Hardware Support for Fine-Grain
Multi-Threading in LEON?3

M. Danék, L. Kafka, L. Kohout, J. Sykora
UTIA AV CR, v.v.i., Signal Processing, Pod Vodarenskou vézi 4, Praha 8, 182 08, Czech Republic

Abstract— The article describes instruction set extensions
for a variant of multi-threading called micro-threading
for the LEON3 SPARCvV8 processor. An architecture of
the developed processor ispresented and its key blocks
described - cache controller, register file, thread scheduler.
The processor has been implemented in a Xilinx Virtex2Pro
and Virtex5 FPGAs. The extensions are evaluated in terms of
extra resources needed, and the overall performance of the
developed processor is shown for a simple DSP computation
typical for embedded systems.

I. INTRODUCTION

Current processors have reached their maximum operating
frequency, and performance improvements must be sought
in better organization of the computation. One area for
improvements is the tolerance of latency of data caused
e.g. by a memory or I/O access, which is usually handled
by context switching and executing computation threads
that have data available in processors that support multi-
threading.

As the silicon area becomes cheaper as a consequence
of the Moore’s law, it has become viable to extend
processors to support in hardware execution of multiple
threads on one processor or in a multiprocessor clus-
ter. Two significant examples are the SUN Microsys-
tems OpenSPARC T1/T2 and the MIPS MT processors.
OpenSPARC T1/T2 is an open-source version of the Ul-
traSPARC T1/T2 [1], [2]; T1 has been ported to the Xilinx
FPGAs, while MIPS MT [3] is a commercial processor
available as an ASIC. The architecture complexity of the
open-source OpenSPARC T1/T2 is too high for embedded
applications, which is due to their primary domain in
server and desktop computing. Also the context switch
time for T1/T2 is high, about 1000 clock cycles. We do
not know of any other multithreaded processor available
in source code to the design community.

To overcome this we have designed and imple-
mented instruction set extensions for the simpler LEON3
SPARCVS processor suitable for embedded applications.
This paper describes the architecture of the modified
LEONS3 [4] processor (which we call UTLEON3) and the
impact of the architectural improvements on the processor
performance.

The main reasons for this work were to provide a feed-

back to the microthreaded model of computation and on
current technology limitations so that the SW models and
assumptions could be modified on the theoretical model.
We were also interested in effects of the uT extensions on
area and frequency, the input assumption being small area
overhead and almost no impact on the clock frequency.
We also wanted to compare the micro-threaded architec-
ture with similar developments (OpenSPARC, MIPS MT)
As GRLIB inherently compatible with ASIC tool flow, the
path to ASIC implementation is open.

The paper is structured as follows: Section II describes
the extra machine instructions that implement micro-
threading in SPARC. Section III describes the architecture
of the key blocks that implement the micro-threaded
extensions. Section IV compares FPGA implementations
of the classical LEON3 and the new UTLEON3 in terms
of resource requirements. Section V evaluates the speedup
of a simple assembly program in a legacy version exe-
cuted on the classical LEON3 as well as the UTLEON3
processor, and a micro-threaded version executed on the
UTLEON3 processor. Section VI compares UTLEON3
with the OpenSPARC T1/T2 processor. Section VII con-
cludes the paper.

II. MICRO-THREADING

Micro-threading is a multi-threading variant that de-
creases the complexity of context management. The goal
of micro-threading is to tolerate long-latency operations
(LD/ST and multi-cycle operations such as floating-point)
and to synchronize computation on register access. For an
overview of multi-threading see [5].

In a simple case the context can be represented by the
program counter and by window pointers to the register
file. Micro-threading has been developed both on the
assembly and C levels. The basic conceptual unit is a
family of threads that share data and implement one
piece of a computation. In a simple view one family
corresponds to one for-loop in the classical C; in micro-
threading each iteration (each thread) of a hypothetical
for-loop (represented by a family of threads) is executed
independently according to data dependencies. A family
is synchronized on termination of all its threads. For more
details on micro-threading see [6], [7], [8].

A possible speedup generated by micro-threading
comes from the assumption that while one thread is
waiting for its input data, another thread has its input
data ready and can be scheduled in a few clock cycles
and executed. Another assumption is that load and store
operations themselves need not be blocking since the real
problem arises just when an operation accesses a register
that does not contain a valid data value. Finally, the thread
management logic is considered simple enough to fit in
the processor hardware reasonably well in the current
technologies.

Consider the following example.

1d [%rl+%r5], %r8
]

/* r8 := x[1] =/
1: umul %r4, %r8, %r8
/* r8 = A x x[1] */
st %$r8, [%r2+%r5]
/* z1[1] := r8 =*/
subcc %r5, 4, %rb5
bpos,a 1b

1d [%rl1+%r5], %r8
/+ delay slot =/

There are two principal sources of pipeline stalls in pro-
cessors without context switching: the first corresponds
to the memory access instructions (LD, ST) on dcache
miss; in this case the length of the stall is not fixed,
and depends on the latencies of the memory subsystem.
The second corresponds to the long-latency arithmetic
instruction (umul), which has a fixed latency of 4 clock
cycles.

To speed up the program, on the assumption we have
many threads ready for computation, we can eliminate
pipeline stalls by switching the context whenever we
detect any of these instructions. The code then may look
like this:

1d [%$rl1l+%r5], %r8 ; swch

/* r8 := x[1] =/
1: umul %r4, %r8, %r8 ; swch

/* r8 = A x x[1] =*/

st %r8, [%r2+%r5] ; swch
/* z1[1i] := r8 x/

subcc %r5, 4, %rb5

bpos,a 1b

1d [%rl1+%r5], %r8 ;
/+ delay slot =/

swch

In this code we have explicitly specified where the context
switch is to occur. The inefficiency of this approach is in
unnecessary context switching, e.g. when the LD or ST
instruction generates a cache hit (i.e. the required data

are available immediately). Therefore, we would like the
instruction pipeline to switch context autonomously and
only in the cases when it is necessary (e.g. dcache miss or
other unsatisfied data dependencies between instructions).
The code would then look the same as the previous code
without the switch instructions, and context switch will
eventualy occur when executing the umul or st instructions
as these require data in register %r8 that may not be ready
at the time of the (first) execution of each instruction.
As there are no data dependencies between subsequent
iterations of the loop, the loop can be unrolled and treated
as a set of independent computing threads that together
carry out the operation:

fl start:
1d [%$rl1+%r5], S%r
/x r8 = x[i] =/
umul %r4, %r8, %
/* r8 = A x x[1] =/
st %$r8, [%r2+%r5]
/x z1[1]

Notice that the loop control instructions have disappeared
as these are autonomously executed in hardware by the
thread scheduler. Before these threads can execute, the
scheduler must be initialized so that it knows how many
threads it should create and how registers are to be
allocated to the threads:

ut_main:

allocate %rl

/+ FID allocation =/
setstart %$rl, O
setlimit %rl, MAXLEN-1

/* family setup x/
setstep %rl, 1
setblock %$rl, BLOCKSIZE
set fl_start, %r3
setthread %rl, %r3
create %rl, %r2

/* family creation */

mov %r2, %r3
/* sync on termination x/

The hardware requirements of microthreading are: use
of a self-synchronizing register file (i-structures, [9]),
register states to be managed autonomously in the reg-
ister file, pipeline stalls prevented by context switch in
hardware, and thread status and context switch managed
autonomously in a hardware thread scheduler.

The micro-threading support on the machine level is
represented by the following instructions:

|
CPU pipeline | Thread
Ir_ltelger access | Mmanagement A-Cache -t > >
pipeline , and memory o
NPC T INST | access ‘ * g
FE T W
| y I w < s
' »| D-Cache :
PCINST) L™ o X <
| I-Cache
| RUC
W LD update I T T
|: RS 2xR 1 |
RA Register _ R/W Inputs, Completion value
ﬂle [W Completion value = o }
| B g |
w ! W Trap type value ! @
> - I =
LD/ST, RAU Reg allocirel _| Thread scheduler ! E
MA | : > d 8
Trap | = T
XC . > |
|
RD | PUSH CLEANUP !
wB | PC, NPC | | !
! I |
|
; A A i
|
-F>C I y Y | Hardware
UTLEON3 Family Thread i families
CPU table table !

Fig. 1.

Architecture of UTLEON3. Pipeline stages: FEtch, DEcode, Register Access, EXecute, Memory Access, eXCeption, WriteBack. RUC -

register update controller, RAU - register allocation unit, TIC - trap and interrupt controller.

o launch - switches the processor from the legacy
mode (user or protected) to the microthreaded mode.

« allocate - allocates a family table entry, needed to
create a family of threads.

o setxxxxx - fills in the allocated family table entry
with parameters required by the create instruction.

e create - creates (a family of) threads based on a
family table entry.

« .registers - a pseudoinstruction that specifies the
number of registers needed by a thread.

Furthermore, each 32-bit instruction word is extended
by another two bits that act as an instruction for thread
scheduling. Valid combinations are:

e cont - continue thread execution,

« swch - switch the context to another thread, e.g. on
memory load to prevent possible pipeline stall,

e« end - end thread execution, i.e. the thread ends at
this instruction.

The format of assembly instructions has been extended
by a field delimited by a semicolon that may contain
an explicit instruction for the scheduler. If the field is
missing, cont is assumed by default.

clr %r2
1d [%rl + %g0], %r3 ; swch
add %$r3, %g0, %r4 ; end

To keep the 32-bit organization of the memory system
in SPARCvVS 2-bit extensions for groups of 15 instructions
are grouped in one 32-bit instruction word that is located
at the beginning of each cache line. One cache line is

line idx

(S
N
w
~
o
o

7 8 9 10 11 12 13 14

o

2b ext
.registers

offset —{

instruction
instruction
instruction

|

|

| ~
| ~ 3130 2625 2120
|

|

161514 109 54 0

~=~-+ registers | | #LF | #SF | #GF [| #LR | #SR [#GR

A}
2b extensions

Fig. 2. Organization of the instruction cache. 16 words = 1 cache line

formed by 16 words. The first word of each cacheline is
skipped in the micro-threaded mode (explained later in
the text). The organization of one instruction cache line
is shown in Figure 2.

Micro-threading relies on the use of a self-
synchronizing register file based on i-structures [9]. To
implement the i-structures each register has to be extended
to contain the state of its value. A register can be

e empty - on power-on reset,

o pending - a memory load operation has been re-
quested and no thread has accessed the register since,

o waiting - a memory load operation has been re-
quested and a thread has accessed the register since,

o full - the register contains valid data.

In the micro-threading model a pending register can be
accessed by at most one thread - either by the thread
that initiated the pending data update, or by its direct

Legacy mode Microtheaded mode

legacy
code

Family 0
Thread 0

Family 1

0x100

allocate %L2

setthread %L2, 0x200

setxxx %L2, x I

create %L2

mov %L2, %R0
I

_______ ﬁ

Fig. 3. Program flow.

sibling (only unidirectional data dependencies between
direct sibling threads are allowed in micro-threading).

A sample program execution is shown in Figure 3.
The processor starts in the legacy mode on power-
on reset, then it switches to the microthreaded mode.
The parent thread gets synchronized with the children
threads by reading the register %2. On completion of all
microthreads the processor switches back to the legacy
mode.

III. UTLEON3 ARCHITECTURE

Figure 1 shows the architecture of UTLEON3, an ex-
tended LEON3 with ISE for micro-threading. We have
maintained full backward compatibility with LEON3. The
core is a 32-bit integer pipeline that executes all legacy
instructions. Thread management is implemented in a
thread scheduler, which can be seen as a simple 2-bit
processor. The instruction word of UTLEON3 is 34 bits
wide. All registers have been extended by 2 bits that
capture register states, each register is 34 bits long.

A family of threads can be executed either in software,
or in a hardware accelerator; this is managed transparently
by the thread scheduler without any influence on the
coding of the program to be executed. More details on
hardware families can be found in [10].

A. Cache Controllers

Load and store requests do not block the integer pipeline.
Requests are queued and executed when the correspond-

DCRAM
®
@
U3 D-Cache (—{ FIFO —| MEMCTL («— Memory
l I

Register file e—{ RUC
®
Scheduler

(O cache miss

(1) Load request

(2) Cache miss — cache line fetch request, update RUC structures

(3) Process the cache line fetch request

(45) Load the data from the memory and write them to the DCRAM
Indicate cache line fetch completion to the RUC

(2 Update pending/waiting registers, mark threads active

Cache hit
(12) Load request
(22) Cache hit - load the data from the DCRAM and

write them to the integer pipeline
Write the data to the register file

Fig. 4. Data cache hit/miss.

ing cache line fetch completes.

Memory accesses are decoupled from the integer
pipeline. The cache controllers are divided in two parts
connected through cache line fetch request FIFOs. The
pipeline side cache controllers store fetch requests in the
FIFOs. The memory side cache controllers process the
queued requests. On completion of an instruction cache
line fetch all threads waiting for the cache line are marked
as ready for execution in the scheduler (put in the active
queue). Cache lines that are used by threads are locked
to prevent their eviction and guarantee forward progress.

On completion of a data cache line fetch all registers
that have been waiting for the data in the cache line
are updated by the register update controller (RUC).
Data cache line fetch scenarios are shown in Figure 4.
Instruction cache line misses are handled in a similar
manner, more details can be found in [11].

B. Thread Scheduler

The thread scheduler manages the family and thread
tables, creates threads, switches context and cleans up
the tables on thread completion (see Figure 1). Dynamic
register allocation is performed on thread creation by the
register allocation unit (RAU). Family table and thread
table store information on threads being processed in the
processor. Context switch can be the result of an explicit
swch or end instruction, an instruction cache miss or it
can occur on reading a register not marked full. Threads
can be in one of six states; the state transition diagram is
shown in Figure 5.

IV. IMPLEMENTATION RESULTS

We have implemented and tested the designed architec-
ture in the Xilinx XUP-V2Pro development board with
the XC2VP30 FPGA and in XUP-V5 board with the

TABLE I
FPGA SYNTHESIS - DISTRIBUTION OF FPGA RESOURCES AMONG LEON3 MODULES

Resource type LEON3s | CACHE IU3 RF
Slice Flip Flops 1324 246 969 0
Total 6 input LUTSs 4804 1651 2805 8
used as logic 4765 1651 2766 8
used as shift registers 39 0 39 0
used as RAMs 0 0 0 0
BRAMs 36kb 7 5 0 1
TABLE II

FPGA SYNTHESIS - DISTRIBUTION OF FPGA RESOURCES AMONG UTLEON3 MODULES

Resource type UTLEON3s | UTCACHE UTIU3 UTRF FIT TT SCHED
Slice Flip Flops 4874 2123 1478 292 31 0 850
Total 6 input LUTSs 12413 6204 3809 604 58 8 1880
used as logic 12084 6176 3694 554 38 8 1778
used as shift registers 137 0 115 0 0 0 0
used as RAMs 192 28 0 50 20 0 94
BRAMs 36kb 29 13 0 1 7 7 1

thread finished

thread loaded
into pipeline

register not full

SWITCH &
{-cache HIT

register updated &
i-cache HIT

suspended

i-cache HIT

i-cache line

register updated & loaded

i-cache MISS

i-cache MISS

Fig. 5. Transitions between thread states.

XC5VLX110T FPGA. The following data are for the
implementation in Xilinx5.

Implementation results are shown in Table I for LEON3
and Table II for UTLEON3. The columns LEON3 and
UTLEON3 compare complete systems with a processor,
1kB ROM, 4kB RAM and UART. The remaining columns
show resource requirements of both legacy blocks (e.g.
CACHE) and the micro-threaded blocks (e.g. UTCACHE).
IU3 - integer pipeline, RF - register file, FTT - family
thread table, TT - thread table, SCHED - thread scheduler.

LEON3 was configured with 8 register windows, cache
associativity 1, cache set size 1kB, cache line size 8W
(maximal allowable value for LEON3), and with 136
registers (the standard RISC regfile size).

UTLEON3 was configured with 8 register windows,
cache associativity 1, cache set size 1kB, cache line size
16W, family table size 8 items, thread table size 64 items,
and with 256 registers.

In contrast to the original LEON3 core, the highest
number of resources were consumed by the cache subsys-
tem in the UTLEON3 core — about 50% of all resources
in terms of 6-intput LUTSs, 44% in terms of flip-flops and
45% in terms of block RAMs.

Both processor cores were implemented in FPGA on
Xilinx XUPVS5 board in order to verify correct function
of the cores and evaluate maximal clock frequency. The
maximal frequency was 110MHz in case of the original
LEONS3 core, and 33.3MHz in case of the new UTLEON3
core.

A. Running Programs in Hardware

The design is downloaded in the board using IMPACT
and operated using the Aeroflex-Gaisler GRMON tool.
Classical or microthreaded programs are compiled with
an extended version of the GNU binutils tools, and either
put in the ahbrom.vhd file and synthesized in a ROM, or
downloaded as ELF files with GRMON.

As the current version of GRMON does not support
UTLEON3 debugging, programs cannot be stepped or
stopped once their execution starts, but the instruction and
bus trace history shows a (limited) execution history of
the user microthreaded program. Program results can be
inspected in the memory. Performance data can be read
from performance counters that measure specific events
in the system (e.g. overall clock cycles, cache miss count,
pipeline idle time).

V. PERFORMANCE OF FIR IN UTLEON3

To compare the performance of the modified UTLEON3
pipeline we have implemented and executed a simple

FIR filter both in the original LEON3 processor and the
newly developed UTLEON3 processor. The UTLEON3
execution either makes or does not make use of the
hardware families of threads.

L—1
2 = E biThyi
i=0

The L parameter specifies the length of the filter. In
typical embedded DSP applications (echo cancellation,
ADSL) the length is often of the order of tens of elements
(taps); we can safely assume here a typical L = 32.

int x[N], z[N], b[L];

int x[N1, z[N], b[L]; 5 ; i
F1l: create_family (index int k;
[for (k = 0; k < N-L; k&®) { start=0; Timit=N-L-1) {
int s = 0; int s = 05
\for‘ (G=0;1<L; i+0 { F2: create_family (index int i; ‘

s += b[i] * x[k+i1; start=0; Timit=L-1
} global={k}; shared={s}) {
2[k] = s; s += b[i] * x[k+i];

}
z[k] = s;
}

Fig. 6. A complete FIR program; left - legacy, right - microthreaded

Figure 6 shows a complete software FIR program that
computes the filter equation over an array of N elements.
The inner family F2 implements the filter equation by
unrolling the sum into a family of dependent threads
(using a shared integer s). These threads are coupled by
the addition operator (line s+ = b[i] * z[k + ¢];) which is
both associative and commutative.

The create-family pseudo-command from the code ex-
ample is further decomposed into a sequence of assembly-
level instructions: allocate, setstart, setlimit, setstep,
setthread, and create. These instructions will be assigned
their parameters from the arguments of the create-family
pseudo-command. Besides the obvious parameters (index,
start, limit, step), which directly correspond to a classical
for-loop construct, there are some other that need an
explanation: global, shared, and blocksize.

The global and shared parameters specify lists of
variables (registers) that will be made visible to the family
being created. The difference between these two is that
the global ones stay fixed during the course of execution
of the family, while the shared ones are assumed to be
passed—and possibly modified—from one thread to another.
This sharing of data is strictly unidirectional and always
only between two adjacent threads in the family, i.e.
from a thread indexed ¢ to a thread indexed ¢ + 1.
Global and shared variables are directly supported by
the machine architecture by the means of thread global
and shared registers. The quantity of these registers can
be individually customized for each family using the
.registers assembly directive.

In the benchmark example the global parameter is used

to specify that variables A and Y will be passed to the
thread family.

The final family parameter to be described is the
blocksize. This parameter is optional for it does not affect
the semantics of the computation, but it affects its pace.
The blocksize specifies the maximal number of threads of
a given family that are allowed to co-exist at any moment.
This enables a compiler or assembly-level programmer
to artificially throtle the rate of thread creation so as
not to congest the memory subsystem or the underlaying
large register file from which the registers are dynamically
allocated. Also, as the processor does not implement
virtualization of some internal data structures yet (notably
the Family Table and Thread Table), we are bound to use
the blocksize parameter to prevent certain families from
consuming all available internal resources.

The FIR filter examples with various unroll factors
were compared. All versions are equivalent in terms of
generated data outputs. The higher unroll factor should
reduce runtime in both legacy mode and microthreaded
mode. In the case of legacy mode the higher unroll
factor allows better arrangement of instructions, as was
mentioned above. In case of microthreaded mode the
higher unroll factors results in longer threads, which
reduces load of a thread scheduler.

The results are shown in Table III (also see Fig. 7).
Examples with unroll factor one, two and four were
used for both the legacy code (marked as L3 FIR 1x,
L3 FIR 2x, L3 FIR 4x respectively) and the microthreaded
code (marked as UT FIR 1x, UT FIR 2x, UT FIR 4x
respectively). Structure of the table and the graph is the
same as in the previous experiment.

As expected, the number of pipeline stalls due to inter-
nal data dependences (see column “Stalls”) was smaller
in versions with higher unroll factors. Nevertheless the
reduction due to loop unrolling was noticeably smaller
when compared to the reduction due to application of
microthreading. Considering the UTLEON3 processor,
the application of microthreading reduces the number of
stalls 35 times on average — while it represented 43% of
the overall runtime on average in case of the legacy code,
it was just about 2% of the overall runtime in case of the
microthreaded code.

The higher unroll factor results in lower number of
stalls due to thread management (see column ”"UT Over-
head”). This overhead is 38% in case of unroll factor 1
(UT FIR 1x), and decreases down to 5% in case of higher
unroll factors (UT FIR 2x, UT FIR 4x).

A further, more general analysis of speed-up limits of
UTLEONS3 for pipelined and non-pipelined long-latency
operations can be found in [12].

TABLE III
PIPELINE EXECUTION PROFILE FOR A 26-TAP FIR FILTER

Core Program | Total Working Holdn(cache) Stall UT overhead
(1] (1] (11 [%] | [1] [%] (11 [%] [%]
LEON3 L3 FIR 1x | 8976 | 4873 54 | 231 3 | 3872 43
UTLEON3 L3 FIR 1x | 9703 | 4873 50 | 190 2 | 4640 48
UTLEON3 | UT FIR 1x | 5877 | 3506 60 16 0 107 2 | 2248 38
LEON3 L3 FIR 2x | 8230 | 4873 59 | 253 3 | 3104 38
UTLEON3 L3 FIR 2x | 8189 | 4873 60 | 212 3 | 3104 38
UTLEON3 | UT FIR 2x | 4612 | 4274 93 12 0 104 2 222 5
LEON3 L3 FIR 4x | 7477 | 4105 55 | 268 4 | 3104 42
UTLEON3 L3 FIR 4x | 7421 | 4105 55 | 212 3 | 3104 42
UTLEON3 | UT FIR 4x | 4210 | 3890 92 14 0 98 2 208 5
LEON3 - L3 FIR 1x [[:gtT Iflwefhead
al
UTLEON3 - L3 FIR 1x [[@ Holdn (cache)
UTLEON3 - UTFIR 1x | T 0 Working
LEON3 - L3 FIR 2x | [I
E UTLEON3 - L3 FIR 2x | [
8 UTLEON3 - UTFIR2x |]
o
LEON3 — L3 FIR 4x | [I
UTLEONS - L3 FIR 4x | [
UTLEON3 — UT FIR 4x |]
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Clock Cycles

Fig. 7.

VI. UTLEON3 vs. OPENSPARC T1/T2

The OpenSPARC T1 and T2 processors are open-source
implementations of the UltraSPARC 2005 and 2007
architectures [1]. OpenSPARC T1 has been ported to
Xilinx FPGAs; in the Xilinx XUPV5-LX110T Evaluation
Platform T1 has been reported to operate at 62.5MHz in
a 125MHz MicroBlaze system [13]. As the UTLEON3
processor is based on the SPARC v8 ISA it is only natural
to compare it against the OpenSPARC processors.

UltraSPARC 2005, 2007 [1] architectures include sup-
port for Chip-Level Multithreading (CMT). The purpose
of the CMT is to define multi-processing interface be-
tween the software and hardware. In CMT a processor
(physical module which plugs into a system interconnect
fabric) is a collection of physical cores. Physical core is a
pipeline with caches and other associated hardware. One
or more software threads - called strands - may be sched-
uled on one physical core. A strand is the software-visible
state (PC, NPC, GP and FP registers, ASRs etc.) that the
hardware must maintain in order to execute a software
thread. From the ISA point of view the strand behaves
like a virtual processor including its own MMU context.
Therefore, the recommended programming model for
CMT processors is either Posix Threads (pthreads) or
OpenMP, which are both well-known industry standards.
The incentive is to offer coarse-grained parallelism for

Pipeline execution profile for a 26-tap FIR example

task-level multitasking.

Contrary to that, the micro-threaded concurrency model
employed in UTLEON3 is fine-grained. The goal of
micro-threading is to extract instruction-level parallelism
from existing sequential algorithms [14].

VII. CONCLUSIONS

This paper has described an implementation of instruc-
tion set extensions for micro-threading in SPARC. The
architecture of key functional blocks of the UTLEON3
processor have been presented together with implementa-
tion data for Xilinx XC5VLX110T FPGA. The speedup
of micro-threading in UTLEON3 over identical programs
in LEON3 has been shown and discussed. The final
development of UTLEON3 will be made available to the
research community at [15].

ACKNOWLEDGMENT

This work was supported and funded by the
European Commission under Project Apple-CORE
No. FP7-ICT-215215, and by the Czech Ministry of
Education under Project No. 7E08013. The paper reflects
only the authors’ view; neither the European Commission
nor the Czech Ministry of Education are liable for any use

that may be made of the information contained herein. For
information about the Apple-CORE project see [15].

(1]

[2]

[3]

[4

=

(3]

(6]

(71

REFERENCES

T. Takayanagi, J. L. Shin, B. Petrick, J. Su, and A. S. Leon, “A
dual-core 64b ultrasparc microprocessor for dense server applica-
tions,” in DAC, S. Malik, L. Fix, and A. B. Kahng, Eds. ACM,
2004, pp. 673-677.

P. Kongentira, K. Aingaran, and K. Olukotum, “Niagara: a 32-way
multithreaded SPARC processor,” IEEE Micro, vol. 25, no. 2, pp.
21-29, 2005.

K. D. Kissell, “MIPS MT: A multithreaded RISC architecture for
embedded real-time processing,” in HiPEAC, ser. Lecture Notes
in Computer Science, P. Stenstrom, M. Dubois, M. Katevenis,
R. Gupta, and T. Ungerer, Eds., vol. 4917. Springer, 2008, pp.
9-21.

J. Gaisler, E. Catovic, and S. Habinc, GRLIB IP Library User’s
Manual. Gaisler Research, 2007.

T. Ungerer, B. Robi¢, and J. gilc, “A survey of processors with
explicit multithreading,” ACM Comput. Surv., vol. 35, no. 1, pp.
29-63, 2003.

C. R. Jesshope and B. Luo, “Micro-threading: A new approach
to future RISC.” in Proceedings of the 5th Australasian Computer
Architecture Conference. 1EEE Computer Society press, 2000,
pp. 34-41.

C. Jesshope, “Scalable instruction-level parallelism,” in Computer
Systems: Architectures, Modeling, and Simulation. Springer
Berlin / Heidelberg, 2004, pp. 383-392.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

C. R. Jesshope, “muTC - an intermediate language for program-
ming chip multiprocessors,” in Asia-Pacific Computer Systems
Architecture Conference, 2006, pp. 147-160.

Arvind and R. S. Nikhil, “Executing a program on the MIT tagged-
token dataflow architecture,” IEEE Transaction on Computers,
vol. 39, no. 6, pp. 300-318, 1990.

J. Sykora, L. Kafka, M. Danek, and L. Kohout, “Microthreading as
a novel method for close coupling of custom hardware accelerators
to SVP processors,” in Proceedings of the 14th EUROMICRO
Conference on Digital System Design (DSD2011). Conference
Publishing Services, 2011.

M. Danek, L. Kafka, L. Kohout, and J. Sykora, “Instruction set
extensions for multi-threading in LEON3,” pp. 237-242.

J. Sykora, L. Kafka, M. Danek, and L. Kohout, “Analysis of ex-
ecution efficiency in the microthreaded processor UTLEON3,” in
Proceedings of the 2011 Conference on Architecture of Computing
Systems (ARCS 2011), ser. Lecture Notes in Computer Science,
vol. 6566. Springer, 2011, pp. 110-121.

Sun Microsystems. RAMP retreat August, 2008 update.
http://www.opensparc.net/publications/presentations/ramp-retreat-
august-2008-update.html.

C. R. Jesshope, J.-M. Philippe, and M. van Tol, “An architecture
and protocol for the management of resources in ubiquitous and
heterogeneous systems based on the svp model of concurrency,” in
SAMOS, ser. Lecture Notes in Computer Science, M. Berekovic,
N. J. Dimopoulos, and S. Wong, Eds., vol. 5114. Springer, 2008,
pp. 218-228.

The Apple-CORE Consortium. Architecture Paradigms and Pro-
gramming Languages for Efficient programming of multiple
COREs. http://www.apple-core.info.

