
THE LD-RLS ALGORITHMWITH DIRECTIONAL FORGETTING IMPLEMENTED ON A
VECTOR-LIKE HARDWARE ACCELERATOR

Roman Bartosinski

Department of Signal Processing
Institute of Information Theory and Automation, UTIA AV CR

Pod Vodárenskou věžı́ 4, Praha 8, Czech Republic

ABSTRACT
The paper discusses an RLS algorithm based on the LDU de-
composition (LD-RLS) with directional forgetting implemen-
ted on an embedded system with a vector-oriented hardware
accelerator. The LD-RLS algorithm can be attractive for con-
trol applications to identify an unknown system or to track
time-varying parameters. A solution of the LD-RLS algori-
thm directly contains the estimated parameters. It also offers
a possibility to use a priori information about the identified
system and its parameters. The implementation of the LD-
RLS algorithm is done on an FPGA-based accelerator from a
high-level abstraction. It is compared with an implementation
of the same algorithm in software on the same platform.

Index Terms— FPGA, RLS, LDU decomposition, di-
rectional forgetting, hardware accelerator

1. INTRODUCTION

Today’s implementations of adaptive algorithms for embed-
ded systems use mainly the least mean square (LMS) algori-
thms for their simplicity and low computational complexity
which result in high speed and throughput. But a better algo-
rithm based on method of least squares is necessary in many
applications. Mainly the recursive least squares (RLS) me-
thod with exponential forgetting (EF) is used in such cases.
The RLS algorithm can be implemented in many ways. In
cases when the extended information matrix Vk is numeri-
cally ill-conditioned (nearly singular), we must use a compu-
tation which numerically ensures positive semi-definiteness
of V(k) for all k. Otherwise the entire identification can nu-
merically collapse. This problem has been solved with radical
algorithms which use suitable decompositions of the inver-
sion of the matrix V(k). Algorithms that use QR, Cholesky,
LDU and UDL decompositions are examples of such algori-
thms.
The main drawback of the EF method is called wind-up, and
it comes when a data vector is not persistently exciting, i.e.

This work was partially supported by the ARTEMIS JU and Ministry
of Education, Youth and Sports of the Czech Republic under the project
SMECY Artemis JU 100230, MSMT 7H10001.

when it does not carry sufficient information. The old data is
discounted continuously, but only a part of the old data can
be replaced by new data. As a consequence, some eigenva-
lues of the covariance matrix will tend to be zero, and the
Kalman gain will tend to be unbounded. In that case the algo-
rithm is very sensitive to noise, and thus the estimation may
be completely unreliable. One of the methods to avoid the EF
windup is directional forgetting DF which is attractive for its
potential performance and algorithmic simplicity. The disa-
dvantage of the DF technique is its higher data dependence
compared to EF. In DF algorithms, the data is considered to
have directions, and the old data is exponentially forgotten
only in specific directions. The mathematical background of
the DF LD-RLS is in Section 2.1
The algorithm has been implemented on a floating point vec-
tor processing accelerator [1], [2]. A concept of the platform
used is based on floating point computing units and a data
flow unit which is controlled by a microcontroller configured
by a host CPU. The platform is described in more detail in
Section 2.2.

Related work. The method of directional forgetting is also
called restricted exponential forgetting, and it is described
in [3]. [4] and [3] propose a DF algorithm based on the Ba-
yesian estimation approach. The RLS with UDL factorization
of the covariancematrix (UD-RLS) were used besides the QR
factorization for example in [5], where the authors proposed
two architectures for UD-RLS with DF based on systolic ar-
chitectures withO(n) andO(n2) processing elements. Many
works on FPGA-based implementations of LMS and QR RLS
algorithms have been published, but to my best knowledge
there hasn’t been any work about FPGA-based implemen-
tation of the LD-RLS algorithm or directional forgetting.
A similar accelerator with a different structure of data paths
and accesses to data memories is described in [6].

2. BACKGROUND

This section contains relevant background on the RLS algori-
thm based on the LDU decomposition (LD-RLS) with directi-

1657978-1-4577-0539-7/11/$26.00 ©2011 IEEE ICASSP 2011

onal forgetting (DF) and overview of the hardware platform
used for implementation.

2.1. The LD-RLS algorithm with directional forgetting

In the following text we will suppose that a system is modeled
by the ARMA process which has defined output as a function
of its inputs, past outputs and unmeasurable white error.

y(k) = −

na∑
i=1

aiy(k − i) +

nb∑
i=0

biu(k − i) + es(k), (1)

which can be written as a product of vectors of model para-
metersΘ(k) and a data regressor z(k)

y(k) = ΘT (k)z(k) + es(k),

ΘT (k) = [a1, a2, ..., ana, b0, b1, ..., bnb],

zT (k) = [−y(k − 1),−y(k − 2), ...,−y(k − na),
u(k), u(k − 1), ..., u(k − nb)].

(2)

In this work, we use square-root factorization of the corre-
lation matrix C = V −1 based on the LDU decomposition
of the form C = LDU , where D is a diagonal matrix, L
is a lower triangular matrix with unit diagonal elements, and
U = L′ ([7], [8]). The computation of roots is not necessary
in this method. Another advantage of the LD-RLS algorithm
is that the estimated parameters Θ̂ are directly included in the
solution of the decomposition. It allows to use a priori infor-
mation about the identified system and its parameters.
In this algorithm, the forgetting factor is set according to the
information in the input data. DF is more robust than EF for
systems with insufficiently excited inputs, but it brings high
data dependence, and therefore the method is not used so of-
ten. The informationmatrix Vz(k), covariancematrixC(k) =
V −1

z (k) and parameter estimation Θ̂(k) evolve according to
the incoming information as shown in the following equati-
ons (3).

‖ζ(k − 1)‖ > 0

Vz(k) = Vz(k − 1) +

(
λ(k) −

1 − λ(k)

ζ(k − 1)

)
z(k)zT (k),

C(k) = C(k − 1) −
C(k − 1)z(k)zT (k)C(k − 1)

ε−1(k − 1) + ζ(k − 1)
,

Θ̂(k) = Θ̂(k − 1) +
C(k − 1)z(k)

1 + ζ(k − 1)
ê(k),

(3)

‖ζ(k − 1)‖ = 0
Vz(k) = Vz(k − 1).

C(k) = C(k − 1),

Θ̂(k) = Θ̂(k − 1),

where
ζ(k − 1) = zT (k)C(k − 1)z(k),

ε(k − 1) = λ(k) −
1 − λ(k)

ζ(k − 1)
,

ê(k) = y − Θ̂T (k − 1)z(k)

For recursive algorithms direct updating of variables is im-
portant. In this part we present equations for updating the DF
LD-RLS algorithms which are used in implementations in the
next chapter. A vectorized form of the directly updated DF
LD-RLS algorithm used in the implementation is shown in
equations (4) and (5). The algorithm has two updating ways
according to the excitation of input data (h2(k) = ζ(k)). If
the input data are sufficiently excited (h2(k) > 0), the matri-
ces L and D are updated

Li,j(k) = Li,j(k − 1) −
fj(k)g

(j+1)
i (k)

αj(k) + hj+1(k)

D̄i(k) = Di(k − 1)
αi(k) + hi+1(k)

αi(k) + hi(k)

D1(k) =
D̄1(k)

λ
, Di(k) = D̄i(k) ∀i ∈ (2..n)

(4)

where
f(k) = L(k − 1)d(k)
gi(k) = Di(k − 1)fi(k)

hi(k) =
n∑

l=i

fl(k)gl(k), hn+1(k) = 0;

g
(m)
i (k) = gm+1

i (k) + Dm(k − 1)Li,m(k − 1)fm(k)
α1(k) = 1, αi(k) = ψ(k) ∀i ∈ (2..n)

ψ(k) =
h2(k)

h2(k)(λ + 1) − 1

If the input data aren’t sufficiently excited (h2(k) → 0), only
the first element of the diagonal matrixD is updated.

D1(k) =
D1(k − 1)

λ(1 + h1(k) − h2(k))
(5)

2.2. UTIA EdkDSP platform

The UTIA EdkDSP Platform [1], [2] has been used to im-
plement the DF LD-RLS algorithm. The UTIA EdkDSP
platform is a generic concept of a flexible, reprogrammable
and reconfigurable hardware accelerator. The domain of use
depends on the configuration of the platform.The platform
is intended as a hardware accelerator for a general-purpose
processor in a system-on-chip.
The basic implementation of the UTIA EdkDSP platform
with pipelined floating-point (FP) operations such as ad-
dition, multiplication and division is denoted as the Basic
Computing Element (BCE).
Figure 1 depicts the BCE which consists of basic pipelined
floating-point operations, a data-flow unit (DFU), dual-ported

1658

Fig. 1. BCE from the point of view of the host CPU.

data memories which can be connected to a host system for
direct data exchange, a simple micro-controller (SCPU) and
memories with firmware for the micro-controller. The DFU
provides data paths between the data memories and the basic
FP operations. The platform can be configured with more
DFU and FP units which can operate in a single instruction
multiple data (SIMD) computing mode. The current DFU
configuration is controlled by a control word generated in the
SCPU according to its firmware. The firmware for the SCPU
can be prepared in the host CPU, and it allows to perform the
entire required algorithm as one sequence of FP operations.
The concept of the platform is also suitable for building an
array of hardware accelerators running in parallel where the
dual-ported data memories can be used for direct intercon-
nection between the accelerators.
Algorithms can be implemented on several levels: an algori-
thm implemented purely in software on a host CPU, algorithm
implemented in the host CPU software with FP operations
performed by BCE, the entire algorithm in the SCPU firm-
ware, and the entire algorithm in hardware as a hard-wired
data path in the DFU or a new built-in FP operation.

3. IMPLEMENTATION AND EXPERIMENTAL
RESULTS

The DF LD-RLS algorithm has been implemented as a SCPU
firmware with basic FP functions in hardware. The firmware
with the algorithm has been automatically generated from a
Matlab code which describes the algorithm, the set of basic
operations and the configuration of data memories in the ac-
celerator. Then our tool maps all variables to data memories
and generates the firmware code. The concept of implemen-
ting the algorithm in firmware, i.e. on a higher level of abs-
traction, makes the implementation simpler, and it increases
the productivity of development against an implementation
hard-wired in hardware. Experiments with the BCE platform
show that implementations in firmware can reach the same
performance as implementations in hardware.

3.1. Used hardware

All the results presented in this section have been obtained
from an implementation in the Xilinx ’Embedded Develop-

ment HW/SW Kit - Spartan-3A DSP S3D1800AMicroBlaze
Processor Edition’ with Xilinx FPGA XC3SD1800A.
The BCE accelerators have been implemented with the sin-
gle precision FP computing units ADD, MULT, DIV and a
FP CMP unit for comparing data and branching the algorithm
in the SCPU firmware. The accelerator in this configuration
provides vector FP operations shown in Table 1.

Operation latency[ClC] Description
VCOPY 0 Zi = Ai

VADD 3 Zi = Ai + Bi

VSUB 3 Zi = Ai − Bi

VMULT 4 Zi = Ai ∗ Bi

DPROD ≥ 3 Z0 =
∑

i(Ai ∗ Bi)
VMAC 8 Zi = Zi + Ai ∗ Bi

DIV 16 Zi = Ai/Bi

CMP 2 Zi = 1 if(Ai = Bi)
Zi = 0 otherwise

Table 1. Used BCE FP operations (ClC=Clock Cycles)

The basic FP operations have been generated in the Xilinx
CORE Generator. Their latencies and numbers of used DSP
blocks have been selected to maximize the estimated maximal
clock frequency of the accelerator, hence the implementation
doesn’t use DSP blocks as shown in Table 2.

Resource BCE accelerator MicroBlaze SoC
Occupied Slices 2848 8442
Slice Flip Flops 2483 7119
4 input LUTs 4837 11115
Block RAMs 10 34
DSP48 0 8

Table 2. The occupied FPGA resources for the used accelera-
tor and remaining SoC(with HW FPU)

The accelerator also contains three data memories, each for
1024 single precision FP values. The Xilinx KCPSM3 has
been used as the SCPU. The maximal clock frequency of the
BCE accelerator in this implementation is 69.7 MHz. The en-
tire system was run on 62.5 MHz for all experiments. The
amount of resources required by the accelerator is shown in
Table 2. The values are for a standalone BCE accelerator with
single-precision FP operations as a peripheral core directly
connected to a SoC with MicroBlaze as the host CPU.

3.2. Results

Figure 2 shows the performance of the implementation in the
BCE accelerator and in software on the host CPU with the
hardware FP co-processor. The times are measured include
data transfers from the CPU to the accelerator before the com-
putation and reading the data from the accelerator by the host

1659

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

Order [−]

P
er

fo
rm

ac
e

[M
FL

O
P

S
]

Performace of DF LD−RLS (FP32M24)

DF LD−RLS in BCE accel.
DF LD−RLS in SW with FPU

Fig. 2. Accelerator performance for the DF LD-RLS algori-
thm

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

Order [−]

S
pe

ed
−U

p
[−

]

Speed−Up of Computation of the DF LD−RLS

Fig. 3. Accelerator speed-up for the DF LD-RLS algorithm

CPU after the computation. The figure also shows that the al-
gorithm with an order (the number of estimated parameters)
less than 2 is inefficient, because the computed vectors are too
short. Figure 3 shows the speed-up of the computation perfor-
med by the hardware accelerator against the computation in
software with the FP co-processor (FPU).
The figures show that the speed-up grows with a higher order
of the algorithm; this is because the accelerator uses longer
vectors in operations. For the computation in software wi-
thout FPU the speed-up is about hundred times better than
with FPU. The speed-up isn’t higher because the directional
forgetting adds additional data dependences to the algorithm,
and therefore it cannot be parallelized in a better way.

4. CONCLUSION

In this paper, we have explored and described a hardware im-
plementation of the RLS algorithm based on the LDU decom-

position with directional forgetting. The implementation has
been based on a hardware accelerator for vector processing.
The LD-RLS algorithm is interesting for control applications
to identify an unknown system or to track time-varying pa-
rameters. The solution directly contains the estimated para-
meters, and their uncertainties can be evaluated in a simple
way. The next advantage is the possibility to use a priori infor-
mation about the identified system and its parameters. From
the point of view of the implementation this algorithm has the
advantage that it doesn’t need to compute the roots. The disa-
dvantage of the LD-RLS algorithm is its higher computational
complexity compared to LMS and more complicated data de-
pendences in the algorithm. The complexity of the LD-RLS
with directional forgetting is O(n) = 3n2 + 6n + 2 FLOPs,
where n is the number of parameters.

5. REFERENCES

[1] J. Kadlec, R. Bartosinski, and M. Daněk, “Accelerating
Microblaze Floating Point Operations,” in Proceedings
2007 International Conference on Field Programmable
Logic and Applications (FPL), 2007.

[2] Martin Daněk, Jiřı́ Kadlec, Roman Bartosinski, and
Lukáš Kohout, “Increasing the Level of Abstraction in
FPGA-based Designs,” in Proceedings 2008 Internatio-
nal Conference on Field Programmable Logic and Appli-
cations (FPL), 2008.

[3] R. Kulhavý, “Restricted exponential forgetting in real-
time identification,” Automatica, vol. 23, no. 5, pp. 589 –
600, 1987.

[4] R. Kulhavý and M. Kárný, “Tracking of slowly varying
parametrs by directional forgetting,” in Proceedings 9th
IFAC World Congress, 1984, vol. 10, pp. 78–83.

[5] L. Chisci and E. Mosca, “Parallel architectures for RLS
with directional forgetting,” International Journal of
Adaptive Control and Signal Processing, vol. 1, no. 1, pp.
69 – 88, 1987.

[6] Jason Yu, Christopher Eagleston, Christopher Han-Yu
Chou,Maxime Perreault, and Guy Lemieux, “Vector Pro-
cessing as a Soft Processor Accelerator,” ACM Trans. Re-
configurable Technol. Syst., vol. 2, pp. 12:1–12:34, June
2009.

[7] V. Peterka et al., “Algorithms for adaptivemicroprocessor
regulation of technological processes (in czech),” Tech.
Rep., UTIA CSAV, Praha, CZ, 1982.

[8] John G. Proakis, Chrysostomos L. Nikias, CharlesM. Ra-
der, Fuyun Ling, Marc Moonen, and Ian K. Proudler, Al-
gorithms for Statistical Signal Processing, Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2001.

1660

