use of the general formula (6) on two simple

invariants. First, let r¼2 and w¼n12¼2. Then

Iðf Þ ¼

Z 1
�1

� � �

Z 1
�1

ðx1y2�x2y1Þ
2f ðx1,y1Þf ðx2,y2Þdx1 dy1 dx2 dy2

¼ 2ðm20m02�m2
11Þ: ð9Þ

When replacing the geometric moments by corresponding central
moments in order to handle also image translation and when
normalizing the invariant by m4

00 we obtain a true invariant to
general affine transform

I1 ¼ ðm20m02�m2
11Þ=m

4
00:

This is the simplest affine invariant, uniquely containing the
second-order moments only. Its structure is s¼(2). In this form it

is commonly referred to in the literature regardless of the method
used for derivation.

Similarly, for r¼3 and n12¼2, n13¼2, n23¼0 we obtain

Iðf Þ ¼

Z 1
�1

� � �

Z 1
�1

ðx1y2�x2y1Þ
2
ðx1y3�x3y1Þ

2f ðx1,y1Þf ðx2,y2Þf ðx3,y3Þ

�dx1 dy1 dx2 dy2 dx3 dy3 ¼m2
20m04�4m20m11m13þ2m20m02m22

þ4m2
11m22�4m11m02m31þm2

02m40 ð10Þ

and the normalizing factor is in this case m7
00. Both the weight and

the order of this invariant equal 4 and its structure is s¼(2, 0, 1).

3.1. Representing the invariants by graphs

In this section we explain the link between Eq. (6) and graph
theory. Each invariant generated by the formula (6) can be
represented by a connected graph, where each point (xk, yk)
corresponds to a node k and each cross-product Ckj corresponds to
an edge kj between the nodes k and j. We allow multiple edges
between two nodes. The number nkj says, how many edges
connect the nodes k and j (such graphs are called multigraphs).
Thus, the number of nodes equals the degree of the invariant
and the total number of the graph edges equals the weight w of
the invariant. From the graph one can also learn about the orders
of the moments the invariant is composed of and about its
structure. The number of edges incident to each node equals
the order of the moments involved. Each invariant of the form (6)
is in fact a sum where each term is a product of a certain number
of moments. This number, the degree of the invariant, is constant
for all terms of one particular invariant and is equal to the
total number of graph nodes. Two examples of such graphs are in
Fig. 2.

Now one can see that the problem of derivation of the AMIs up
to the given weight w is equivalent to generating all connected
graphs with at least two nodes and at most w edges. Let us denote
this set of graphs as Gw. Generating all graphs of Gw is a
combinatorial task with exponential complexity but formally
easy to implement. It should be noted that some elements of Gw

are meaningless and their generation can be skipped; for instance
any graph with a node having only one incident edge leads always
to zero invariant because m10 ¼ m10 ¼ 0.

Each graph is represented in the algorithm by the list of its
edges. The list of edges for graph (9) is

1 1

2 2
ð11Þ

and for graph (10) it is

1 1 1 1

2 2 3 3:
ð12Þ

If we need to generate all invariants of a certain weight w, it is
sufficient to generate all graphs from

1 1 1 . . . 1 1 1

2 2 2 . . . 2 2 2
ð13Þ

Fig. 2. The graphs corresponding to the invariants: (a) from (9) and (b) from (10).
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to

w�1 w�1 w�1 . . . w�1 w�1 w�1

w w w . . . w w w:
ð14Þ

The algorithm which generates all graphs of Gw starts with the
graph (13). Then iteratively repeats the following loop which in
each run generates the next graph.

Step 1: Find the first element from the end of the second row
that can be increased, i.e. that is less than the corresponding value
in (14).

Step 2: If it exists then increase it by one to v1. Fill the rest of
the row by the greater of two values: v1 and a1+1, where a1 is the
value in the first row above the filled one.

Step 3: If it does not exist then find the first element from the
end of the first row, which can be increased.

Step 4: If it exists then increase it by one to v2. Fill the rest of
the row by v2.

Step 5: If it does not exist then stop else go to Step 1.
This algorithm guarantees that no relevant graph/invariant is

omitted. However, it generates some invariants which are
dependent and should be removed afterwards. The next section
presents a method of identifying such invariants.

4. Independence of the AMI’s

The above construction algorithm does not guarantee that
there are no dependent invariants in the generated set. Actually,
the number of dependent invariants may be much higher than
that of the independent ones. The dependent invariants do not
increase the discrimination power of the recognition system at all
while increasing the dimensionality of the problem, which leads
to growth of the complexity and even to misclassifications. Using
dependent features in recognition tasks is a serious mistake. Thus,
identifying and discarding dependent invariants is highly desir-
able.

4.1. The number of independent invariants

Before we proceed to the selection of independent invariants,
it is worth analyzing how many invariants may exist. An intuitive
rule suggests that the number n of independent invariants created
from m independent measurements (i.e. moments in our case) is

n¼m�p, ð15Þ

where p is the number of independent constraints that must be
satisfied (see, e.g., Ref. [1]). This is true but the number of
independent constraints is often hard to determine. The depen-
dencies both in constraints and in measurements may be hidden.
It may be hard to identify those measurements and constraints
that are actually independent and those that are not.

In most cases we estimate p as the number of transformation
parameters. This works perfectly in the case of rotation but for
affine transform this estimate is not true in general. An affine
transform has six parameters, so we would not expect any
second-order affine invariant (6 moments�6 parameters¼0).
However, in the previous section we proved the existence of the
second-order invariant I1. On the other hand, for invariants up to
the third order we have 10 moments�6 parameters¼4, which is
actually the correct number of independent invariants. The same
estimation works well for the fourth order (15�6¼9 invariants)
and for all higher orders where the actual number of independent
invariants is known. It is a common belief (although not exactly
proven) that the order r¼2 is the only exception to this rule.

A detailed analysis of the number of independent AMIs
regarding their weights, degrees and structures can be found in

[18]. It is based on classic results of the theory of algebraic
invariants, particularly on the Cayley–Sylvester theorem [9,11].

4.2. Possible dependencies among the AMIs

There might be various kinds of dependency in the set of all
AMIs (i.e. in the set Gw of all graphs). Let us categorize them into
five groups and explain how they can be eliminated.

1. Zero invariants: Some AMIs may be identically zero regardless
of the image on which they are calculated. If there are one or
more nodes with one incident edge only, then all terms of the
invariants contain first-order moment(s). When using central
moments, they are zero by definition and, consequently, such
an invariant is zero, too. However, some other graphs may also
generate zero invariants due to the terms cancellation, for
instance the graph in Fig. 3 leads to

Iðf Þ ¼

Z 1
�1

� � �

Z 1
�1

ðx1y2�x2y1Þ
3f ðx1,y1Þf ðx2,y2Þdx1 dy1 dx2 dy2

¼m30m03�3m21m21þ3m21m21�m30m03 ¼ 0: ð16Þ

2. Identical invariants: All isomorphic graphs (and also some non-
isomorphic ones) generate identical invariants. Elimination
can be done by comparing the invariants termwise.

3. Products: Some invariants may be products of other invariants.
4. Linear combinations: Some invariants may be linear combina-

tions of other invariants.
5. Polynomial dependencies: If there exists a finite sum of products

of invariants (including their integer powers) that equals zero,
the invariants involved are polynomially dependent.

The invariants suffering from the dependencies 1–4 are called
reducible invariants. After eliminating all of them, we obtain a set
of so called irreducible invariants. However, irreducibility does not
mean independence, as we will see later. In the following two
sections we show how to detect reducible and polynomially
dependent invariants.

4.3. Removing reducible invariants

The dependencies 1 and 2 are trivial and easy to find. To
remove the products (type 3), we perform an incremental
exhaustive search. All possible pairs of the admissible invariants
(the sum of their individual weights must not exceed w) are
multiplied and the independence of the result is checked.

To remove the dependencies of the type 4 (linear combina-
tions), all possible linear combinations of the admissible invar-
iants (the invariants must have the same structure) are
considered and their independence is checked. The algorithm
should not miss any possible combination and can be implemen-
ted as follows.

Since only invariants of the same structure can be linearly
dependent, we sort the invariants (including all products)
according to the structure first. For each group of the same
structure we construct a matrix of coefficients of all invariants.
The ‘‘coefficient’’ here means the multiplicative constant of each
term; if the invariant does not contain all possible terms, the
corresponding coefficients are zero. Thanks to this, all coefficient
vectors are of the same length and we can actually arrange them
into a matrix. If this matrix has a full rank, all invariants are

Fig. 3. The graph leading to the zero invariant (16).
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linearly independent. To calculate the rank of the matrix, we use
singular value decomposition (SVD). The rank of the matrix is
given by the number of non-zero singular values and equals the
number of linearly independent invariants of the given structure.
Each zero singular value corresponds to a linearly dependent
invariant that should be removed.

At the end of the above procedure we obtain a set of all
irreducible invariants up to the given weight or order. However, it
is of exponential complexity and thus is a very expensive
procedure even for low weights. On the other hand, this
procedure is run only once. As soon as the invariants are known
in explicit forms they can be used in future experiments without
repeating the derivation.

Table 1 presents the number of invariants found by the above
method for wr12. From left to right, the table shows the weight,
the total number of all generated graphs, the number of zero
invariants eliminated afterwards, the number of invariants which
are identical to some others, the number of invariants which are
products of some others, the number of invariants which are
linear combinations of some others or linear combinations of
products, the number of irreducible invariants, and the number of
independent invariants, respectively. Each row shows cumulative
values for all weights less or equal w. Note that the number
of independent invariants is much lower than the number of
invariants originally generated. This illustrates a crucial role of the
elimination algorithm.

A few examples of irreducible invariants which will be further
used in experiments are shown in Appendix. A full set of 1589
irreducible invariants of wr12 can be found in [19], the
accompanying web pages of [13].

4.4. Removing polynomial dependencies

Polynomial dependencies among irreducible invariants pose a
serious problem because the dependent invariants cannot be
easily identified and removed. Unfortunately we cannot ignore
them. Out of 1589 irreducible invariants of the weight of 12 and
less, only 85 invariants at most can be independent, which means
that at least 1504 of them must be polynomially dependent. An
algorithm for a complete removal of dependent invariants is
known in principle, we can use the algorithms for elimination of
products and linearly dependent invariants with higher weight
limit.

Let us suppose we have generated some set of invariants with
a weight limit wg. If we want to eliminate linearly dependent
invariants only, then it is sufficient to compute all products of all
pairs of invariants up to the weight wg. If we want also to
eliminate polynomially dependent invariants, we must continue
the multiplication up to some weight limit wp4wg (ideally

wpbwg). As the result, all invariants with weight w4wg will be
products of some others. Now we can use the algorithm for
elimination of the linearly dependent invariants with the weight
limit wp again. If we find some product that is linearly dependent
at the same time, we have found a polynomial dependency among
the invariants.

Many dependencies were discovered by this method. For
instance, among the invariants listed in Appendix, there are two
polynomial dependencies

�4I3
1I2

2þ12I2
1I2I2

3�12I1I4
3�I2I2

4þ4I3
3I4�I2

5 ¼ 0, ð17Þ

and

�16I3
1I2

7�8I2
1I6I7I8�I1I2

6I2
8þ4I1I6I2

9þ12I1I7I8I9þ I6I2
8I9�I7I3

8�4I3
9�I2

10 ¼ 0:

ð18Þ

This proves that the invariant I5 is dependent on {I1,I2,I3,I4} and I10

is dependent on {I1,I6,I7,I8,I9}. To obtain a complete and indepen-
dent set of AMIs up to the fourth order, I5 and I10 are omitted and
I19 is added to {I1, I2, I3, I4, I6, I7, I8, I9}.

This algorithm has two principal drawbacks. It performs in fact
an exhaustive search (with certain constraints) which is very
expensive even for small w. Moreover, we can easily get beyond
the capacity of our computer. The other drawback is caused by
higher-order dependencies. In the previous case of linear
dependencies, an invariant that has been proven to be a linear
combination of other invariants was simply omitted. This cannot
be done in the case of polynomial dependencies because the
identified dependencies among invariants may not be indepen-
dent. Let us illustrate this in a hypothetical example. Assume Ia, Ib,
Ic and Id to be irreducible invariants with the three dependencies:

S1 : I2
a�IcI2

d ¼ 0,

S2 : I2
bþ IcId ¼ 0,

S3 : I4
bþ2I2

b IcIdþ I2
a Ic ¼ 0:

If we claimed three invariants to be dependent and we omitted
them, it would be a mistake because the third dependency is a
combination of the first and the second one

IcS1þS2
2�S3 ¼ 0

and does not bring any new information. Among these four
invariants, only two of them are dependent and two are
independent. This is an example of a second-order dependency,
i.e. ‘‘dependency among dependencies’’, while S1, S2, and S3 are
first-order dependencies. The second-order dependencies may be
of the same kind as the first-order dependencies–identities,
products, linear combinations and polynomials. They can be
found in the same way; the algorithm from the previous section
requires only minor modifications.

This consideration can be further extended and we can define
kth order dependencies. The number n of independent invariants
is then

n¼ n0�n1þn2�n3þ � � � , ð19Þ

where n0 is the number of irreducible invariants, n1 is the number
of first-order dependencies, n2 is the number of second-order
dependencies, etc. If we consider only the invariants of a certain
finite order, this chain is always finite (the proof of finiteness for
algebraic invariants originates from Hilbert (a reference is in [11],
the proof for moment invariants is essentially the same).

Table 1
The numbers of invariants with various types of dependency up to the given

weight.

Weight Graphs Zero Ident. Prod. Linear Irr. Ind.

2 1 0 0 0 0 1 1

3 6 5 0 0 0 1 1

4 40 31 4 1 0 4 4

5 300 287 7 1 0 5 5

6 2475 2344 105 5 3 18 17

7 22 022 21 632 345 6 8 31 25

8 208 208 205 544 2495 32 60 77 33

9 2 068 560 2 057 804 10 358 54 184 160 44

10 21 414 900 21 352 373 61 008 227 930 362 55

11 229 523 800 229 236 771 282 474 526 3287 742 66

12 2 533 942 752 2 532 349 394 1 575 126 2105 14 538 1589 80

T. Suk, J. Flusser / Pattern Recognition 44 (2011) 2047–2056 2051
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5. Numerical experiments

In this paper, we do not repeat ‘‘traditional’’ numerical
experiments with the AMIs which show (usually on simulated
data) that the AMIs are actually invariant with respect to affine
transform and also study their robustness to additive noise and to
small non-linear perturbations. Such experiments were carried
out in earlier publications (see [5,16] for instance) and their
results are of course valid also for the AMIs presented in this
paper. Here, we demonstrate two phenomena. In the first
experiment we illustrate the importance of using independent
set for object recognition. The second experiment clarifies the
difference between ‘‘true’’ invariants and pseudoinvariants. Both
experiments are carried out on real photographs taken by the
camera Canon PowerShot S30. Geometric distortions of the
objects were introduced solely by projecting 3D world onto a
2D photograph; no computer-generated distortions were applied.

5.1. Recognition of the scrabble tiles

In this experiment we tested the AMIs’ ability to recognize
letters on the scrabble tiles1 First, we photographed all letters side
by side from an almost perpendicular view (see Fig. 4). They were
automatically segmented and separately binarized (mostly by
means of tools available in MATLAB Image Processing Toolbox
2.0). The threshold for conversion to binary images was found by
Otsu’s method (function ‘‘graythresh’’ in MATLAB), then
individual objects were found and labeled. The objects larger
than 20 000 pixels (parts of the background) and smaller than
1000 pixels (shadows) were removed. Similarly, holes less than 10
pixels (dust) in the objects were removed. The result is a ‘‘gallery’’
of 21 binary letters that served as our template set.

Then we placed the tiles almost randomly on the table, we
only ensured that no tiles are upside down and that all letters are
completely visible. We took 9 photographs of such scene variously
rotated (see Fig. 5 for one of them). On each photograph, the
letters were automatically located and segmented by the same
method as in case of the template set. We classified all the 168
letters by minimum distance with respect to the templates in the
space of invariants I1, I2, I3, I4, I5, I6, I7, I8, I9, I10, I19, I47, I48, I49, I50,
I64 and I65 (see Fig. 6 for a 2D subspace of I2 and I6). There were
nine misclassifications. However, as shown in the previous
section, the AMIs I5 and I10 are dependent. We omitted them
and run the classification again. Now the number of
misclassifications decreased to 5. Finally, for a comparison, we
omitted from the initial set two independent invariants I64 and
I65. We received 16 misclassifications which is much worse than
before.

This clearly illustrates that dependent features do not
contribute to the inter-class discriminability and may even
decrease the performance of the classifier. Thanks to the
algorithm introduced in Section 4.4, one can identify the
dependent AMIs on theoretical basis before they are applied to
particular data and create a powerful independent set of
invariants.

5.2. Assembling the baby puzzles

This experiment tries to automatically ‘‘assemble’’ a set of baby
puzzles. Unlike traditional mosaic puzzles, solving baby puzzles
means identifying a piece and putting it into a proper hole in the
base board. Each piece can be unambiguously identified by its

shape or by the picture on it. The babies usually combine these
two cues together but here we discarded the pictorial information
at all and worked with the shape only.

The aim of this experiment is to demonstrate how important
is to know which AMIs are true invariants and which are
pseudoinvariants. When generating the AMIs as described in
Section 3, we know exactly the weight w of the invariant. Eq. (8)
implies that the AMIs with odd weights are pseudoinvariants.

Fig. 4. Scrabble tiles—the templates.

Fig. 5. Scrabble tiles to be recognized—a sample scene.
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Fig. 6. The space of invariants I2 and I6. Even in two dimensions the clustering

tendency is evident. Legend: � A,� B, � C, + D, n E, & H, B I, X J, W K, v L, x

M, $ N, $ O, � P, � R, � S, + T, n U, & V, B Y, $ Z.

1 We used the tiles from the Scrabble Upwords by Hasbro, see www.hasbro.

com for details.
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They change the sign if the affine transform contains mirror
reflection, i.e. if its Jacobian is negative.

The setting of the experiment is quite simple (see Fig. 7). First,
we segmented the holes in the base board. Then we segmented
the tiles from the background by region growing, binarized them
and tried to find the corresponding hole for each tile. We solved
this task twice—by means of true invariants I2, I6, and I47 and by
pseudoinvariants I5, I10, and I64. In both cases, we successfully
placed all the tiles.

Then we turned all six tiles upside down, photographed them
and run the experiment again. The true invariants still recognized
the shapes correctly, while the pseudoinvariants were not able to
identify any tile. This result is in a good accordance with the
theory because turning upside down can be mathematically
described by mirroring. Since all shapes in the puzzle are
asymmetric, mirroring actually changes the values of all pseu-
doinvariants, which are no longer invariant and cannot be used
for tile recognition. The situation is illustrated by a look at the
feature space. While in the space of true invariants I2 and I6, each
hole and the corresponding tiles create a compact cluster
(see Fig. 8), in the space of pseudoinvariants I5 and I10, the tile
laid face down is far from the hole and the tile laid face up
(see Fig. 9).

However, from this experiment we cannot draw a conclusion
that pseudoinvariants should be always excluded from the set of
the AMIs. The decision whether or not to use them depends on the
particular application. If the assumed shape transforms (i.e. intra-
class variability) may contain mirror reflection like in our puzzle
experiment, only true invariants and magnitudes of pseudoinvar-
iants should be used. On the other hand, if we consider mirrored
shapes as different classes then only pseudoinvariants provide
desirable discrimination power.

6. Conclusion

We presented a general method how to automatically generate
the AMI’s of any weights and orders. The method is based on
representation of the AMI’s by graphs. We developed an algorithm
for eliminating all reducible invariants and we also discussed how
to identify polynomial dependencies among irreducible invar-
iants. The possibility of identifying and eliminating dependent
invariants is a major contribution of the paper.

We demonstrated by experiments how important is to choose
proper invariants. It should be emphasized that the choice of
invariants was discussed here solely from the point of view of their
theoretical properties (independence, invariance to mirroring, etc.)
which are independent of the data set. In practice, the next step
after the theoretical analysis should be adaptation of the invariants
to the given training sets. This can be accomplished by standard
feature-selection algorithms which either maximize Mahalanobis or

Fig. 7. The base board with six holes and the corresponding puzzle tiles from the

baby puzzle experiment.
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Fig. 8. The feature space of true invariants I2 and I6. The black symbols denote the

holes in the base board, the green (lighter gray) symbols denote the puzzle tiles

and the red (darker gray) symbols denote the tiles turned upside down. Legend: �

hedgehog, � stork, � hare, + mouse, * mole, & frog. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of

this article.)
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Fig. 9. The feature space of pseudoinvariants I5 and I10. The black symbols denote

the holes in the base board, the green (lighter gray) symbols denote the puzzle

tiles and the red (darker gray) symbols denote the tiles turned upside down.

Legend: � hedgehog,� stork, � hare, + mouse, * mole, & frog. (For interpretation

of the references to color in this figure legend, the reader is referred to the web

version of this article.)
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another distance measure between the classes or directly optimize
the success rate of a particular classifier. However, such selection is
always data-dependent and cannot be generalized to other data
sets. For instance, if the classes consisted of axi-symmetric objects,
the selection algorithm would discard all pseudoinvariants because
their recognition ability would be zero, which might be completely
incorrect in another case.

Acknowledgment

This work has been supported by the Grant no. 102/08/1593 of
the Czech Science Foundation.

Appendix

Here we present the irreducible invariants which were used in
the experiments in explicit forms along with their weights,
structures, and generating graphs
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